Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (3) : 29    https://doi.org/10.1007/s11783-024-1789-2
REVIEW ARTICLE
Application of machine learning models in groundwater quality assessment and prediction: progress and challenges
Yanpeng Huang1,2, Chao Wang2,3, Yuanhao Wang3, Guangfeng Lyu3, Sijie Lin3, Weijiang Liu4, Haobo Niu5, Qing Hu2,3()
1. School of Environment, Harbin Institute of Technology, Harbin 150090, China
2. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
3. Engineering Innovation Center of SUSTech (Beijing), Southern University of Science and Technology, Beijing 100083, China
4. Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
5. Chinese Academy of Environmental Planning, Beijing 100043, China
 Download: PDF(3141 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The application of ML in groundwater quality assessment and prediction is reviewed.

● Bibliometric analysis is performed and summarized to promote application.

● The details of the application of ML in GQAP are comprehensively summarized.

● Challenges and opportunities of using ML models in GQAP are discussed.

Groundwater quality assessment and prediction (GQAP) is vital for protecting groundwater resources. Traditional GQAP methods can not adequately capture the complex relationships among attributes and have the disadvantage of being computationally demanding. Recently, the application of machine learning (ML) in GAQP (GQAPxML) has been widely studied due to ML’s reliability and efficiency. While many GQAPxML publications exist, a thorough review is missing. This review provides a comprehensive summary of the development of ML applications in the field of GQAP. First, the workflow of ML modeling is briefly introduced, as are data preparation, model development, model evaluation, and model application. Second, 299 publications related to the topic are filtered, mainly through ML modeling. Subsequently, many aspects of GQAPxML, such as publication trends, the spatial distribution of study areas, the size of data sets, and ML algorithms, are discussed from a bibliometric perspective. In addition, we review in detail the well-established applications and recent findings for several subtopics, including groundwater quality assessment, groundwater quality modeling using groundwater quality parameters, groundwater quality spatial mapping, probability estimation of exceeding the groundwater quality threshold, groundwater quality temporal prediction, and the hybrid use of ML and physics-based models. Finally, the development of GQAPxML is explored from three perspectives: data collection and preprocessing, model building and evaluation, and the broadening of model applications. This review provides a reference for environmental scientists to better understand GQAPxML and promotes the development of innovative methods and improvements in modeling quality.

Keywords Groundwater quality assessment      Groundwater quality prediction      Machine learning      Groundwater modeling     
Corresponding Author(s): Qing Hu   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 31 October 2023
 Cite this article:   
Yanpeng Huang,Chao Wang,Yuanhao Wang, et al. Application of machine learning models in groundwater quality assessment and prediction: progress and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(3): 29.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1789-2
https://academic.hep.com.cn/fese/EN/Y2024/V18/I3/29
ThemeKeywords
GroundwaterGroundwater, aquifer, ground water, confined water, underground water, subsurface water, subterranean water, unconfined water, artesian water, phreatic water, crack water, fracture water, fissure water, crevice water, karst water, karstic water, well water, spring water
Machine LearningMachine learning, statistical learning, Bayesian Network, random forest, neural network, ANN, support vector, regression tree, extreme learning machine, Linear Discriminant Analysis, na?ve Bayes, Bayesian modeling average, logistic regression, decision tree, artificial intelligence, deep learning, supervised learning, unsupervised learning, semisupervised learning, SSL, pattern recognition, Feature Learning, Representation Learning, Feature Selection, Feature Extraction, Pattern Classification, clustering, K-Means, self-organizing maps, SOM, Nonnegative Matrix Factorization, NMF, principal component analysis, DBSCAN, Gaussian Mixture Model, Expectation-Maximization, dimensionality reduction, t-SNE, spectral clustering, Bayesian classifier, Bayes Decision, Bayesian learning, DNN, MLP, Multilayer Perceptron, BPNN, FNN, RNN, LSTM, Long short-term memory, NARX, nonlinear autoregressive with exogeneous inputs, Recurrent Network, ANFIS, Adaptive Network-based Fuzzy Inference System, extreme learning machine, ELM, decision tree, classification tree, regression tree, CART, Gradient Boosting Decision Tree, GBDT, BRT, gradient boosting machine, boosting decision tree, gradient random forest, rotation forest, XGBoost, AdaBoost, Adaptive Boosting, Light GBM, deep forest, support vector, relevance vector machine, LS-SVM, kernel learning, Semi-Supervised SVM, SVM, SVC, Linear Regression, LDA, K-Nearest Neighbor, KNN, GPR, Gaussian Process Regression, LWPR, local weighted projection regression, MARS, Multivariate Adaptive Regression Spline
Tab.1  Keywords used for literature retrieval in this study
Fig.1  Model confusion matrix for the test set.
Fig.2  Growth in total publications involving GQAPxML and GWxML. The inset shows the subtopic results within GQAPxML.
Fig.3  Distribution of study areas with GQAPxML publications: (a) Top 13 countries by number of publications and (b) temporal trend for the top 4 countries based on number of publications.
Fig.4  Changes in the average annual sample size and number of explanatory variables.
No.Explanatory variableFrequencyNo.Explanatory variableFrequency
1pH7721Fe22
2Chloride7422Position18
3Calcium+6523Mn17
4Sulfate6424DO16
5EC6325T15
6Sodium5826Alkalinity15
7Magnesium5727Dist_riv14
8Nitrate-5428Rainfall14
9TDS5429Sand113
10GWL5230Silt113
11Potassium4931Recharge13
12Land use4432Turbidity13
13TH4033TWI12
14Bicarbonate3734Alkalinity12
15Elevation3335Aquifer type11
16Well depth2636ET11
17P2437Soil type11
18Slope2438Population density11
19Fluoride2239Nitrogen input10
20Clay12240Phosphate9
Tab.2  Ranking of explanatory variable frequency in GQAPxML-related publications (top 40)
No.Response variableFrequencyNo.Response variableFrequency
1Nitrate6611Pesticide8
2As3512TH8
3WQI3313Redox status7
4EC2414pH7
5TDS2015Mn5
6Chloride1816Sulfate5
7WQC1417DO5
8Salinity1218RSC4
9Fluoride1119Fe4
10SAR1020Coliform4
Tab.3  Ranking of the response variable frequency in GQAPxML-related publications (top 20)
Fig.5  Machine learning problem type distribution in 299 publications.
Fig.6  The algorithms applied in the studies. (a) Frequency of studies using different numbers of algorithms, (b) frequency of each algorithm reported as optimal.
Fig.7  Frequency of different data set division ratios.
Fig.8  The evaluation index used for machine learning evaluation in 299 publications. (a) Frequency statistics for different numbers of evaluation indexes used and (b) evaluation index frequency.
1 K A N Adiat , B E Akeredolu , A A Akinlalu , G M Olayanju . (2020). Application of logistic regression analysis in prediction of groundwater vulnerability in gold mining environment: a case of Ilesa gold mining area, southwestern, Nigeria. Environmental Monitoring and Assessment, 192(9): 577
https://doi.org/10.1007/s10661-020-08532-7
2 P Agrawal , A Sinha , S Kumar , A Agarwal , A Banerjee , V G K Villuri , C S R Annavarapu , R Dwivedi , V V R Dera , J Sinha . et al.. (2021). Exploring artificial intelligence techniques for groundwater quality assessment. Water, 13(9): 1172
https://doi.org/10.3390/w13091172
3 P A Aguilera , A Fernández , R F Ropero , L Molina . (2013). Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research and Risk Assessment, 27(2): 435–447
https://doi.org/10.1007/s00477-012-0676-8
4 M E E Alahi , S C Mukhopadhyay , L Burkitt . (2018). Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sensors and Actuators. B, Chemical, 259: 753–761
https://doi.org/10.1016/j.snb.2017.12.104
5 T H H Aldhyani , M Al-Yaari , H Alkahtani , M Maashi . (2020). Water quality prediction using artificial intelligence algorithms. Applied Bionics and Biomechanics, 2020: 6659314
https://doi.org/10.1155/2020/6659314
6 E B Ali , T Abdeslam , B Youssef . (2021). Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245: 106625
https://doi.org/10.1016/j.agwat.2020.106625
7 M Alizamir , S Sobhanardakani . (2017). Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm. Environmental Health Engineering and Management, 4(4): 225–231
https://doi.org/10.15171/EHEM.2017.31
8 M Amini , K C Abbaspour , C A Johnson . (2010). A comparison of different rule-based statistical models for modeling geogenic groundwater contamination. Environmental Modelling & Software, 25(12): 1650–1657
https://doi.org/10.1016/j.envsoft.2010.05.014
9 M H Amini , M Arab , M G Faramarz , A Ghazikhani , M Gheibi . (2021). Presenting a soft sensor for monitoring and controlling well health and pump performance using machine learning, statistical analysis, and Petri net modeling. Environmental Science and Pollution Research International, 20: 1–17
https://doi.org/10.1007/s11356-021-12643-0
10 S Ardabili, A Mosavi, A R Várkonyi-Kóczy (2020). Advances in machine learning modeling reviewing hybrid and ensemble methods. In: Várkonyi-Kóczy A R, ed. Engineering for Sustainable Future. Cham: Springer International Publishing, 215–227
11 M Awais , B Aslam , A Maqsoom , U Khalil , F Ullah , S Azam , M Imran . (2021). Assessing nitrate contamination risks in groundwater: a machine learning approach. Applied Sciences, 11(21): 10034
https://doi.org/10.3390/app112110034
12 F B Banadkooki , M Ehteram , F Panahi , Sammen S Sh. , F B Othman , A El-Shafie . (2020). Estimation of total dissolved solids (TDS) using new hybrid machine learning models. Journal of Hydrology, 587: 124989
https://doi.org/10.1016/j.jhydrol.2020.124989
13 S S Band , S Janizadeh , S C Pal , I Chowdhuri , Z Siabi , A Norouzi , A M Melesse , M Shokri , A Mosavi . (2020). Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration. Sensors, 20(20): 5763
https://doi.org/10.3390/s20205763
14 J Barbosa Filho , I B De Oliveira . (2021). Development of a groundwater quality index: GWQI, for the aquifers of the state of Bahia, Brazil using multivariable analyses. Scientific Reports, 11(1): 16520
https://doi.org/10.1038/s41598-021-95912-9
15 R Barzegar , A Asghari Moghaddam . (2016). Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment, 2(1): 26
https://doi.org/10.1007/s40808-015-0072-8
16 R Barzegar , A Asghari Moghaddam , J Adamowski , E Fijani . (2017). Comparison of machine learning models for predicting fluoride contamination in groundwater. Stochastic Environmental Research and Risk Assessment, 31(10): 2705–2718
https://doi.org/10.1007/s00477-016-1338-z
17 R Barzegar , A Asghari Moghaddam , J Adamowski , B Ozga-Zielinski . (2018). Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stochastic Environmental Research and Risk Assessment, 32(3): 799–813
https://doi.org/10.1007/s00477-017-1394-z
18 M Bastani , T Harter . (2020). Effects of upscaling temporal resolution of groundwater flow and transport boundary conditions on the performance of nitrate-transport models at the regional management scale. Hydrogeology Journal, 28(4): 1299–1322
https://doi.org/10.1007/s10040-020-02133-x
19 S Bedi , A Samal , C Ray , D Snow . (2020). Comparative evaluation of machine learning models for groundwater quality assessment. Environmental Monitoring and Assessment, 192(12): 776
https://doi.org/10.1007/s10661-020-08695-3
20 W R Berghuijs , E Luijendijk , C Moeck , Y Van Der Velde , S T Allen . (2022). Global recharge data set indicates strengthened groundwater connection to surface fluxes. Geophysical Research Letters, 49(23): e2022GL099010
https://doi.org/10.1029/2022GL099010
21 R K Bhattacharjya , B Datta , M G Satish . (2007). Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers. Journal of Hydrologic Engineering, 12(3): 273–282
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:3(273
22 S Bindal , C K Singh . (2019). Predicting groundwater arsenic contamination: regions at risk in highest populated state of India. Water Research, 159: 65–76
https://doi.org/10.1016/j.watres.2019.04.054
23 H Brink, J W Richards, M Fetherolf, B Cronin (2017). Real-world machine learning. Greenwich, NY: Manning Shelter Island
24 D Brown (2020). Oregon Water Quality Index Data Summary Water Years 2010–2019. Hillsboro, USA: Oregon Department of Environmental Quality, 7
25 H Cao , X Xie , Y Wang , Y Deng . (2021). The interactive natural drivers of global geogenic arsenic contamination of groundwater. Journal of Hydrology, 597: 126214
https://doi.org/10.1016/j.jhydrol.2021.126214
26 F J Castellanos , J J Valero-Mas , J Calvo-Zaragoza , J R Rico-Juan . (2018). Oversampling imbalanced data in the string space. Pattern Recognition Letters, 103: 32–38
https://doi.org/10.1016/j.patrec.2018.01.003
27 M Chakraborty , S Sarkar , A Mukherjee , M Shamsudduha , K M Ahmed , A Bhattacharya , A Mitra . (2020). Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Science of the Total Environment, 748: 141107
https://doi.org/10.1016/j.scitotenv.2020.141107
28 N F Che Nordin , N S Mohd , S Koting , Z Ismail , M Sherif , A El-Shafie . (2021). Groundwater quality forecasting modelling using artificial intelligence: a review. Groundwater for Sustainable Development, 14: 100643
https://doi.org/10.1016/j.gsd.2021.100643
29 C Chen , W He , H Zhou , Y Xue , M Zhu . (2020a). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific Reports, 10(1): 3904
https://doi.org/10.1038/s41598-020-60698-9
30 Y Chen , L Song , Y Liu , L Yang , D Li . (2020b). A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17): 5776
https://doi.org/10.3390/app10175776
31 R M Coyte , K L Mckinley , S Jiang , J Karr , G S Dwyer , A J Keyworth , C C Davis , A J Kondash , A Vengosh . (2020). Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA. Science of the Total Environment, 711: 135135
https://doi.org/10.1016/j.scitotenv.2019.135135
32 E D Cubuk, B Zoph, D Mané, V Vasudevan, Q V Le (2018). AutoAugment: Learning Augmentation Policies from Data. Ithaca, NY: ArXiv, abs/1805.09501
33 T Cui , D Pagendam , M Gilfedder . (2021). Gaussian process machine learning and Kriging for groundwater salinity interpolation. Environmental Modelling & Software, 144: 105170
https://doi.org/10.1016/j.envsoft.2021.105170
34 An T Dang , M Tsujimura , Thang H Nam , Tam N Van , Van B Doan , Duc D Thanh , D Quang-Van , Tien B Dieu , Anh N Trieu , Vo P Le . et al.. (2021). Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecological Indicators, 127: 107190
35 L A DeSimone , J P Pope , K M Ransom . (2020). Machine-learning models to map pH and redox conditions in groundwater in a layered aquifer system, Northern Atlantic Coastal Plain, eastern USA. Journal of Hydrology. Regional Studies, 30: 100690
https://doi.org/10.1016/j.ejrh.2020.100697
36 L A DeSimone , K M Ransom . (2021). Manganese in the Northern Atlantic Coastal Plain aquifer system, eastern USA—modeling regional occurrence with pH, redox, and machine learning. Journal of Hydrology. Regional Studies, 37: 100925
https://doi.org/10.1016/j.ejrh.2021.100925
37 S Díaz-Alcaide , P Martínez-Santos . (2019). Mapping fecal pollution in rural groundwater supplies by means of artificial intelligence classifiers. Journal of Hydrology, 577: 124006
https://doi.org/10.1016/j.jhydrol.2019.124006
38 L Ding , Q Wang , Y Zheng , X Chen , Y Zheng , J Zhang , H Xu . (2022). Analysis of health assessment of water resources of Futuan River in Rizhao City by 5G wireless communication. Wireless Communications and Mobile Computing, 2022: 3175769
https://doi.org/10.1155/2022/3175769
39 B Dzwairo . (2018). Multi-date trends in groundwater pollution from pit latrines. Journal of Water, Sanitation, and Hygiene for Development: a Journal of the International Water Association, 8(4): 607–621
https://doi.org/10.2166/washdev.2018.177
40 Keskin T Ekemen , E Özler , E Şander , M Düğenci , M Y Ahmed . (2020). Prediction of electrical conductivity using ANN and MLR: a case study from Turkey. Acta Geophysica, 68(3): 811–820
https://doi.org/10.1007/s11600-020-00424-1
41 A El Bilali , A Taleb , A Nafii , B Alabjah , N Mazigh . (2021). Prediction of sodium adsorption ratio and chloride concentration in a coastal aquifer under seawater intrusion using machine learning models. Environmental Technology & Innovation, 23: 101641
https://doi.org/10.1016/j.eti.2021.101641
42 F Emmert-Streib , M Dehmer . (2022). Taxonomy of machine learning paradigms: a data-centric perspective. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 12(5): e1470
https://doi.org/10.1002/widm.1470
43 M L Erickson , S M Elliott , C J Brown , P E Stackelberg , K M Ransom , J E Reddy , C A 3rd Cravotta . (2021). Machine-Learning predictions of high arsenic and high manganese at drinking water depths of the glacial aquifer system, northern continental United States. Environmental Science & Technology, 55(9): 5791–5805
https://doi.org/10.1021/acs.est.0c06740
44 M L Erickson , S M Elliott , C A Christenson , A L Krall . (2018). Predicting geogenic arsenic in drinking water wells in glacial aquifers, north‐central USA: accounting for depth‐dependent Features. Water Resources Research, 54(12): 172–187
https://doi.org/10.1029/2018WR023106
45 F Esmaeilbeiki , M R Nikpour , V K Singh , O Kisi , P Sihag , H Sanikhani . (2020). Exploring the application of soft computing techniques for spatial evaluation of groundwater quality variables. Journal of Cleaner Production, 276: 124206
https://doi.org/10.1016/j.jclepro.2020.124206
46 H T Fang , B C Jhong , Y C Tan , K Y Ke , M H Chuang . (2019). A two-stage approach integrating SOM- and MOGA-SVM-based algorithms to forecast spatial-temporal groundwater level with meteorological factors. Water Resources Management, 33(2): 797–818
https://doi.org/10.1007/s11269-018-2143-x
47 J Feng , L Yu , R Ma . (2022). AGCN-T: a traffic flow prediction model for spatial-temporal network dynamics. Journal of Advanced Transportation, 2022: 1217588
https://doi.org/10.1155/2022/1217588
48 Y Fourcade , A G Besnard , J Secondi . (2018). Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 27(2): 245–256
https://doi.org/10.1111/geb.12684
49 M J Friedel , S R Wilson , M E Close , M Buscema , P Abraham , L Banasiak . (2020). Comparison of four learning-based methods for predicting groundwater redox status. Journal of Hydrology, 580: 124200
https://doi.org/10.1016/j.jhydrol.2019.124200
50 S George , A Dixit . (2021). A machine learning approach for prioritizing groundwater testing for per-and polyfluoroalkyl substances (PFAS). Journal of Environmental Management, 295: 113359
https://doi.org/10.1016/j.jenvman.2021.113359
51 V Gholami , M R Khaleghi , S Pirasteh , M J Booij . (2022). Comparison of Self-Organizing Map, artificial neural network, and co-active neuro-fuzzy inference system methods in simulating groundwater quality: geospatial artificial intelligence. Water Resources Management, 36(2): 451–469
https://doi.org/10.1007/s11269-021-02969-2
52 H N Guo , S B Wu , Y J Tian , J Zhang , H T Liu . (2021). Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: a review. Bioresource Technology, 319: 124114
https://doi.org/10.1016/j.biortech.2020.124114
53 S M Guzman , J O Paz , M L M Tagert . (2017). The use of NARX neural networks to forecast daily groundwater levels. Water Resources Management, 31(5): 1591–1603
https://doi.org/10.1007/s11269-017-1598-5
54 M Haghbin , A Sharafati , B Dixon , V Kumar . (2021). Application of soft computing models for simulating nitrate contamination in groundwater: comprehensive review, assessment and future opportunities. Archives of Computational Methods in Engineering, 28(5): 3569–3591
https://doi.org/10.1007/s11831-020-09513-2
55 M Hájek , B Jiménez-Alfaro , O Hájek , L Brancaleoni , M Cantonati , M Carbognani , A Dedić , D Dítě , R Gerdol , P Hájková . et al.. (2021). A European map of groundwater pH and calcium. Earth System Science Data, 13(3): 1089–1105
https://doi.org/10.5194/essd-13-1089-2021
56 M S Hanoon , A N Ahmed , C M Fai , A H Birima , A Razzaq , M Sherif , A Sefelnasr , A El-Shafie . (2021). Application of artificial intelligence models for modeling water quality in groundwater: comprehensive review, evaluation and futuretTrends. Water, Air, and Soil Pollution, 232(10): 411
https://doi.org/10.1007/s11270-021-05311-z
57 N Heidarzadeh . (2017). A practical low-cost model for prediction of the groundwater quality using artificial neural networks. Journal of Water Supply: Research & Technology–Aqua, 66(2): 86–95
https://doi.org/10.2166/aqua.2017.035
58 R Huang , C Ma , J Ma , X Huangfu , Q He . (2021). Machine learning in natural and engineered water systems. Water Research, 205: 117666
https://doi.org/10.1016/j.watres.2021.117666
59 P Humez , F Osselin , L J Wilson , M Nightingale , W Kloppmann , B Mayer . (2019). A probabilistic spproach for predicting methane occurrence in groundwater. Environmental Science & Technology, 53(21): 12914–12922
https://doi.org/10.1021/acs.est.9b03981
60 Z Ibn Ali , A Gharbi , M Zairi . (2020). Evaluation of groundwater quality in intensive irrigated zone of Northeastern Tunisia. Groundwater for Sustainable Development, 11: 100482
https://doi.org/10.1016/j.gsd.2020.100482
61 I Ilić , M Puharić , D Ilić . (2021). Groundwater quality assessment and prediction of spatial variations in the area of the Danube River Basin (Serbia). Water, Air, and Soil Pollution, 232(3): 117
https://doi.org/10.1007/s11270-021-05069-4
62 A Jalalkamali . (2015). Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters. Earth Science Informatics, 8(4): 885–894
https://doi.org/10.1007/s12145-015-0222-6
63 J S R Jang . (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3): 665–685
https://doi.org/10.1109/21.256541
64 S Javadi , S M Hashemy Shahdany , A Neshat , A Chambel . (2020). Multi-parameter risk mapping of Qazvin aquifer by classic and fuzzy clustering techniques. Geocarto International, 37(4): 1160–1182
65 X Jia , D Hou , L Wang , D O’connor , J Luo . (2020). The development of groundwater research in the past 40 years: a burgeoning trend in groundwater depletion and sustainable management. Journal of Hydrology, 587: 125006
https://doi.org/10.1016/j.jhydrol.2020.125006
66 X Jia , D O’connor , D Hou , Y Jin , G Li , C Zheng , Y S Ok , D C W Tsang , J Luo . (2019). Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 672: 551–562
https://doi.org/10.1016/j.scitotenv.2019.03.457
67 M I Jordan , T M Mitchell . (2015). Machine learning: trends, perspectives, and prospects. Science, 349(6245): 255–260
https://doi.org/10.1126/science.aaa8415
68 A K Kadam , V M Wagh , A A Muley , B N Umrikar , R N Sankhua . (2019). Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India. Modeling Earth Systems and Environment, 5(3): 951–962
https://doi.org/10.1007/s40808-019-00581-3
69 M Khaki , I Yusoff , N Islami . (2015). Application of the artificial neural network and neuro-fuzzy system for assessment of groundwater quality. Clean, 43(4): 551–560
https://doi.org/10.1002/clen.201400267
70 M Khalaj , M Kholghi , B Saghafian , J Bazrafshan . (2019). Impact of climate variation and human activities on groundwater quality in northwest of Iran. Journal of Water Supply: Research & Technology–Aqua, 68(2): 121–135
https://doi.org/10.2166/aqua.2019.064
71 M U Khan , M Musahib , R Vishwakarma , N Rai , A Jahan . (2023). Hydrochemical characterization, mechanism of mobilization, and natural background level evaluation of arsenic in the aquifers of upper Gangetic plain, India. Geochemistry, 83(2): 125952
https://doi.org/10.1016/j.chemer.2023.125952
72 K J Knierim , J A Kingsbury , C J Haugh , K M Ransom . (2020). Using boosted regression tree models to predict salinity in Mississippi embayment aquifers, central United States. Journal of the American Water Resources Association, 56(6): 1010–1029
https://doi.org/10.1111/1752-1688.12879
73 L Knoll , L Breuer , M Bach . (2019). Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Science of the Total Environment, 668: 1317–1327
https://doi.org/10.1016/j.scitotenv.2019.03.045
74 R Kohavi (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Montreal, Quebec, Canada: Morgan Kaufmann Publishers Inc., 1137–1143
75 Y N Kontos , T Kassandros , K Perifanos , M Karampasis , K L Katsifarakis , K Karatzas . (2022). Machine learning for groundwater pollution source identification and monitoring network optimization. Neural Computing & Applications, 34(22): 19515–19545
https://doi.org/10.1007/s00521-022-07507-8
76 S Kouadri , A Elbeltagi , A R M T Islam , S Kateb . (2021). Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast). Applied Water Science, 11(12): 190
https://doi.org/10.1007/s13201-021-01528-9
77 S Kouadri , C B Pande , B Panneerselvam , K N Moharir , A Elbeltagi . (2022). Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environmental Science and Pollution Research International, 29(14): 21067–21091
https://doi.org/10.1007/s11356-021-17084-3
78 M Kulisz , J Kujawska , B Przysucha , W Cel . (2021). Forecasting water quality index in groundwater using artificial neural network. Energies, 14(18): 5875
https://doi.org/10.3390/en14185875
79 G R Kumar, D Kishore, G V M G Kumar, Avila J, Thenmozhi K, Amirtharaja R, Praveenkumar P (2021). Waste contamination in Water: a Real-time Water Quality Monitoring System using IoT. Coimbatore, India: IEEE, 1–4
80 A Lal , B Datta . (2018a). Development and implementation of support vector machine regression surrogate models for predicting groundwater pumping-induced saltwater intrusion into coastal aquifers. Water Resources Management, 32(7): 2405–2419
https://doi.org/10.1007/s11269-018-1936-2
81 A Lal , B Datta . (2018b). Modelling saltwater intrusion processes and development of a multi-objective strategy for management of coastal aquifers utilizing planned artificial freshwater recharge. Modeling Earth Systems and Environment, 4(1): 111–126
https://doi.org/10.1007/s40808-017-0405-x
82 A Lal , B Datta . (2020). Performance evaluation of homogeneous and heterogeneous ensemble models for groundwater salinity predictions: a regional-scale comparison study. Water, Air, and Soil Pollution, 231(6): 320
https://doi.org/10.1007/s11270-020-04693-w
83 J J Lee , C S Jang , C W Liu , C P Liang , S W Wang . (2009). Determining the probability of arsenic in groundwater using a parsimonious model. Environmental Science & Technology, 43(17): 6662–6668
https://doi.org/10.1021/es900540s
84 K Lei, Q Fu, Y Liang (2019). Multi-Task Learning with Capsule Networks. Budapes: IEEE, 1–8
85 F Li, Y Liu, P Wu, F Dong, Q Cai, Z Wang (2021). A survey on recent advances in meta-learning. Chinese Journal of Computers, 44(2): 422–446(in Chinese)
86 X Li , M Feng , Y Ran , Y Su , F Liu , C Huang , H Shen , Q Xiao , J Su , S Yuan , H Guo . (2023). Big data in earth system science and progress towards a digital twin. Nature Reviews. Earth & Environment, 4(5): 319–332
https://doi.org/10.1038/s43017-023-00409-w
87 Z Lipton . (2016). The mythos of model interpretability. Communications of the ACM, 61(10): 36–43
88 C W Liu , Y B Wang , C S Jang . (2013). Probability-based nitrate contamination map of groundwater in Kinmen. Environmental Monitoring and Assessment, 185(12): 10147–10156
https://doi.org/10.1007/s10661-013-3319-8
89 D Liu , C Liu , Q Fu , T Li , M I Khan , S Cui , M A Faiz . (2018). Projection pursuit evaluation model of regional surface water environment based on improved Chicken Swarm Optimization algorithm. Water Resources Management, 32(4): 1325–1342
https://doi.org/10.1007/s11269-017-1872-6
90 M Łukasik , D Dąbrowska . (2022). Groundwater quality testing in the area of municipal waste landfill sites in Dąbrowa Górnicza (Southern Poland). Environmental & Socio-economic Studies, 10(1): 13–21
https://doi.org/10.2478/environ-2022-0002
91 S Mallik , U Mishra , N Paul . (2021). Groundwater suitability analysis for drinking using GIS based fuzzy logic. Ecological Indicators, 121: 107179
https://doi.org/10.1016/j.ecolind.2020.107179
92 A Masood , M A U R Tariq , M Z U R Hashmi , M Waseem , M K Sarwar , W Ali , R Farooq , M Almazroui , A W M Ng . (2022). An overview of groundwater monitoring through point-to satellite-based techniques. Water, 14(4): 565
https://doi.org/10.3390/w14040565
93 M Mathivanan , C Sabarathinam , P Mohan Viswanathan , V Senapathi , D Nadesan , G G Indrani , G Malaimegu , S S Kumar . (2022). Mobilization and health risk assessment of fertilizer induced uranium in coastal groundwater. Environmental Research, 203: 111791
https://doi.org/10.1016/j.envres.2021.111791
94 H Meyer , C Reudenbach , T Hengl , M Katurji , T Nauss . (2018). Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software, 101: 1–9
https://doi.org/10.1016/j.envsoft.2017.12.001
95 A Mfumu Kihumba , J Ndembo Longo , M Vanclooster . (2016). Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo. Hydrogeology Journal, 24(2): 425–437
https://doi.org/10.1007/s10040-015-1337-z
96 T Miller . (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267: 1–38
https://doi.org/10.1016/j.artint.2018.07.007
97 A Motevalli , S A Naghibi , H Hashemi , R Berndtsson , B Pradhan , V Gholami . (2019). Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater. Journal of Cleaner Production, 228: 1248–1263
https://doi.org/10.1016/j.jclepro.2019.04.293
98 S A Naghibi , H R Pourghasemi , K Abbaspour . (2018). A comparison between ten advanced and soft computing models for groundwater Qanat potential assessment in Iran using R and GIS. Theoretical and Applied Climatology, 131(3–4): 967–984
https://doi.org/10.1007/s00704-016-2022-4
99 A Naghikhani , A Jodeiri , A Karbassi , M Baghdadi , A Sarang , A H Buchali Safiee . (2021). Investigating the artificial intelligence methods for determining performance of the NZVI permeable reactive barriers. Groundwater for Sustainable Development, 12: 100516
https://doi.org/10.1016/j.gsd.2020.100516
100 A Nandi, A K Pal (2021). Interpreting machine learning models: learn model interpretability and explainability methods. Berlin: Springer
101 B T Nolan , M N Fienen , D L Lorenz . (2015). A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. Journal of Hydrology, 531: 902–911
https://doi.org/10.1016/j.jhydrol.2015.10.025
102 B T Nolan , C T Green , P F Juckem , L Liao , J E Reddy . (2018). Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA. Journal of Hydrology, 559: 428–441
https://doi.org/10.1016/j.jhydrol.2018.02.029
103 A M Nosair , M Y Shams , L M Abouelmagd , A E Hassanein , A E Fryar , H S Abu Salem . (2022). Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: a case study of the Nile Delta aquifer, Egypt. Environmental Science and Pollution Research International, 29(6): 9318–9340
https://doi.org/10.1007/s11356-021-16289-w
104 V Nourani , M T Alami , F D Vousoughi . (2016). Self-organizing map clustering technique for ANN-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics, 18(2): 288–309
https://doi.org/10.2166/hydro.2015.143
105 M Nssibi , G Manita , O Korbaa . (2023). Advances in nature-inspired metaheuristic optimization for feature selection problem: A comprehensive survey. Computer Science Review, 49: 100559
https://doi.org/10.1016/j.cosrev.2023.100559
106 I Ouedraogo , P Defourny , M Vanclooster . (2019). Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeology Journal, 27(3): 1081–1098
https://doi.org/10.1007/s10040-018-1900-5
107 J Padarian , B Minasny , A B Mcbratney . (2020). Machine learning and soil sciences: a review aided by machine learning tools. Soil, 6(1): 35–52
https://doi.org/10.5194/soil-6-35-2020
108 T Paepae , P N Bokoro , K Kyamakya . (2021). From fully physical to virtual sensing for water quality assessment: a comprehensive review of the relevant state-of-the-art. Sensors, 21(21): 6971
https://doi.org/10.3390/s21216971
109 J Pal , D Chakrabarty . (2020). Assessment of artificial neural network models based on the simulation of groundwater contaminant transport. Hydrogeology Journal, 28(6): 2039–2055
https://doi.org/10.1007/s10040-020-02180-4
110 Y J Pan , H X Peng , Q Q Hou , K Peng , H H Shi , S M Wang , W H Zhang , M Zeng , C S Huang , L T Xu . et al.. (2023). Priority control factors for heavy metal groundwater contamination in peninsula regions based on source-oriented health risk assessment. Science of the Total Environment, 894: 165062
https://doi.org/10.1016/j.scitotenv.2023.165062
111 J Podgorski , M Berg . (2020). Global threat of arsenic in groundwater. Science, 368(6493): 845–850
https://doi.org/10.1126/science.aba1510
112 J Podgorski , R Wu , B Chakravorty , D A Polya . (2020). Groundwater arsenic distribution in India by machine learning geospatial modeling. International Journal of Environmental Research and Public Health, 17(19): 7119
https://doi.org/10.3390/ijerph17197119
113 J E Podgorski , P Labhasetwar , D Saha , M Berg . (2018). Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environmental Science & Technology, 52(17): 9889–9898
https://doi.org/10.1021/acs.est.8b01679
114 G J Postma , P W T Krooshof , L M C Buydens . (2011). Opening the kernel of kernel partial least squares and support vector machines. Analytica Chimica Acta, 705(1–2): 123–134
https://doi.org/10.1016/j.aca.2011.04.025
115 M Poursaeid , R Mastouri , S Shabanlou , M Najarchi . (2021). Modelling qualitative and quantitative parameters of groundwater using a new wavelet conjunction heuristic method: wavelet extreme learning machine versus wavelet neural networks. Water and Environment Journal : the Journal / the Chartered Institution of Water and Environmental Management, 35(1): 67–83
https://doi.org/10.1111/wej.12595
116 R K Prasad , S Mathur . (2007). Groundwater flow and contaminant transport simulation with imprecise parameters. Journal of Irrigation and Drainage Engineering, 133(1): 61–70
https://doi.org/10.1061/(ASCE)0733-9437(2007)133:1(61
117 B Purkait . (2008). Application of artificial neural network model to study arsenic contamination in groundwater of Malda District, eastern India. Journal of Environmental Informatics, 12(2): 140–149
https://doi.org/10.3808/jei.200800132
118 M Radfard , H Soleimani , S Nabavi , B Hashemzadeh , H Akbari , H Akbari , A Adibzadeh . (2018). Data on estimation for sodium absorption ratio: using artificial neural network and multiple linear regressions. Data in Brief, 20: 1462–1467
https://doi.org/10.1016/j.dib.2018.08.205
119 H Raheja , A Goel , M Pal . (2022). Prediction of groundwater quality indices using machine learning algorithms. Water Practice & Technology, 17(1): 336–351
https://doi.org/10.2166/wpt.2021.120
120 O Rahmati , B Choubin , A Fathabadi , F Coulon , E Soltani , H Shahabi , E Mollaefar , J Tiefenbacher , S Cipullo , B B Ahmad . et al.. (2019). Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Science of the Total Environment, 688: 855–866
https://doi.org/10.1016/j.scitotenv.2019.06.320
121 T Rajaee , H Ebrahimi , V Nourani . (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology, 572: 336–351
https://doi.org/10.1016/j.jhydrol.2018.12.037
122 A Ranjbar , C Cherubini . (2020). Development of a robust ensemble meta-model for prediction of salinity time series under uncertainty (case study: Talar aquifer). Heliyon, 6(12): e05758
https://doi.org/10.1016/j.heliyon.2020.e05758
123 K M Ransom, B T Nolan, Traum J A, Faunt C C, Bell A M, Gronberg J A M, Wheeler D C, Jurgens B, Schwarz G E, Belitz K, et al. (2017). A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Science of the Total Environment, 601–602: 1160–1172
https://doi.org/10.1016/j.scitotenv.2017.05.192
124 A Razavi Dizaji , S A Hosseini , V Rezaverdinejad , A Sharafati . (2020). Assessing pollution risk in Ardabil aquifer groundwater of Iran with arsenic and nitrate using the SINTACS model. Polish Journal of Environmental Studies, 29(4): 2609–2616
https://doi.org/10.15244/pjoes/112903
125 H M Rizeei , O S Azeez , B Pradhan , H H Khamees . (2018). Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environmental Monitoring and Assessment, 190(11): 633
https://doi.org/10.1007/s10661-018-7013-8
126 G Robinson , S Moutari , A A Ahmed , G A Hamill . (2018). An advanced calibration method for image analysis in laboratory-scale seawater intrusion problems. Water Resources Management, 32(9): 3087–3102
https://doi.org/10.1007/s11269-018-1977-6
127 G Rock , H Kupfersberger . (2019). Modeling shallow groundwater nitrate concentrations by direct coupling of the vadose and the saturated zone. Environmental Earth Sciences, 78(9): 283
https://doi.org/10.1007/s12665-019-8288-y
128 V Rodriguez-Galiano, M P Mendes, M J Garcia-Soldado, M Chica-Olmo, L Ribeiro (2014). Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476–477: 189–206
https://doi.org/10.1016/j.scitotenv.2014.01.001
129 V F Rodriguez-Galiano , J A Luque-Espinar , M Chica-Olmo , M P Mendes . (2018). Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods. Science of the Total Environment, 624: 661–672
https://doi.org/10.1016/j.scitotenv.2017.12.152
130 J Roostaei , S Colley , R Mulhern , A A May , J M Gibson . (2021). Predicting the risk of GenX contamination in private well water using a machine-learned Bayesian network model. Journal of Hazardous Materials, 411: 125075
https://doi.org/10.1016/j.jhazmat.2021.125075
131 F Sajedi-Hosseini , A Malekian , B Choubin , O Rahmati , S Cipullo , F Coulon , B Pradhan . (2018). A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the Total Environment, 644: 954–962
https://doi.org/10.1016/j.scitotenv.2018.07.054
132 M Sakizadeh . (2015). Artificial intelligence for the prediction of water quality index in groundwater systems. Modeling Earth Systems and Environment, 2(1): 1–9
133 M Sakizadeh , H Rahmatinia . (2017). Statistical learning methods for classification and prediction of groundwater quality using a small data record. International Journal of Agricultural and Environmental Information Systems, 8(4): 37–53
https://doi.org/10.4018/IJAEIS.2017100103
134 S Sarkar , A Mukherjee , S Duttagupta , S N Bhanja , A Bhattacharya , S Chakraborty . (2021). Vulnerability of groundwater from elevated nitrate pollution across India: insights from spatio-temporal patterns using large-scale monitoring data. Journal of Contaminant Hydrology, 243: 103895
https://doi.org/10.1016/j.jconhyd.2021.103895
135 R Sarma , S K Singh . (2021). Simulating contaminant transport in unsaturated and saturated groundwater zones. Water Environment Research, 93(9): 1496–1509
https://doi.org/10.1002/wer.1555
136 S Sasikaran , K Sritharan , S Balakumar , V Arasaratnam . (2012). Physical, chemical and microbial analysis of bottled drinking water. Ceylon Medical Journal, 57(3): 111–116
https://doi.org/10.4038/cmj.v57i3.4149
137 B R Scanlon , S Fakhreddine , A Rateb , Graaf I De , J Famiglietti , T Gleeson , R Q Grafton , E Jobbagy , S Kebede , S R Kolusu . et al.. (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews. Earth & Environment, 4(2): 87–101
https://doi.org/10.1038/s43017-022-00378-6
138 D Shadrin , A Nikitin , P Tregubova , V Terekhova , R Jana , S Matveev , M Pukalchik . (2021). An automated approach to groundwater quality monitoring—geospatial mapping based on combined application of Gaussian Process Regression and Bayesian Information Criterion. Water, 13(4): 400
https://doi.org/10.3390/w13040400
139 R Shaker , M Bucur , S Costache , D Sava , T Ehlinger . (2010). Land coverand landscape as predictors of groundwater contamination: a neural-network modelling approach applied to dobrogea, romania. Journal of Environmental Protection and Ecology, 11: 337–348
140 R Shakeri , H R Nassery , T Ebadi . (2023). Numerical modeling of groundwater flow and nitrate transport using MODFLOW and MT3DMS in the Karaj alluvial aquifer, Iran. Environmental Monitoring and Assessment, 195(1): 242
https://doi.org/10.1007/s10661-022-10881-4
141 P R Shekar , A Mathew . (2023). Assessing groundwater potential zones and artificial recharge sites in the monsoon-fed Murredu river basin, India: an integrated approach using GIS, AHP, and Fuzzy-AHP. Groundwater for Sustainable Development, 23: 15
142 M I Silva , A M L Gonçalves , W A Lopes , M T V Lima , C T F Costa , M Paris , P R A Firmino , Paula Filho F J De . (2021). Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques. Journal of Hydrology, 598: 126346
https://doi.org/10.1016/j.jhydrol.2021.126346
143 S Singha , S Pasupuleti , S S Singha , S Kumar . (2020). Effectiveness of groundwater heavy metal pollution indices studies by deep-learning. Journal of Contaminant Hydrology, 235: 103718
https://doi.org/10.1016/j.jconhyd.2020.103718
144 S Singha , S Pasupuleti , S S Singha , R Singh , S Kumar . (2021). Prediction of groundwater quality using efficient machine learning technique. Chemosphere, 276: 130265
https://doi.org/10.1016/j.chemosphere.2021.130265
145 K Skeppström , B Olofsson . (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. Science of the Total Environment, 367(2–3): 666–680
https://doi.org/10.1016/j.scitotenv.2006.02.044
146 A Soltani Mohammadi , A Sayadi Shahraki , A A Naseri . (2017). Simulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain). Pollution, 3(2): 191–200
147 J Sreekanth , B Datta . (2014). Stochastic and robust multi-objective optimal management of pumping from coastal aquifers under parameter uncertainty. Water Resources Management, 28(7): 2005–2019
https://doi.org/10.1007/s11269-014-0591-5
148 P E Stackelberg , K Belitz , C J Brown , M L Erickson , S M Elliott , L J Kauffman , K M Ransom , J E Reddy . (2021). Machine learning predictions of pH in the glacial aquifer system, northern USA. Ground Water, 59(3): 352–368
https://doi.org/10.1111/gwat.13063
149 N Subba Rao . (2021). Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India. Environmental Geochemistry and Health, 43(2): 971–993
https://doi.org/10.1007/s10653-020-00621-3
150 L T V Sukrutha , S P Mohanty, E Kougianos, C Ray (2021). G-DaM: A Blockchain based Distributed Robust Framework for Ground Water Data Management. Jaipur, India: IEEE, 261–266
151 J Sun , G Wang . (2020). Geographic Information System technology combined with back propagation neural network in groundwater quality monitoring. ISPRS International Journal of Geo-Information, 9(12): 736
https://doi.org/10.3390/ijgi9120736
152 Z Tan , Q Yang , Y Zheng . (2020). Machine learning models of groundwater arsenic spatial distribution in Bangladesh: influence of Holocene sediment depositional history. Environmental Science & Technology, 54(15): 9454–9463
https://doi.org/10.1021/acs.est.0c03617
153 H Tao , M M Hameed , H A Marhoon , M Zounemat-Kermani , S Heddam , S Kim , S O Sulaiman , M L Tan , Z Sa’adi , A D Mehr . et al.. (2022). Groundwater level prediction using machine learning models: a comprehensive review. Neurocomputing, 489: 271–308
https://doi.org/10.1016/j.neucom.2022.03.014
154 Q Tao, P Xu, M Li, W Lu (2021). Machine learning for perovskite materials design and discovery. npj Computational Materials, 7(1): 23
155 A N Tarekegn , M Giacobini , K Michalak . (2021). A review of methods for imbalanced multi-label classification. Pattern Recognition, 118: 107965
https://doi.org/10.1016/j.patcog.2021.107965
156 M Taubert , S Stöckel , P Geesink , S Girnus , N Jehmlich , Bergen M Von , P Rösch , J Popp , K Küsel . (2018). Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environmental Microbiology, 20(1): 369–384
https://doi.org/10.1111/1462-2920.14010
157 A J Tesoriero , J A Gronberg , P F Juckem , M P Miller , B P Austin . (2017). Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification. Water Resources Research, 53(8): 7316–7331
https://doi.org/10.1002/2016WR020197
158 J Thiyagalingam , M Shankar , G Fox , T Hey . (2022). Scientific machine learning benchmarks. Nature Reviews. Physics, 4(6): 413–420
https://doi.org/10.1038/s42254-022-00441-7
159 K H Thung , C Y Wee . (2018). A brief review on multi-task learning. Multimedia Tools and Applications, 77(22): 29705–29725
https://doi.org/10.1007/s11042-018-6463-x
160 T M Tiyasha , Z M Tung . (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585: 124670
https://doi.org/10.1016/j.jhydrol.2020.124670
161 R Trach , Y Trach , A Kiersnowska , A Markiewicz , M Lendo-Siwicka , K Rusakov . (2022). A sudy of assessment and prediction of water quality index using fuzzy logic and ANN models. Sustainability, 14(9): 5656
https://doi.org/10.3390/su14095656
162 N K C Twarakavi , J J Kaluarachchi . (2005). Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Ground Water, 43(2): 200–214
https://doi.org/10.1111/j.1745-6584.2005.0001.x
163 V Uddameri , A Silva , S Singaraju , G Mohammadi , E Hernandez . (2020). Tree-based modeling methods to predict nitrate exceedances in the Ogallala aquifer in Texas. Water, 12(4): 1023
https://doi.org/10.3390/w12041023
164 L Uusitalo , A Lehikoinen , I Helle , K Myrberg . (2015). An overview of methods to evaluate uncertainty of deterministic models in decision support. Environmental Modelling & Software, 63: 24–31
https://doi.org/10.1016/j.envsoft.2014.09.017
165 S Vafadar , M Rahimzadegan , R Asadi . (2023). Evaluating the performance of machine learning methods and Geographic Information System (GIS) in identifying groundwater potential zones in Tehran-Karaj plain, Iran. Journal of Hydrology, 624: 129952
https://doi.org/10.1016/j.jhydrol.2023.129952
166 S Viaroli , M Lancia , V Re . (2022). Microplastics contamination of groundwater: current evidence and future perspectives―A review. Science of the Total Environment, 824: 153851
https://doi.org/10.1016/j.scitotenv.2022.153851
167 S Vieira, W H Lopez Pinaya, A Mechelli (2020). Introduction to machine learning. In: Mechelli A, Vieira S, eds. Machine Learning Methods and Applications to Brain Disorders. London: Academic Press, 1–20
168 A M J C Wadoux , B Minasny , A B Mcbratney . (2020). Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210: 103359
https://doi.org/10.1016/j.earscirev.2020.103359
169 V M Wagh , D B Panaskar , A A Muley . (2017). Estimation of nitrate concentration in groundwater of Kadava River basin-Nashik district, Maharashtra, India by using artificial neural network model. Modeling Earth Systems and Environment, 3(1): 36
https://doi.org/10.1007/s40808-017-0290-3
170 D Wang , J Wu , Y Wang , Y Ji . (2020). Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: analysis, assessment, and management. Exposure and Health, 12(2): 307–322
https://doi.org/10.1007/s12403-019-00314-y
171 M X Wang , G D Liu , W L Wu , Y H Bao , W N Liu . (2006). Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN. Environmental Geology, 50(5): 637–644
https://doi.org/10.1007/s00254-006-0237-x
172 S R Wilson , M E Close , P Abraham , T S Sarris , L Banasiak , R Stenger , J Hadfield . (2020). Achieving unbiased predictions of national-scale groundwater redox conditions via data oversampling and statistical learning. Science of the Total Environment, 705: 135877
https://doi.org/10.1016/j.scitotenv.2019.135877
173 L Winkel , M Berg , M Amini , S J Hug , C Annette Johnson . (2008). Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nature Geoscience, 1(8): 536–542
https://doi.org/10.1038/ngeo254
174 C Wu , C Fang , X Wu , G Zhu . (2020). Health-risk assessment of arsenic and groundwater quality classification using random forest in the Yanchi Region of Northwest China. Exposure and Health, 12(4): 761–774
https://doi.org/10.1007/s12403-019-00335-7
175 R Wu , E Alvareda , D Polya , G Blanco , P Gamazo . (2021). Distribution of groundwater arsenic in Uruguay using hybrid machine learning and expert system approaches. Water, 13(4): 527
https://doi.org/10.3390/w13040527
176 S X Wu , H T Wai , L Li , A Scaglione . (2018). A review of distributed algorithms for principal component analysis. Proceedings of the IEEE, 106(8): 1321–1340
https://doi.org/10.1109/JPROC.2018.2846568
177 Y XingB XueY LinX WuF FangP QiJ GuoX Zhou (2022). A cellphone-based colorimetric multi-channel sensor for water environmental monitoring. Frontiers of Environmental Science & Engineering. 16(12): 155
178 T Xu , A J Valocchi , M Ye , F Liang . (2017). Quantifying model structural error: efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model. Water Resources Research, 53(5): 4084–4105
https://doi.org/10.1002/2016WR019831
179 B Yadav , P K Gupta , N Patidar , S K Himanshu . (2019). Ensemble modelling framework for groundwater level prediction in urban areas of India. Science of the Total Environment, 712: 135539
180 J Yang , C Wang , B Jiang , H Song , Q Meng . (2021). Visual perception enabled industry intelligence: state of the art, challenges and prospects. IEEE Transactions on Industrial Informatics, 17(3): 2204–2219
https://doi.org/10.1109/TII.2020.2998818
181 Q Yang , J Zhang , Z Hou , X Lei , W Tai , W Chen , T Chen . (2017). Shallow groundwater quality assessment: use of the improved Nemerow pollution index, wavelet transform and neural networks. Journal of Hydroinformatics, 19(5): 784–794
https://doi.org/10.2166/hydro.2017.224
182 Z M Yaseen . (2021). An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: review, challenges and solutions. Chemosphere, 277: 130126
https://doi.org/10.1016/j.chemosphere.2021.130126
183 M I Yesilnacar , E Sahinkaya , M Naz , B Ozkaya . (2008). Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environmental Geology, 56(1): 19–25
https://doi.org/10.1007/s00254-007-1136-5
184 A D Yetis , M I Yesilnacar , M Atas . (2021). A machine learning approach to dental fluorosis classification. Arabian Journal of Geosciences, 14(2): 95
https://doi.org/10.1007/s12517-020-06342-2
185 H Yoon , Y Hyun , K K Lee . (2007). Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks. Journal of Hydrology, 335(1–2): 68–77
https://doi.org/10.1016/j.jhydrol.2006.11.001
186 M Yu , X Xing , L Xing , Z Zhao , C Li . (2022). Assessment of karst water quality and analysis of pollution sources with a projection pursuit algorithm in Jinan spring area, China. Water Practice & Technology, 17(3): 763–783
https://doi.org/10.2166/wpt.2022.011
187 X Yu , T Cui , J Sreekanth , S Mangeon , R Doble , P Xin , D Rassam , M Gilfedder . (2020). Deep learning emulators for groundwater contaminant transport modelling. Journal of Hydrology, 590: 125351
https://doi.org/10.1016/j.jhydrol.2020.125351
188 H A Zaqoot , M Hamada , S Miqdad . (2018). A comparative study of ANN for predicting nitrate concentration in groundwater wells in the southern area of Gaza Strip. Applied Artificial Intelligence, 32(7–8): 727–744
https://doi.org/10.1080/08839514.2018.1506970
189 N Zeydalinejad . (2022). Artificial neural networks vis-a-vis MODFLOW in the simulation of groundwater: a review. Modeling Earth Systems and Environment, 8(3): 2911–2932
https://doi.org/10.1007/s40808-022-01365-y
190 Y Zhang , R Jia , J Wu , H Wang , Z Luo . (2022). Uncertain in WQI-based groundwater quality assessment methods: a case study in east of Beijing, China. Environmental Earth Sciences, 81(7): 202
https://doi.org/10.1007/s12665-022-10311-1
191 Y Zhang , M Lei , K Li , T Ju . (2023). Spatial prediction of soil contamination based on machine learning: a review. Frontiers of Environmental Science & Engineering, 17(8): 93
https://doi.org/10.1007/s11783-023-1693-1
192 Z Zhang, D Wu (2019). An imbalanced data classification method based on probability threshold Bagging. Computer Engineering and Science, 41(6): 1086–1094 (in Chinese)
193 Y Zheng, F Liu, H P Hsieh (2013). U-air: When urban air quality inference meets big data. New York: Association for Computing Machinery, 1436–1444
194 S Zhong , K Zhang , M Bagheri , J G Burken , A Gu , B Li , X Ma , B L Marrone , Z J Ren , J Schrier . et al.. (2021). Machine learning: new ideas and tools in environmental science and engineering. Environmental Science & Technology, 55(19): 12741–12754
https://doi.org/10.1021/acs.est.1c01339
195 P Zhou , L Zhong , Y Zhang , S Snowling , J Barclay . (2023). Online machine learning for stream wastewater influent flow rate prediction under unprecedented emergencies. Frontiers of Environmental Science & Engineering, 17(12): 152
https://doi.org/10.1007/s11783-023-1752-7
196 W Zhou, M Long (2020). Secure transmission scheme for environmental monitoring data based on blockchain. Computer Science, 47(1): 315–320 (in Chinese)
197 M Zounemat-Kermani , O Batelaan , M Fadaee , R Hinkelmann . (2021). Ensemble machine learning paradigms in hydrology: a review. Journal of Hydrology, 598: 126266
https://doi.org/10.1016/j.jhydrol.2021.126266
[1] FSE-23087-OF-HYP_suppl_1 Download
[1] Joe F. Bozeman III. Bolstering integrity in environmental data science and machine learning requires understanding socioecological inequity[J]. Front. Environ. Sci. Eng., 2024, 18(5): 65-.
[2] Qiannan Duan, Pengwei Yan, Yichen Feng, Qianru Wan, Xiaoli Zhu. Machine learning assisted adsorption performance evaluation of biochar on heavy metal[J]. Front. Environ. Sci. Eng., 2024, 18(5): 55-.
[3] Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction[J]. Front. Environ. Sci. Eng., 2024, 18(2): 17-.
[4] Yang Zhang, Mei Lei, Kai Li, Tienan Ju. Spatial prediction of soil contamination based on machine learning: a review[J]. Front. Environ. Sci. Eng., 2023, 17(8): 93-.
[5] Zhongyao Liang, Yaoyang Xu, Gang Zhao, Wentao Lu, Zhenghui Fu, Shuhang Wang, Tyler Wagner. Approaching the upper boundary of driver-response relationships: identifying factors using a novel framework integrating quantile regression with interpretable machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(6): 76-.
[6] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[7] Rui Liang, Chao Chen, Akash Kumar, Junyu Tao, Yan Kang, Dong Han, Xianjia Jiang, Pei Tang, Beibei Yan, Guanyi Chen. State-of-the-art applications of machine learning in the life cycle of solid waste management[J]. Front. Environ. Sci. Eng., 2023, 17(4): 44-.
[8] Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi. A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(12): 148-.
[9] Jin Xue, Fangting Wang, Kun Zhang, Hehe Zhai, Dan Jin, Yusen Duan, Elly Yaluk, Yangjun Wang, Ling Huang, Yuewu Li, Thomas Lei, Qingyan Fu, Joshua S. Fu, Li Li. Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method[J]. Front. Environ. Sci. Eng., 2023, 17(11): 138-.
[10] Weishuai Li, Jingang Huang, Zhuoer Shi, Wei Han, Ting Lü, Yuanyuan Lin, Jianfang Meng, Xiaobing Xu, Pingzhi Hou. Machine learning enabled prediction and process optimization of VFA production from riboflavin-mediated sludge fermentation[J]. Front. Environ. Sci. Eng., 2023, 17(11): 135-.
[11] Haoyang Xian, Pinjing He, Dongying Lan, Yaping Qi, Ruiheng Wang, Fan Lü, Hua Zhang, Jisheng Long. Predicting the elemental compositions of solid waste using ATR-FTIR and machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(10): 121-.
[12] Tienan Ju, Mei Lei, Guanghui Guo, Jinglun Xi, Yang Zhang, Yuan Xu, Qijia Lou. A new prediction method of industrial atmospheric pollutant emission intensity based on pollutant emission standard quantification[J]. Front. Environ. Sci. Eng., 2023, 17(1): 8-.
[13] Wenjing Lu, Weizhong Huo, Huwanbieke Gulina, Chao Pan. Development of machine learning multi-city model for municipal solid waste generation prediction[J]. Front. Environ. Sci. Eng., 2022, 16(9): 119-.
[14] Yicai Huang, Jiayuan Chen, Qiannan Duan, Yunjin Feng, Run Luo, Wenjing Wang, Fenli Liu, Sifan Bi, Jianchao Lee. A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning[J]. Front. Environ. Sci. Eng., 2022, 16(3): 38-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed