Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (1) : 8    https://doi.org/10.1007/s11783-023-1608-1
RESEARCH ARTICLE
A new prediction method of industrial atmospheric pollutant emission intensity based on pollutant emission standard quantification
Tienan Ju1,2, Mei Lei1,2(), Guanghui Guo1,2, Jinglun Xi1,2, Yang Zhang1,2, Yuan Xu1,2, Qijia Lou1,2
1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(7157 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Established a quantification method of pollutant emission standard.

● Predicted the SO2 emission intensity of single coking enterprises in China.

● Evaluated the influence of pollutant discharge standard on prediction accuracy.

● Analyzed the SO2 emissions of Chinese provincial and municipal coking enterprises.

Industrial emissions are the main source of atmospheric pollutants in China. Accurate and reasonable prediction of the emission of atmospheric pollutants from single enterprise can determine the exact source of atmospheric pollutants and control atmospheric pollution precisely. Based on China’s coking enterprises in 2020, we proposed a quantitative method for pollutant emission standards and introduced the quantification results of pollutant emission standards (QRPES) into the construction of support vector regression (SVR) and random forest regression (RFR) prediction methods for SO2 emission of coking enterprises in China. The results show that, affected by the types of coke ovens and regions, China’s current coking enterprises have implemented a total of 21 emission standards, with marked differences. After adding QRPES, it was found that the root mean squared error (RMSE) of SVR and RFR decreased from 0.055 kt/a and 0.059 kt/a to 0.045 kt/a and 0.039 kt/a, and theR2 increased from 0.890 and 0.881 to 0.926 and 0.945, respectively. This shows that the QRPES can greatly improve the prediction accuracy, and the SO2 emissions of each enterprise are highly correlated with the strictness of standards. The predicted result shows that 45% of SO2 emissions from Chinese coking enterprises are concentrated in Shanxi, Shaanxi and Hebei provinces in central China. The method created in this paper fills in the blank of forecasting method of air pollutant emission intensity of single enterprise and is of great help to the accurate control of air pollutants.

Keywords Industrial atmospheric pollutants      Pollutant emission standards      Quantitative method      Machine learning      Single enterprise     
Corresponding Author(s): Mei Lei   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 26 August 2022
 Cite this article:   
Tienan Ju,Mei Lei,Guanghui Guo, et al. A new prediction method of industrial atmospheric pollutant emission intensity based on pollutant emission standard quantification[J]. Front. Environ. Sci. Eng., 2023, 17(1): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1608-1
https://academic.hep.com.cn/fese/EN/Y2023/V17/I1/8
Fig.1  Proportion of data crawling process and basic information of coking enterprises in production.
Fig.2  Quantification results and quantities of pollution emission standards of Chinese coking enterprises.
Fig.3  Optimal parameters of SVR and RFR models and changes in RMSE and R2 under different parameters.
Fig.4  Comparison of predicted and observed SO2 emissions of coking enterprises with and without QRPES in SVR and RFR models under optimal parameters. (a) SVR with QRPES, (b) RFR with QRPES, (c) SVR without QRPES, (d) RFR without QRPES, (e) The absolute error of single coking enterprises.
Fig.5  SO2 emission statistics of coking enterprises in production in China in 2020. (a) SO2 emission statistics of coking enterprises in various provinces in China. (b) Statistics of SO2 emissions from coking enterprises in different cities in Shanxi, Shaanxi and Hebei provinces.
1 P Aghion, A Dechezlepretre, D Hemous, R Martin, J Van Reenen. (2016). Carbon taxes, path dependency, and directed technical change: evidence from the auto industry. Journal of Political Economy, 124( 1): 1– 51
https://doi.org/10.1086/684581 pmid: 28713176
2 S Asefi-Najafabady, P J Rayner, K R Gurney, A Mcrobert, Y Song, K Coltin, J Huang, C Elvidge, K Baugh ( 2014). A multiyear, global gridded fossil fuel CO 2 emission data product: e valuation and analysis of results. Journal of Geophysical Research, D, Atmospheres, 119( 17): 10213– 10231
3 A Belk, Z Z Xu, D O Carter, A Lynne, S Bucheli, R Knight, J L Metcalf. (2018). Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes, 9( 2): 104
https://doi.org/10.3390/genes9020104 pmid: 29462950
4 L Breiman. (2001). Random forests. Machine Learning, 45( 1): 5– 32
https://doi.org/10.1023/A:1010933404324
5 C Brokamp, R Jandarov, M Hossain, P Ryan. (2018). Predicting daily urban fine particulate matter concentrations using a random forest model. Environmental Science & Technology, 52( 7): 4173– 4179
https://doi.org/10.1021/acs.est.7b05381 pmid: 29537833
6 S Cai, Y Wang, B Zhao, S Wang, X Chang, J Hao. (2017). The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Science of the Total Environment, 580 : 197– 209
https://doi.org/10.1016/j.scitotenv.2016.11.188 pmid: 28011024
7 A Cevik, A E Kurtoglu, M Bilgehan, M E Gulsan, H M Albegmprli. (2015). Support vector machines in structural engineering: a review. Journal of Civil Engineering and Management, 21( 3): 261– 281
https://doi.org/10.3846/13923730.2015.1005021
8 T Chai, R R Draxler. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7( 3): 1247– 1250
https://doi.org/10.5194/gmd-7-1247-2014
9 Z Y Chen, T H Zhang, R Zhang, Z M Zhu, J Yang, P Y Chen, C Q Ou, Y M Guo. (2019). Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmospheric Environment, 202 : 180– 189
https://doi.org/10.1016/j.atmosenv.2019.01.027
10 W Cheng, C A Ng. (2019). Using machine learning to classify bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD list. Environmental Science & Technology, 53( 23): 13970– 13980
https://doi.org/10.1021/acs.est.9b04833 pmid: 31661253
11 J S Chou, M Y Cheng, Y W Wu, A D Pham. (2014). Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification. Expert Systems with Applications, 41( 8): 3955– 3964
https://doi.org/10.1016/j.eswa.2013.12.035
12 D E Constantin, C Bocaneala, M Voiculescu, A Rosu, A Merlaud, M Van Roozendael, P L Georgescu. (2020). Evolution of SO2 and NOx emissions from several large combustion plants in Europe during 2005–2015. International Journal of Environmental Research and Public Health, 17( 10): 17103630
13 P DeCicca, N Malak. (2020). When good fences aren’t enough: the impact of neighboring air pollution on infant health. Journal of Environmental Economics and Management, 102 : 102324
https://doi.org/10.1016/j.jeem.2020.102324
14 A Ebenstein, M Fan, M Greenstone, G He, M Zhou. (2017). New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proceedings of the National Academy of Sciences of the United States of America, 114( 39): 10384– 10389
https://doi.org/10.1073/pnas.1616784114 pmid: 28893980
15 I Faloona. (2009). Sulfur processing in the marine atmospheric boundary layer: a review and critical assessment of modeling uncertainties. Atmospheric Environment, 43( 18): 2841– 2854
https://doi.org/10.1016/j.atmosenv.2009.02.043
16 T Y Fan, X H Liu, C L Wu, Q Zhang, C F Zhao, X Yang, Y L Li. (2022). Comparison of the anthropogenic emission inventory for CMIP6 models with a country-level inventory over china and the simulations of the aerosol properties. Advances in Atmospheric Sciences, 39( 1): 80– 96
https://doi.org/10.1007/s00376-021-1119-6
17 G N Geng, Y X Zheng, Q Zhang, T Xue, H Y Zhao, D Tong, B Zheng, M Li, F Liu, C P Hong, K B He, S J Davis. (2021). Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience, 14 : 645– 650
https://doi.org/10.1038/s41561-021-00792-3
18 D Gomez, P Salvador, J Sanz, J L Casanova ( 2021). A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods. Environmental Pollution 286: 117489
19 Z Han, J Li, M M Hossain, Q Qi, B Zhang, C Xu. (2022). An ensemble deep learning model for exhaust emissions prediction of heavy oil-fired boiler combustion. Fuel, 308 : 121975
https://doi.org/10.1016/j.fuel.2021.121975
20 B Hou, B Wang, M Du, N Zhang. (2020). Does the SO2 emissions trading scheme encourage green total factor productivity? An empirical assessment on China’s cities. Environmental Science and Pollution Research International, 27( 6): 6375– 6388
https://doi.org/10.1007/s11356-019-07273-6 pmid: 31873878
21 D B Howard, J Thé, R Soria, N Fann, R Schaeffer, J M Saphores. (2019). Health benefits and control costs of tightening particulate matter emissions standards for coal power plants: the case of Northeast Brazil. Environment International, 124 : 420– 430
https://doi.org/10.1016/j.envint.2019.01.029 pmid: 30682597
22 W L Jing, Y P Yang, X F Yue, X D Zhao. (2016). A spatial downscaling algorithm for satellite-based precipitation over the Tibetan Plateau based on NDVI, DEM, and land surface temperature. Remote Sensing (Basel), 8( 8): 655
https://doi.org/10.3390/rs8080655
23 V J Karplus, S Zhang, D Almond. (2018). Quantifying coal power plant responses to tighter SO2 emissions standards in China. Proceedings of the National Academy of Sciences of the United States of America, 115( 27): 7004– 7009
https://doi.org/10.1073/pnas.1800605115 pmid: 29915085
24 A Larkin, J A Geddes, R V Martin, Q Xiao, Y Liu, J D Marshall, M Brauer, P Hystad. (2017). Global land use regression model for nitrogen dioxide air pollution. Environmental Science & Technology, 51( 12): 6957– 6964
https://doi.org/10.1021/acs.est.7b01148 pmid: 28520422
25 R Li, L Cui, J Liang, Y Zhao, Z Zhang, H Fu. (2020). Estimating historical SO2 level across the whole China during 1973–2014 using random forest model. Chemosphere, 247 : 125839
https://doi.org/10.1016/j.chemosphere.2020.125839 pmid: 31955041
26 Z L Lin, L M Yan. (2016). A support vector machine classifier based on a new kernel function model for hyperspectral data. GIScience & Remote Sensing, 53( 1): 85– 101
https://doi.org/10.1080/15481603.2015.1114199
27 F Liu, Q Zhang, D Tong, B Zheng, M Li, H Huo, K B He. (2015). High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Atmospheric Chemistry and Physics, 15( 23): 13299– 13317
https://doi.org/10.5194/acp-15-13299-2015
28 X Liu, M P Taylor, C M Aelion, C Dong. (2021). Novel application of machine learning algorithms and model-agnostic methods to identify factors influencing childhood blood lead levels. Environmental Science & Technology, 55( 19): 13387– 13399
https://doi.org/10.1021/acs.est.1c01097 pmid: 34546733
29 Q Lu, J Y Zheng, S Q Ye, X L Shen, Z B Yuan, S S Yin. (2013). Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmospheric Environment, 76 : 11– 20
https://doi.org/10.1016/j.atmosenv.2012.10.062
30 A Meyer, G Pac. (2017). Analyzing the characteristics of plants choosing to opt-out of the large combustion plant directive. Utilities Policy, 45 : 61– 68
https://doi.org/10.1016/j.jup.2017.02.001
31 Z Miao, T Balezentis, Z H Tian, S Shao, Y Geng, R Wu. (2019). Environmental performance and regulation effect of China’s atmospheric pollutant emissions: evidence from “three regions and ten urban agglomerations”. Environmental and Resource Economics, 74( 1): 211– 242
https://doi.org/10.1007/s10640-018-00315-6
32 Y Q Nan, Q Li, J X Yu, H Y Cai, Q Zhou ( 2020). Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models. Environment, Development and Sustainability, 22( 6): 5337– 5369
https://doi.org/10.1007/s10668-019-00427-z
33 NBSC ( 2018). China Statistical Yearbook 2017. Beijing: China Statistics Press (in Chinese)
34 P J G Nieto, F S Lasheras, E Garcia-Gonzalo, F J D Juez. (2018). PM10 concentration forecasting in the metropolitan area of Oviedo (Northern Spain) using models based on SVM, MLP, VARMA and ARIMA: a case study. Science of the Total Environment, 621 : 753– 761
https://doi.org/10.1016/j.scitotenv.2017.11.291
35 Y Qian, H Cao, S Huang. (2020). Decoupling and decomposition analysis of industrial sulfur dioxide emissions from the industrial economy in 30 Chinese provinces. Journal of Environmental Management, 260 : 110142
https://doi.org/10.1016/j.jenvman.2020.110142 pmid: 31941622
36 S K Rakse, S Shukla. (2010). Spam classification using new kernel function in support vector machine. International Journal on Computer Science and Engineering, 2 : 1819– 1823
37 M Ring, B M Eskofier. (2016). An approximation of the Gaussian RBF kernel for efficient classification with SVMs. Pattern Recognition Letters, 84 : 107– 113
https://doi.org/10.1016/j.patrec.2016.08.013
38 O Sagi, L Rokach. (2018). Ensemble learning: a survey. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 8( 4): 1249
https://doi.org/10.1002/widm.1249
39 SCPRC ( 2013). Air Pollution Prevention and Control Action Plan. Beijing: Ministry of Ecology and Environment of China
40 M Sheykhmousa, M Mahdianpari, H Ghanbari, F Mohammadimanesh, P Ghamisi, S Homayouni. (2020). Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13 : 6308– 6325
https://doi.org/10.1109/JSTARS.2020.3026724
41 S Z Shogrkhodaei, S V Razavi-Termeh, A Fathnia. (2021). Spatio-temporal modeling of PM2.5 risk mapping using three machine learning algorithms. Environmental Pollution, 289 : 117859
https://doi.org/10.1016/j.envpol.2021.117859 pmid: 34340183
42 Z Tan, Q Yang, Y Zheng. (2020). Machine learning models of groundwater arsenic spatial distribution in bangladesh: influence of holocene sediment depositional history. Environmental Science & Technology, 54( 15): 9454– 9463
https://doi.org/10.1021/acs.est.0c03617 pmid: 32648741
43 U.S. EPA ( 2012). Clean Air Interstate Rule, Acid Rain Program, and Former NO x Budget Trading Program, 2012 Progress Report. Washengton, DC: United States Environmental Protection Agency
44 V N Vapnik ( 1995). The Nature of Statistical Learning Theory. New York: Springer
45 V N Vapnik ( 1998). Statistical Learning Theory. New York: Wiley
46 K Wang, L Che, C Ma, Y M Wei. (2017). The shadow price of CO2 emissions in China’s iron and steel industry. Science of the Total Environment, 598 : 272– 281
https://doi.org/10.1016/j.scitotenv.2017.04.089 pmid: 28445824
47 Y Wang, K Cheng, H Z Tian, P Yi, Z G Xue. (2018). Analysis of reduction potential of primary air pollutant emissions from coking industry in China. Aerosol and Air Quality Research, 18( 2): 533– 541
https://doi.org/10.4209/aaqr.2017.04.0139
48 H Xia, J Tang, L Aljerf. (2022). Dioxin emission prediction based on improved deep forest regression for municipal solid waste incineration process. Chemosphere, 294 : 133716
https://doi.org/10.1016/j.chemosphere.2022.133716 pmid: 35077736
49 Q Xiao, H H Chang, G Geng, Y Liu. (2018). An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data. Environmental Science & Technology, 52( 22): 13260– 13269
https://doi.org/10.1021/acs.est.8b02917 pmid: 30354085
50 J Yang, Y Wen, Y Wang, S Zhang, J P Pinto, E A Pennington, Z Wang, Y Wu, S P Sander, J H Jiang, J Hao, Y L Yung, J H Seinfeld. (2021). From COVID-19 to future electrification: assessing traffic impacts on air quality by a machine-learning model. Proceedings of the National Academy of Sciences of the United States of America, 118( 26): e2102705118
https://doi.org/10.1073/pnas.2102705118 pmid: 34155113
51 L Zhang, Y Wang, C Feng, S Liang, Y Liu, H Du, N Jia. (2021). Understanding the industrial NOx and SO2 pollutant emissions in China from sector linkage perspective. Science of the Total Environment, 770 : 145242
https://doi.org/10.1016/j.scitotenv.2021.145242 pmid: 33517018
52 B Zheng, Q Zhang, D Tong, C C Chen, C P Hong, M Li, G N Geng, Y Lei, H Huo, K B He. (2017). Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China. Atmospheric Chemistry and Physics, 17( 2): 921– 933
https://doi.org/10.5194/acp-17-921-2017
53 H T Zheng, S Y Cai, S X Wang, B Zhao, X Chang, J M Hao. (2019). Development of a unit-based industrial emission inventory in the Beijing-Tianjin-Hebei region and resulting improvement in air quality modeling. Atmospheric Chemistry and Physics, 19( 6): 3447– 3462
https://doi.org/10.5194/acp-19-3447-2019
54 B Zou, J You, Y Lin, X Duan, X Zhao, X Fang, M J Campen, S Li. (2019). Air pollution intervention and life-saving effect in China. Environment International, 125 : 529– 541
https://doi.org/10.1016/j.envint.2018.10.045 pmid: 30612707
[1] FSE-22054-OF-JTN_suppl_1 Download
[1] Yang Zhang, Mei Lei, Kai Li, Tienan Ju. Spatial prediction of soil contamination based on machine learning: a review[J]. Front. Environ. Sci. Eng., 2023, 17(8): 93-.
[2] Zhongyao Liang, Yaoyang Xu, Gang Zhao, Wentao Lu, Zhenghui Fu, Shuhang Wang, Tyler Wagner. Approaching the upper boundary of driver-response relationships: identifying factors using a novel framework integrating quantile regression with interpretable machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(6): 76-.
[3] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[4] Rui Liang, Chao Chen, Akash Kumar, Junyu Tao, Yan Kang, Dong Han, Xianjia Jiang, Pei Tang, Beibei Yan, Guanyi Chen. State-of-the-art applications of machine learning in the life cycle of solid waste management[J]. Front. Environ. Sci. Eng., 2023, 17(4): 44-.
[5] Wenjing Lu, Weizhong Huo, Huwanbieke Gulina, Chao Pan. Development of machine learning multi-city model for municipal solid waste generation prediction[J]. Front. Environ. Sci. Eng., 2022, 16(9): 119-.
[6] Yicai Huang, Jiayuan Chen, Qiannan Duan, Yunjin Feng, Run Luo, Wenjing Wang, Fenli Liu, Sifan Bi, Jianchao Lee. A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning[J]. Front. Environ. Sci. Eng., 2022, 16(3): 38-.
[7] Lin ZENG, Xin DONG, Siyu ZENG, Tianzhu ZHANG, Jing LI, Jining CHEN. Post-evaluation of a water pollution control plan: methodology and case study[J]. Front. Environ. Sci. Eng., 2015, 9(4): 712-724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed