Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    0, Vol. Issue () : 905-921    https://doi.org/10.1007/s11783-014-0650-4
RESEARCH ARTICLE
Characterization of phosphorus species and modeling for its organic forms in eutrophic shallow lake sediments, North China
Hongguang CHENG1,*(),Xiao PU2,Yiting CHEN1,Fanghua HAO1,Liming DONG1
1. School of Environment, Beijing Normal University, Beijing 100875, China
2. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China
 Download: PDF(1391 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Variations of phosphorus (P) and its species in surface sediment of Baiyangdian Lake, a eutrophic shallow lake located in North China, were investigated through combination of field survey and numerical calculation based on cluster analysis. P fractionation was performed by a sequential extraction scheme, categorized as loosely bound P (NH4Cl-P), reductant soluble P (BD-P), metallic oxide bound P (NaOH-P), calcium bound P (HCl-P) and organic P (Org-P). P concentrations exhibited regional similarities and a total of four sub-areas were identified in which the same rank was HCl-P>Org-P>BD-P ≈ NaOH-P>NH4Cl-P. NH4Cl-P, BD-P and Org-P were found to contribute to P enrichment in overlying water column. Specifically, labile Org-P acted as a potential pool with a greater contribution in aerobic layer compared to anaerobic layer. A hysteresis (lag= 4 months) existed when labile Org-P concentration was negatively correlated with aerobic layer thickness. In view of magnitude of identified P contributors in sub-areas, higher potential of P release was present in Fuhe River and Tang River estuary areas. On the basis of calibration and verification, the mathematical model with parameter settings applied in this study was improved to serve as a tool for limnology management and eutrophic control.

Keywords phosphorus fractionation      variation characteristics      modeling      sediment      Baiyangdian Lake     
Corresponding Author(s): Hongguang CHENG   
Online First Date: 18 March 2014    Issue Date: 17 November 2014
 Cite this article:   
Hongguang CHENG,Xiao PU,Yiting CHEN, et al. Characterization of phosphorus species and modeling for its organic forms in eutrophic shallow lake sediments, North China[J]. Front. Environ. Sci. Eng., 0, (): 905-921.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0650-4
https://academic.hep.com.cn/fese/EN/Y0/V/I/905
Fig.1  Map of the study area with location of sampling sites and boundaries of subareas
Baiyangdian Lake Fuhe River Tang River Baigouyin River
physical description surface area/km2 a) 366
mean depth/ma) 6.84b) NCc) 7.81 21.29
annual average volume/(1010 m3)b) 1.32 NC NC NC
natural trophic statusa) Mesotrophic Mesotrophic Lower mesotrophic Lower mesotrophic
nutrient/trophic parametersa, d) water total phosphorus/(μg·L-1) 416 1612 (210)e) 67 85
soluble reactive phosphorus/(μg·L-1) 105 356 11 18
total nitrogen/(mg·L-1) 3.86 21.05 (25.9)e) 3.41 2.69
N O 3 - /(mg N·L-1) 0.89 NC 2.74 1.58
N O 2 - /(μg N·L-1) 43 108 22 35
N H 4 + /(mg N·L-1) 0.49 18.59 0.22 0.21
Chlorophyll-a/(mg·m-3) 20.35 NC NC NC
Secchi disc transparency/m 0.66 NC NC NC
Trophic classification Hypertrophic Hypertrophic Mesotrophic Mesotrophic
other water quality parametersa, d) mean (range) pH 8.16 (7.38–9.22) 7.65 (6.95–8.23) 8.32 (8.04–8.58) 8.46 (8.21–8.64)
conductivity /(μS·cm-1) 1081 (771–2160) 1526 (709–3520) 481 (380–556) 468 (339–584)
DO/mg·L-1) 8.32 (0.68–20.11) 0.95 (0.16–3.02) 9.56 (6.34–15.28) 10.65 (8.01–13.66)
BOD5 /(mg·L-1) 10.39 (2.85–73.66) 32.85 (5.13–64.72) 2.78 (2.02–4.65) 5.89 (2.33–8.57)
S O 4 2 - /(mg·L-1) 151.12 (64.45–332.94) NC 47.83 (25.87–66.42) 50.35 (36.46–83.31)
Fe/(μg·L-1) 143 (22–776) 141 (37–482) 147 (23–319) 148 (45–264)
As/(μg·L-1) 4.16 (0.64–40.13) 13.53 (4.35–66.08) 0.82 (0.55–1.16) 1.54 (0.51–3.37)
Tab.1  Main physical and chemical characteristics of the studied lake and upstream rivers
site season na) water propertiesb)
pH temperature/°C DO/(mg·L-1) conductivity/μS·cm-1 NH4+/(mg·L-1) Ntot/(mg·L-1) Ptot/(μg·L-1) sediment type
Baigouyin River estuary area
St01 spring 8 7.85 11.5 12.25 1096 0.54 1.45 142 sandy silt
summer 10 8.16 28.9 5.80 1006 0.71 1.78 265
St02 spring 10 8.25 12.1 13.97 1043 0.61 1.02 136 silty sand
St03 spring 10 8.27 11.2 13.39 1074 0.86 1.55 118 silty sand
summer 12 8.04 29.8 6.60 944 0.73 1.56 272
Fuhe River estuary area
St04 spring 10 8.32 12.6 11.54 1181 2.61 4.44 153 silty sand
St05 spring 10 8.25 14.2 13.71 1674 7.67 14.2 299 mud
Tang River estuary area
St06 spring 10 8.14 13.4 12.16 1164 2.79 3.27 195 silty sand
St07 spring 8 7.91 11.7 9.25 1036 1.65 1.14 168 sandy silt
summer 12 8.20 30.5 3.10 1013 0.93 1.35 287
St08 spring 8 8.24 10.9 13.78 1034 1.82 2.38 176 mud
Central lake area
St09 spring 8 8.38 13.5 13.92 1086 1.58 1.24 174 silty sand
summer 10 8.18 30.1 8.50 966 0.92 1.64 242
St10 spring 10 8.26 13.2 13.53 1039 1.12 2.58 148 sandy silt
St11 spring 8 7.95 13.3 9.96 1045 1.34 2.38 137 silty sand
St12 spring 8 8.40 13.2 13.47 1022 1.36 2.45 135 Sandy silt
summer 10 8.20 31.5 5.60 950 0.72 1.08 116
St13 spring 10 8.29 12.5 9.74 1053 1.96 3.56 161 Sandy silt
St14 spring 8 8.05 12.1 11.34 998 1.52 3.45 143 Sandy silt
summer 12 8.30 31.2 11.67 954 0.71 1.32 204
Tab.2  ?Information of sampling sites and characteristics of corresponding near-bottom water in Baiyangdian Lake
coefficient value unit description
kd, ae, la) 0.056 day-1 decomposition rate coefficient for labile fraction in aerobic layer
kd, ae, ra) 0.008 day-1 decomposition rate coefficient for refractory fraction in aerobic layer
kd, an, la) 0.028 day-1 decomposition rate coefficient for labile fraction in anaerobic layer
kd, an, ra) 0.005 day-1 decomposition rate coefficient for labile fraction in anaerobic layer
θd,lb) 1.15 dimensionless decomposition temperature coefficient for labile fraction
θd,rb) 1.10 dimensionless decomposition temperature coefficient for refractory fraction
Db(273)a) 8.5 × 10-5 m2·day-1 effective bioturbation rate coefficient at 20°C
θbb) 1.117 dimensionless arrhenius temperature coefficient for bioturbation
φP/Ca) 6.29 × 10-3 g P/g C phosphorus and carbon ratio of organic matters
σrefb) 50 g·m-3 reference concentration of organic carbon for labile fraction
?halfa) 8.0 g·m-3 half saturation constant of dissolved oxygen
Ds(273)a) 6 × 10-4 m2·day-1 effective diffusion rate coefficient at 20°C
ωsa) 2.35 × 10-5 m·day-1 burial rate coefficient
μ(273) 1.002 cP water viscosity at 20°C
flb) 0.65 dimensionless fractions of labile organic phosphorus deposition
frb) 0.20 dimensionless fractions of refractory organic phosphorus deposition
Tab.3  Variables and parameters for the organic phosphorus model in Baiyangdian Lake
variable unit value used in model reported range reference
decomposition rate coefficient for organic phosphorus fractions day-1 0.005-0.056 0.0012-0.071 [23]
effective bioturbation rate coefficient m2·day-1 8.5×10-5 8.2×10-8-1.2×10-4 [22]
effective diffusion rate coefficient m2·day-1 6×10-4 4.2× 10-5-1.0 × 10-3 [24]
burial rate coefficient m·day-1 2.35×10-5 5.5× 10-7-2.7 × 10-5 [22]
Tab.4  Ranges of typical environmental variables reported in literatures
Statistics silt/clay fractions/% sand fractions/% LOI/% dw Corg/mg·g-1 dw Corg︰Porg
Ave 63.60 36.40 8.84 21.04 159
Std 15.74 15.74 3.29 11.35 65
CV% 25 43 37 54 41
Max 87.42 57.14 16.47 50.90 328
Min 42.86 12.58 3.93 7.88 34
Md 69.64 30.36 8.65 18.73 158
n 192 192 192 192 192
mean of BRM(n = 50) 59.91 40.09 9.24 25.10 150
mean of FRM(n = 20) 63.67 36.33 7.83 16.06 100
mean of TRM(n = 38) 67.72 32.28 9.26 23.51 151
mean of CL(n = 84) 63.80 36.20 8.65 18.80 182
Tab.5  General characteristics and physiochemical features of sediment in Baiyangdian Lake
statistics Ptot NH4Cl-P BD-P NaOH-P HCl-P Org-P
total labile refractory
Ave 514.61 10.93 42.20 38.05 278.67 132.72 44.77 95.89
Std 91.70 5.85 29.66 28.35 49.80 58.82 14.76 48.04
CV% 18 54 70 75 18 44 33 50
Max 751.60 21.97 81.01 90.31 361.81 238.38 82.61 191.92
Min 406.35 2.23 5.16 14.27 180.79 108.80 19.51 25.83
Md 484.65 11.92 42.78 37.96 285.31 134.05 48.13 82.91
Prop 2.13 8.21 7.39 54.15 25.79 8.70 18.63
Tab.6  Total phosphorus and phosphorus fractionation in sediment of Baiyangdian Lake (μg·g-1 dw)
Fig.2  (a) Total phosphorus concentrations (Ptot) of sediments in Baiyangdian Lake: contents in Baigouyin River estuary area (BRM), Fuhe River estuary area (FRM), Tang River estuary area (TRM) and the central lake area (CL). (b) Dendrogram of the cluster analysis on sampling sites
Fig.3  Phosphorus fractionation in sediments of Baiyangdian Lake: averages of phosphorus species contents in sediment (a); total phosphorus composition in sediments (b, BRM: Baigouyin River estuary area, FRM: Fuhe River estuary area, TRM: Tang River estuary area, CL: central lake area)
Fig.4  Modeled thickness of aerobic layer in sediments at six multi-year sampling sites of Baiyangdian Lake
Fig.5  Modeled and measured concentrations of Org-P fractions in aerobic layer (left) and anaerobic layer (right) of surficial sediment at six multi-year sampling sites in Baiyangdian Lake (—, simulated labile organic phosphorus; - - -, simulated refractory organic phosphorus; white dot, observation for labile organic phosphorus; black dot, observation for refractory organic phosphorus)
items Ptot NH4Cl-P BD-P NaOH-P HCl-P Org-P
fine fraction 0.425 0.137 0.117 0.203 0.128 0.336
LOI 0.178 -0.268 -0.226 0.216 -0.201 0.574**
pH -0.175 0.451* -0.484* -0.422 -0.336 -0.168
temperature -0.343 0.348 0.173 0.071 0.046 -0.580**
DO 0.287 0.284 0.536* 0.314 -0.429 0.481*
TOC 0.167 -0.267 0.014 0.165 -0.174 0.613**
Tab.7  Pearson correlation coefficients between phosphorus fractions and water/sediment properties (n = 192)
lake Trophic Ptot NH4Cl-P BD-P NaOH-P HCl-P Org-P reference
Volvi Lake, Greece Mesotrophic 2.14 23.65 90.55 314.50 [29]
Koronia Lake, Greece Hypertrophic 1.78 13.10 99.10 185.01 [29]
Erken Lake, Sweden Mesotrophic 1814 27 345 85 287 [37]
Loch Leven, Scotland Mesotrophic 0.21-2.83% 20.26-32.10% 15.93-25.03% 10.58-21.41% 20.68-27.05% [1]
Taihu Lake, China Hypertrophic 420-3408 56-2476 155-392 52-403 [34]
Pandoh Lake, India Mesotrophic 50-98 3.70-11.06 14.52-47.34 16.89-32.01 6.75-17.00 3.67-14.89 [31]
Tab.8  Phosphorus fractionations of lake sediments reported in literatures (mean value or varying range, μg g-1 dw or %)
Fig.6  The corresponding relationships of total phosphorus in near-bottom water and total phosphorus in sediment or proportion of phosphorus fractions to total phosphorus in sediment (** represented the significance at P<0.01)
lake thickness/cm references
Arreskov Lake, Denmark 0.3-1.5 [27]
Kvind Lake, Denmark 0.5-1.2 [27]
S?byg?rd Lake, Denmark 0.6-1.4 [27]
V?ng Lake, Denmark 0.4-1.6 [27]
Stechlin Lake, Germany 0-2.0 [42]
Marken Lake, Netherlands 0-1.0 [41]
Veluwe Lake, Netherlands 0.5-2.5 [40]
Tab.9  Thickness of aerobic layer in lake sediment reported in literatures
Fig.7  The correlations of the calculated aerobic layer thickness and labile Org-P concentration in aerobic (a) and anaerobic (b) layers under different lag times (*** represented the significance at P<0.001)
1 Spears B M, Carvalho L, Perkins R, Kirika A, Paterson D M. Spatial and historical variation in sediment phosphorus fractions and mobility in a large shallow lake. Water Research, 2006, 40(2): 383–391
https://doi.org/10.1016/j.watres.2005.11.013 pmid: 16386778
2 Ribeiro D C, Martins G, Nogueira R, Cruz J V, Brito A G. Phosphorus fractionation in volcanic lake sediments (Azores-Portugal). Chemosphere, 2008, 70(7): 1256–1263
https://doi.org/10.1016/j.chemosphere.2007.07.064 pmid: 17868771
3 Coelho J P, Flindt M R, Jensen H S, Lilleb? A I, Pardal M A. Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes. Estuarine, Coastal and Shelf Science, 2004, 61(4): 583–590
https://doi.org/10.1016/j.ecss.2004.07.001
4 Schuffert J D, Kastner M, Jahnke R A. Carbon and phosphorus burial associated with modern phosphorite formation. Marine Geology, 1998, 146(1–4): 21–31
https://doi.org/10.1016/S0025-3227(97)00122-9
5 Wang H, Appan A, Gulliver J S. Modeling of phosphorus dynamics in aquatic sediments: I—model development. Water Research, 2003, 37(16): 3928–3938
https://doi.org/10.1016/S0043-1354(03)00304-X pmid: 12909112
6 Kleeberg A, Grüneberg B. Phosphorus mobility in sediments of acid mining lakes, Lusatia, Germany. Ecological Engineering, 2005, 24(1–2): 89–100
https://doi.org/10.1016/j.ecoleng.2004.12.010
7 Wang S R, Jin X C, Bu Q Y, Jiao L X, Wu F C. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316(1–3): 245–252
https://doi.org/10.1016/j.colsurfa.2007.09.007
8 Dong L M, Yang Z F, Liu X H. Phosphorus fractions, sorption characteristics, and its release in the sediments of Baiyangdian Lake, China. Environmental Monitoring and Assessment, 2011, 179(1–4): 335–345
https://doi.org/10.1007/s10661-010-1740-9
9 Wang X, Zhang S, Liu S, Chen J. A two-dimensional numerical model for eutrophication in Baiyangdian Lake. Frontiers of Environmental Science and Engineering, 2012, 6(6) 815–824
https://doi.org/10.1007/s11783-011-0383-6
10 Cui B S, Li X, Zhang K J. Classification of hydrological conditions to assess water allocation schemes for Lake Baiyangdian in North China. Journal of Hydrology (Amsterdam), 2010, 385(1–4): 247–256
https://doi.org/10.1016/j.jhydrol.2010.02.026
11 ?ukawska-Matuszewska K, Bola?ek J. Spatial distribution of phosphorus forms in sediments in the Gulf of Gdansk (southern Baltic Sea). Continental Shelf Research, 2008, 28(7): 977–990
https://doi.org/10.1016/j.csr.2008.01.009
12 Bai X, Ding S, Fan C, Liu T, Shi D, Zhang L. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China. Environmental Pollution, 2009, 157(8–9): 2507–2513
https://doi.org/10.1016/j.envpol.2009.03.018
13 Psenner R, Pucsko R. Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 1988, 30: 43–59
14 Guo W, Pei Y, Yang Z, Wang C. Assessment on the distribution and partitioning characteristics of polycyclic aromatic hydrocarbons (PAHs) in Lake Baiyangdian, a shallow freshwater lake in China. Journal of Environmental Monitoring, 2011, 13(3): 681–688
https://doi.org/10.1039/c0em00583e pmid: 21308128
15 Yang Y H, Tian F. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. Journal of Hydrology (Amsterdam), 2009, 374(3–4): 373–383
https://doi.org/10.1016/j.jhydrol.2009.06.040
16 Wang L, Yin C, Wang W, Shan B. Phosphatase activity along soil C and P gradients in a reed-dominated wetland of North China. Wetlands, 2010, 30(3): 649–655
https://doi.org/10.1007/s13157-010-0055-5
17 APHA, AWWA, WPCF. Standard methods for the examination of water and wastewater. 1998
18 Tan K H. Soil Sampling, Preparation and Analysis. New York: Marcel Dekker, 1995
19 Turner B L, Cade-Menun B J, Condron L M, Newman S. Extraction of soil organic phosphorus. Talanta, 2005, 66(2): 294–306
https://doi.org/10.1016/j.talanta.2004.11.012 pmid: 18969994
20 Carman R, Edlund G, Damberg C. Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P NMR study. Chemical Geology, 2000, 163(1–4): 101–114
https://doi.org/10.1016/S0009-2541(99)00098-4
21 Lijklema L. Considerations in modeling the sediment-water exchange of phosphorus. Hydrobiologia, 1993, 253(1–3): 219–231
https://doi.org/10.1007/BF00050744
22 DiToro D M. Sediment Flux Modeling. New York: Wiley Interscience, 2001
23 Westrich J T, Berner R A. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnology and Oceanography, 1984, 29(2): 236–249
https://doi.org/10.4319/lo.1984.29.2.0236
24 Krom M D, Berner R A. Adsorption of phosphate in anoxic marine sediments. Limnology and Oceanography, 1980, 25(5): 797–806
https://doi.org/10.4319/lo.1980.25.5.0797
25 Auer M T, Doerr S M, Effler S W, Owens E M. A zero degree of freedom total phosphorus model: 1. Development for Onondaga Lake, New York. Lake and Reservoir Management, 1997, 13(2): 118–130
https://doi.org/10.1080/07438149709354303
26 Gonsiorczyk T, Casper P, Koschel R. Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology, 1998, 37(3): 51–58
https://doi.org/10.1016/S0273-1223(98)00055-9
27 Jensen H S, Andersen F O. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography, 1992, 37(3): 577–589
https://doi.org/10.4319/lo.1992.37.3.0577
28 Penn M R, Auer T, Van Orman E L, Korienek J J. Phosphorus diagenesis in lake sediments: investigations using fractionation techniques. Marine and Freshwater Research, 1995, 46(1): 89–99
29 Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments—lakes Volvi and Koronia, N. Greece. Chemosphere, 2002, 46(8): 1147–1155
https://doi.org/10.1016/S0045-6535(01)00242-9 pmid: 11951980
30 Kleeberg A, Kozerski H P. Phosphorus release in Lake Gro?er Müggelsee and its implications for lake restoration. Hydrobiologia, 1997, 342–343: 9–26
https://doi.org/10.1023/A:1017079029053
31 Anshumali, Ramanathan A L. Phosphorus fractionation in surficial sediments of Pandoh Lake, Lesser Himalaya, Himachal Pradesh, India. Applied Geochemistry, 2007, 22(9): 1860–1871
https://doi.org/10.1016/j.apgeochem.2007.03.050
32 Perkins R G, Underwood G J. The potential for phosphorus release across the sediment-water interface in an eutrophic reservoir dosed with ferric sulphate. Water Research, 2001, 35(6): 1399–1406
https://doi.org/10.1016/S0043-1354(00)00413-9 pmid: 11317886
33 Ting D S, Appan A. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs. Water Science and Technology, 1996, 34(7–8): 53–59
https://doi.org/10.1016/S0273-1223(96)00724-X
34 Jin X C, Wang S R, Pang Y, Chang Wu F. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pollution, 2006, 139(2): 288–295
https://doi.org/10.1016/j.envpol.2005.05.010 pmid: 16061319
35 Zwolsman J J G. Seasonal variability and biogeochemistry of phosphorus in the Scheldt Estuary, south-west Netherlands. Estuarine, Coastal and Shelf Science, 1994, 39(3): 227–248
https://doi.org/10.1006/ecss.1994.1061
36 Zhou Q, Gibson C E, Zhu Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere, 2001, 42(2): 221–225
https://doi.org/10.1016/S0045-6535(00)00129-6 pmid: 11237302
37 Rydin E. Potentially mobile phosphorus in Lake Erken sediment. Water Research, 2000, 34(7): 2037–2042
https://doi.org/10.1016/S0043-1354(99)00375-9
38 Aigars J. Seasonal variations in phosphorus species in the surface sediments of the Gulf of Riga, Baltic Sea. Chemosphere, 2001, 45(6–7): 827–834
https://doi.org/10.1016/S0045-6535(01)00121-7 pmid: 11695602
39 Golterman H L. Phosphate release from anoxic sediments or ‘What did Mortimer really write?'. Hydrobiologia, 2001, 450(1/3): 99–106
https://doi.org/10.1023/A:1017559903404
40 Smits J G C, Van der Molen D T. Application of SWITCH, a model for sediment-water exchange of nutrients, to Lake Veluwe in The Netherlands. Hydrobiologia, 1993, 253(1–3): 281–300
https://doi.org/10.1007/BF00050749
41 Duin E H S, Blom G, Lijklema L, Scholten M J M. Aspects of modelling sediment transport and night conditions in Lake Marken. Hydrobiologia, 1992, 235–236(1): 167–176
https://doi.org/10.1007/BF00026209
42 Sass H, Cypionka H, Babenzien H D. Vertical distribution of sulfate—reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiology Ecology, 1997, 22(3): 245–255
https://doi.org/10.1111/j.1574-6941.1997.tb00377.x
[1] Yanpeng Huang, Chao Wang, Yuanhao Wang, Guangfeng Lyu, Sijie Lin, Weijiang Liu, Haobo Niu, Qing Hu. Application of machine learning models in groundwater quality assessment and prediction: progress and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(3): 29-.
[2] Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction[J]. Front. Environ. Sci. Eng., 2024, 18(2): 17-.
[3] Qiyue Wu, Yun Geng, Xinyuan Wang, Dongsheng Wang, ChangKyoo Yoo, Hongbin Liu. A novel deep learning framework with variational auto-encoder for indoor air quality prediction[J]. Front. Environ. Sci. Eng., 2024, 18(1): 8-.
[4] Xingyue Qu, Peihe Zhai, Longqing Shi, Xingwei Qu, Ahmer Bilal, Jin Han, Xiaoge Yu. Distribution, enrichment mechanism and risk assessment for fluoride in groundwater: a case study of Mihe-Weihe River Basin, China[J]. Front. Environ. Sci. Eng., 2023, 17(6): 70-.
[5] Yunxue Xia, Dong Qiu, Zhong Lyv, Jianshuai Zhang, Narendra Singh, Kaimin Shih, Yuanyuan Tang. Controlled sintering for cadmium stabilization by beneficially using the dredged river sediment[J]. Front. Environ. Sci. Eng., 2023, 17(5): 61-.
[6] Kaixuan Zheng, Dong Xie, Yiqi Tan, Zhenjiang Zhuo, Tan Chen, Hongtao Wang, Ying Yuan, Junlong Huang, Tianwei Sun, Fangming Xu, Yuecen Dong, Ximing Liang. Numerical modeling and performance evaluation of passive convergence-permeable reactive barrier (PC-PRB)[J]. Front. Environ. Sci. Eng., 2023, 17(11): 131-.
[7] Wenwen Gong, Yu Xing, Lihua Han, Anxiang Lu, Han Qu, Li Xu. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China[J]. Front. Environ. Sci. Eng., 2022, 16(9): 113-.
[8] Zhenming Zhou, Canyang Lin, Shuwen Li, Shupo Liu, Fei Li, Baoling Yuan. Four kinds of capping materials for controlling phosphorus and nitrogen release from contaminated sediment using a static simulation experiment[J]. Front. Environ. Sci. Eng., 2022, 16(3): 29-.
[9] Kun Li, Tingming Ye, Wang Zhang, Jianfeng Peng, Yaohui Bai, Weixiao Qi, Huijuan Liu. Microbial responses to the use of NaClO in sediment treatment[J]. Front. Environ. Sci. Eng., 2022, 16(2): 17-.
[10] K. Dhineka, M. Sambandam, S. K. Sivadas, T. Kaviarasan, Umakanta Pradhan, Mehmuna Begum, Pravakar Mishra, M. V. Ramana Murthy. Characterization and seasonal distribution of microplastics in the nearshore sediments of the south-east coast of India, Bay of Bengal[J]. Front. Environ. Sci. Eng., 2022, 16(1): 10-.
[11] Farasat Ali, Ghulam Jilani, Leilei Bai, Chunliu Wang, Linqi Tian, Helong Jiang. Effects of previous drying of sediment on root functional traits and rhizoperformance of emerged macrophytes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 134-.
[12] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[13] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[14] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[15] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed