Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (10) : 121    https://doi.org/10.1007/s11783-023-1721-1
RESEARCH ARTICLE
Predicting the elemental compositions of solid waste using ATR-FTIR and machine learning
Haoyang Xian1, Pinjing He1,2,3, Dongying Lan1, Yaping Qi1, Ruiheng Wang1, Fan Lü1,2,3, Hua Zhang1,2,3(), Jisheng Long4()
1. Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
3. Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
4. Shanghai SUS Environment Co., Ltd., Shanghai 201703, China
 Download: PDF(5923 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A method based on ATR-FTIR and ML was developed to predict CHNS contents in waste.

● Feature selection methods were used to improve models’ prediction accuracy.

● The best model predicted C, H, and N contents with accuracy R 2 ≥ 0.93, 0.87, 0.97.

● Some suitable models showed insensitivity to spectral noise.

● Under moisture interference, the models still had good prediction performance.

Elemental composition is a key parameter in solid waste treatment and disposal. This study has proposed a method based on infrared spectroscopy and machine learning algorithms that can rapidly predict the elemental composition (C, H, N, S) of solid waste. Both noise and moisture spectral interference that may occur in practical application are investigated. By comparing two feature selection methods and five machine learning algorithms, the most suitable models are selected. Moreover, the impacts of noise and moisture on the models are discussed, with paper, plastic, textiles, wood, and leather as examples of recyclable waste components. The results show that the combination of the feature selection and K-nearest neighbor (KNN) approaches exhibits the best prediction performance and generalization ability. Particularly, the coefficient of determination (R2) of the validation set, cross validation and test set are higher than 0.93, 0.89, and 0.97 for predicting the C, H, and N contents, respectively. Further, KNN is less sensitive to noise. Under moisture interference, the combination of feature selection and support vector regression or partial least-squares regression shows satisfactory results. Therefore, the elemental compositions of solid waste are quickly and accurately predicted under noise and moisture disturbances using infrared spectroscopy and machine learning algorithms.

Keywords Elemental composition      Infrared spectroscopy      Machine learning      Moisture interference      Solid waste      Spectral noise     
Corresponding Author(s): Hua Zhang,Jisheng Long   
About author:

*These authors equally shared correspondence to this manuscript.

Issue Date: 28 April 2023
 Cite this article:   
Haoyang Xian,Pinjing He,Dongying Lan, et al. Predicting the elemental compositions of solid waste using ATR-FTIR and machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(10): 121.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1721-1
https://academic.hep.com.cn/fese/EN/Y2023/V17/I10/121
SamplesTypesInformation in detail*
Leather24 typesCow leathers (6 types), sheep leathers (6 types), pig leathers (6 types), synthetic leathers (6 types)
Paper27 typesCardboard, newspaper, kraft paper, wall paper, toilet paper and tissue (2 types), magazines (3 types), wax paper (6 types), office paper (12 different colors)
Textile10 typesCotton, ramie, wool, silk, viscose, PA, PET, PP, acetate, polyester cotton blend
Wood9 typesAsh, beech, cassia, rubber wood, white oak, red oak, pine, poplar, camphor
Plastic27 typesHDPE (resin, white and translucent plastic bags, plastic bottles, landfill cover films), LDPE (resin, plastic bags, red, white and black foam, black and white express bags), PA seal, PA6 resin, PA66 resin, PC (resin, plastic bowl), PET (resin, brown and green plastic bottles), PMMA resin, PP (resin, ventilation duct, pipette tip, centrifuge tube), PS resin, PVC resin, TPU resin
Tab.1  Specific information on the samples
Fig.1  Box plots of elemental compositions. The box boundaries indicate the 25% and 75% percentiles, and the line inside each box indicates 50%. The whiskers show other data, with the ends of each whisker representing 5% and 95%. The black points are outliers.
Fig.2  ATR-FTIR spectra of the textiles (cotton) with different moisture contents.
ElementModelValidationTestValidation CVTest CV
AlgorithmFeature selectionR2RMSER2RMSER2RMSER2RMSE
CRFNone0.884.210.904.520.894.220.933.71
SPA0.884.170.884.780.884.830.914.26
CARS0.864.430.884.810.874.670.894.61
SVRNone0.893.970.855.520.865.010.875.13
SPA0.795.600.776.780.786.230.796.61
CARS0.844.810.836.190.825.670.835.92
PLSRNone0.805.250.727.590.746.610.796.46
SPA0.615.460.638.670.618.080.638.68
CARS0.775.600.786.740.736.660.796.63
XGBOOSTNone0.893.910.884.900.884.410.924.01
SPA0.903.800.894.640.894.260.924.04
CARS0.894.010.884.920.874.500.904.43
KNNNone0.933.110.914.270.923.520.914.09
SPA0.962.390.933.790.942.950.943.45
CARS0.952.560.923.820.933.280.943.31
HRFNone0.840.820.771.190.820.930.850.94
SPA0.840.810.821.040.870.900.850.96
CARS0.850.780.840.970.840.890.870.87
SVRNone0.940.490.831.010.840.900.840.99
SPA0.880.710.821.050.810.940.840.98
CARS0.930.530.840.990.860.860.860.93
PLSRNone0.770.950.591.560.671.270.691.37
SPA0.631.190.601.560.631.360.591.58
CARS0.780.920.731.290.701.220.741.25
XGBOOSTNone0.880.700.761.200.850.860.840.98
SPA0.890.670.840.980.870.800.850.95
CARS0.880.710.821.040.870.800.801.10
KNNNone0.910.590.870.850.890.720.850.87
SPA0.960.410.830.980.900.700.830.97
CARS0.960.420.970.700.910.660.890.63
NRFNone0.871.730.901.550.901.630.921.37
SPA0.891.590.921.400.911.560.941.16
CARS0.901.560.921.450.911.560.941.17
SVRNone0.970.910.931.290.931.320.970.92
SPA0.851.880.921.320.911.590.921.30
CARS0.881.630.941.140.931.390.941.13
PLSRNone0.931.370.812.060.891.630.822.07
SPA0.742.560.802.250.782.400.802.26
CARS0.891.690.871.850.891.640.891.70
XGBOOSTNone0.941.190.881.680.921.470.911.43
SPA0.951.020.921.360.941.270.951.09
CARS0.941.240.901.610.931.290.931.34
KNNNone0.980.510.980.610.970.840.980.52
SPA0.990.440.970.780.980.750.980.56
CARS0.980.560.970.700.980.680.980.63
SRFNone0.890.240.790.300.840.280.790.30
SPA0.860.270.760.320.820.290.780.31
CARS0.890.230.730.340.840.280.760.32
SVRNone0.920.200.860.240.890.230.870.24
SPA0.910.210.790.290.870.250.790.30
CARS0.940.180.800.290.880.240.810.28
PLSRNone0.920.200.540.410.840.280.660.36
SPA0.840.290.720.350.790.320.720.35
CARS0.910.210.760.310.860.260.790.30
XGBOOSTNone0.900.230.770.310.850.260.790.31
SPA0.880.240.760.320.850.270.790.30
CARS0.840.260.790.510.860.260.760.31
KNNNone0.950.150.830.260.890.230.840.25
SPA0.920.200.780.300.870.250.810.29
CARS0.930.180.770.310.890.230.780.30
Tab.2  Predicted results of the elemental compositions of solid waste based on the full spectra and on spectra with feature selection
Fig.3  Prediction results of the models. (a) Comparison of model R2val and R2test values using full spectra with or without feature selection. (b) Variation of R2 with different noise factors for the validation set. (c) Variation of R2 with different noise factors for the test set.
ElementModelValidationTestValidation CVTest CV
AlgorithmFeature selectionR2RMSER2RMSER2RMSER2RMSE
CRFNone0.903.210.903.370.903.180.903.31
SPA0.903.250.893.460.903.190.893.45
CARS0.903.220.893.390.893.180.903.32
SVRNone0.932.770.922.970.912.870.922.97
SPA0.932.760.913.170.912.950.913.12
CARS0.932.750.923.040.912.900.923.03
PLSRNone0.932.750.913.170.903.080.903.35
SPA0.912.980.883.570.893.350.893.53
CARS0.912.440.932.780.913.140.873.71
XGBOOSTNone0.913.160.873.760.903.180.883.55
SPA0.922.880.883.590.893.220.893.39
CARS0.913.140.873.710.893.260.893.52
KNNNone0.883.530.873.660.883.510.903.35
SPA0.903.350.883.580.883.480.883.52
CARS0.903.260.883.650.873.560.893.45
HRFNone0.880.460.880.480.880.450.880.47
SPA0.890.460.870.500.880.460.870.49
CARS0.870.490.870.500.860.490.860.50
SVRNone0.870.480.870.480.890.440.870.48
SPA0.910.590.870.430.910.390.910.42
CARS0.850.500.860.500.880.450.870.50
PLSRNone0.920.390.870.490.880.450.890.45
SPA0.910.410.860.510.870.480.860.51
CARS0.940.330.930.360.920.360.930.36
XGBOOSTNone0.910.410.860.510.890.450.860.51
SPA0.900.440.860.510.880.460.860.51
CARS0.890.450.830.560.860.490.860.52
KNNNone0.900.440.810.590.880.460.870.48
SPA0.900.430.850.530.880.470.870.51
CARS0.900.430.850.590.880.470.860.52
NRFNone0.951.360.931.560.951.350.941.42
SPA0.971.020.931.620.961.130.921.52
CARS0.961.260.941.490.961.250.941.42
SVRNone0.970.950.970.980.980.900.980.91
SPA0.990.760.990.780.980.770.980.78
CARS0.980.840.980.810.980.840.980.80
PLSRNone0.951.100.951.400.951.380.951.33
SPA0.911.930.911.850.911.780.911.84
CARS0.961.150.961.250.961.170.961.25
XGBOOSTNone0.961.260.921.670.951.280.901.82
SPA0.971.000.941.380.971.040.931.64
CARS0.961.220.951.410.961.230.951.30
KNNNone0.980.770.980.930.980.850.970.99
SPA0.990.710.980.840.980.770.980.85
CARS0.980.850.980.950.980.840.980.82
SRFNone0.640.320.590.290.560.330.690.27
SPA0.480.390.500.330.470.370.600.31
CARS0.630.330.600.300.610.320.700.28
SVRNone0.710.290.620.290.760.240.860.19
SPA0.930.140.910.140.920.130.930.13
CARS0.890.170.870.170.890.160.940.12
PLSRNone0.870.190.890.160.860.180.920.14
SPA0.690.300.800.220.760.260.690.28
CARS0.890.170.900.160.880.170.900.16
XGBOOSTNone0.610.330.560.310.530.350.540.33
SPA0.650.320.640.270.550.350.490.36
CARS0.720.290.720.250.630.320.740.26
KNNNone0.640.260.470.340.550.350.590.27
SPA0.590.330.540.290.640.300.450.34
CARS0.730.230.590.290.700.260.450.34
Tab.3  Predicted results for elemental compositions of solid waste based on the full spectra and spectra with feature selection under moisture interference
Fig.4  Prediction results under moisture interference. (a) Scatter plots of predicted and measured values for the validation set. (b) Scatter plots of predicted and measured values for the test set.
ANNArtificial neural network
CARSCompetitive adaptive reweighted sampling
DTDecision tree
FTIRFourier transform infrared spectroscopy
HDPEHigh density polyethylene
KNNK-nearest neighbor
LDPELow density polyethylene
RMSERoot mean square error
PAPolyamide
PCPolycarbonate
PETPolyethylene terephthalate
PLSRPartial least squares regression
PMMAPolymethyl methacrylate
PPPolypropylene
PSPolystyrene
PVCPolyvinyl chloride
R2R-Square
RFRandom forest
SPASuccessive projections algorithm
SVRSupport vector regression
TPUThermoplastic polyurethane
XGBOOSTExtreme gradient boosting tree
  
1 O AdedejiZ H Wang (2019). Intelligent waste classification system using deep learning convolutional neural network. In: 2nd international conference on sustainable materials processing and manufacturing (SMPM). Sun City, South Africa: Procedia Manufacturing, 607–612
2 H Altun , A Bilgil , B C Fidan . (2007). Treatment of multi-dimensional data to enhance neural network estimators in regression problems. Expert Systems with Applications, 32(2): 599–605
https://doi.org/10.1016/j.eswa.2006.01.054
3 L Breiman . (2001). Random forests. Machine Learning, 45(1): 5–32
https://doi.org/10.1023/A:1010933404324
4 S Chakraborty , B Li , S Deb , S Paul , D C Weindorf , B S Das . (2017). Predicting soil arsenic pools by visible near infrared diffuse reflectance spectroscopy. Geoderma, 296: 30–37
https://doi.org/10.1016/j.geoderma.2017.02.015
5 K Chen , Y Peng , S Lu , B Lin , X Li . (2021). Bagging based ensemble learning approaches for modeling the emission of PCDD/Fs from municipal solid waste incinerators. Chemosphere, 274: 129802
https://doi.org/10.1016/j.chemosphere.2021.129802
6 T Chen, C Guestrin (2016). Assoc Comp M XGBoost: a Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: Association for Computing Machinery, 785–794
7 M Y Chin , C T Lee , K S Woon . (2022). Policy-driven municipal solid waste management assessment using relative quadrant eco-efficiency: a case study in Malaysia. Journal of Environmental Management, 323: 116238
https://doi.org/10.1016/j.jenvman.2022.116238
8 A Demetrious , K Verghese , P Stasinopoulos , E Crossin . (2018). Comparison of alternative methods for managing the residual of material recovery facilities using life cycle assessment. Resources, Conservation and Recycling, 136: 33–45
https://doi.org/10.1016/j.resconrec.2018.03.024
9 M El-Fadel , E Bou-Zeid , W Chahine , B Alayli . (2002). Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management (New York, N.Y.), 22(3): 269–282
https://doi.org/10.1016/S0956-053X(01)00040-X
10 X P Feng , H M Chen , Y Chen , C Zhang , X D Liu , H Y Weng , S P Xiao , P C Nie , Y He . (2019). Rapid detection of cadmium and its distribution in Miscanthus sacchariflorus based on visible and near-infrared hyperspectral imaging. Science of the Total Environment, 659: 1021–1031
https://doi.org/10.1016/j.scitotenv.2018.12.458
11 D Garcés , E Díaz , H Sastre , S Ordóñez , J M González-Lafuente . (2016). Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels. Waste Management (New York, N.Y.), 47: 164–173
https://doi.org/10.1016/j.wasman.2015.08.029
12 M Govindappa , S Tejashree , V Thanuja , B Hemashekhar , C Srinivas , O Nasif , A Pugazhendhi , V B Raghavendra . (2021). Pomegranate fruit fleshy pericarp mediated silver nanoparticles possessing antimicrobial, antibiofilm formation, antioxidant, biocompatibility and anticancer activity. Journal of Drug Delivery Science and Technology, 61: 102289
https://doi.org/10.1016/j.jddst.2020.102289
13 M G Goydaragh , R Taghizadeh-Mehrjardi , A A Jafarzadeh , J Triantafilis , M Lado . (2021). Using environmental variables and Fourier transform infrared spectroscopy to predict soil organic carbon. Catena, 202: 105280
https://doi.org/10.1016/j.catena.2021.105280
14 F S Higashikawa, C A Silva, C A Nunes, M A Sánchez-Monedero (2014). Fourier transform infrared spectroscopy and partial least square regression for the prediction of substrate maturity indexes. Science of the Total Environment, 470–471: 536–542
https://doi.org/10.1016/j.scitotenv.2013.09.065
15 C C Holmes , N M Adams . (2003). Likelihood inference in nearest-neighbour classification models. Biometrika, 90(1): 99–112
https://doi.org/10.1093/biomet/90.1.99
16 M M Hoque , M T U Rahman . (2020). Landfill area estimation based on solid waste collection prediction using ANN model and final waste disposal options. Journal of Cleaner Production, 256: 120387
https://doi.org/10.1016/j.jclepro.2020.120387
17 Y C Huang , J Y Chen , Q N Duan , Y J Feng , R Luo , W J Wang , F L Liu , S F Bi , J C Lee . (2022). A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning. Frontiers of Environmental Science and Engineering, 16(3): 38
https://doi.org/10.1007/s11783-021-1472-9
18 Q H Jiang , Y Y Chen , L Guo , T Fei , K Qi . (2016). Estimating soil organic carbon of cropland soil at different levels of soil moisture using VIS-NIR spectroscopy. Remote Sensing (Basel), 8(9): 755
https://doi.org/10.3390/rs8090755
19 L Kandlbauer , K Khodier , D Ninevski , R Sarc . (2021). Sensor-based particle size determination of shredded mixed commercial waste based on two-dimensional images. Waste Management (New York, N.Y.), 120: 784–794
https://doi.org/10.1016/j.wasman.2020.11.003
20 M Kannangara , R Dua , L Ahmadi , F Bensebaa . (2018). Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste Management (New York, N.Y.), 74: 3–15
https://doi.org/10.1016/j.wasman.2017.11.057
21 N Kardani , A N Zhou , M Nazem , X S Lin . (2021). Modelling of municipal solid waste gasification using an optimised ensemble soft computing model. Fuel, 289: 119903
https://doi.org/10.1016/j.fuel.2020.119903
22 N Karimi , K T W Ng , A Richter . (2021). Prediction of fugitive landfill gas hotspots using a random forest algorithm and Sentinel-2 data. Sustainable Cities and Society, 73: 103097
https://doi.org/10.1016/j.scs.2021.103097
23 G Kaur , D Kaur , S K Kansal , M Garg , M Krishania . (2022). Potential cocoa butter substitute derived from mango seed kernel. Food Chemistry, 372: 131244
https://doi.org/10.1016/j.foodchem.2021.131244
24 H Li , Y Liang , Q Xu , D Cao . (2009). Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta, 648(1): 77–84
https://doi.org/10.1016/j.aca.2009.06.046
25 H Y Li , S Y Jia , Z C Le . (2019a). Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine. Sensors (Basel), 19(20): 4355
https://doi.org/10.3390/s19204355
26 R Li , M Gong , B W Biney , K Chen , W Xia , H Liu , A Guo . (2022a). Three-stage pretreatment of food waste to improve fuel characteristics and incineration performance with recovery of process by-products. Fuel, 330: 125655
https://doi.org/10.1016/j.fuel.2022.125655
27 X Li , Y Ma , M Zhang , M Zhan , P Wang , X Lin , T Chen , S Lu , J Yan . (2019b). Study on the relationship between waste classification, combustion condition and dioxin emission from waste incineration. Waste Disposal & Sustainable Energy, 1(2): 91–98
https://doi.org/10.1007/s42768-019-00009-9
28 Y Li , Z Wang , B Guan . (2022b). Separation and identification of nanoplastics in tap water. Environmental Research, 204: 112134
https://doi.org/10.1016/j.envres.2021.112134
29 W J Lu , W Z Huo , H Gulina , C Pan . (2022). Development of machine learning multi-city model for municipal solid waste generation prediction. Frontiers of Environmental Science and Engineering, 16(9): 119
https://doi.org/10.1007/s11783-022-1551-6
30 S M Lundberg, S I Lee (2017). A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems. Long Beach, USA: Curran Associates Inc., 4768–4777
31 A P M Michel , A E Morrison , V L Preston , C T Marx , B C Colson , H K White . (2020). Rapid identification of marine plastic debris via spectroscopic techniques and machine learning classifiers. Environmental Science & Technology, 54(17): 10630–10637
https://doi.org/10.1021/acs.est.0c02099
32 M E S Mirghani , N A Kabbashi , M Z Alam , I Y Qudsieh , M F R Alkatib . (2011). Rapid method for the determination of moisture content in biodiesel using FTIR spectroscopy. Journal of the American Oil Chemists’ Society, 88(12): 1897–1904
https://doi.org/10.1007/s11746-011-1866-0
33 A Nzihou (2020). Handbook on Characterization of Biomass, Biowaste and Related By-Products. Cham, Switzerland: Springer Cham
34 A Paul , L Wander , R Becker , C Goedecke , U Braun . (2019). High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environmental Science and Pollution Research, 26(8): 7364–7374
https://doi.org/10.1007/s11356-018-2180-2
35 T Peršak , B Viltuznik , J Hernavs , S Klancnik . (2020). Vision-based sorting systems for transparent plastic granulate. Applied Sciences, 10(12): 4269
https://doi.org/10.3390/app10124269
36 M H Ren , H J Zhang , Y Fan , H Q Zhou , R Cao , Y Gao , J P Chen . (2021). Suppressing the formation of chlorinated aromatics by inhibitor sodium thiocyanate in solid waste incineration process. Science of the Total Environment, 798: 149154
https://doi.org/10.1016/j.scitotenv.2021.149154
37 M Said , M Amr , Y Sabry , D Khalil , A Wahba . (2021). Plastic sorting based on MEMS FTIR spectral chemometrics sensing. Conference on Optical Sensing and Detection VI, Proceedings of SPIE, 11354: 113540J
https://doi.org/10.1117/12.2555876
38 A J Smola , B Schölkopf . (2004). A tutorial on support vector regression. Statistics and Computing, 14(3): 199–222
https://doi.org/10.1023/B:STCO.0000035301.49549.88
39 J Tao , R Liang , J Li , B Yan , G Chen , Z Cheng , W Li , F Lin , L Hou . (2020). Fast characterization of biomass and waste by infrared spectra and machine learning models. Journal of Hazardous Materials, 387: 121723
https://doi.org/10.1016/j.jhazmat.2019.121723
40 C M Vong , W F Ip , C C Chiu , P K Wong . (2015). Imbalanced learning for air pollution by meta-cognitive online sequential extreme learning machine. Cognitive Computation, 7(3): 381–391
https://doi.org/10.1007/s12559-014-9301-0
41 L Wang , R Wang . (2022). Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection: a case study in lime concretion black soil. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 283: 121707
https://doi.org/10.1016/j.saa.2022.121707
42 Y Wang , Y Shi , J Zhou , J Zhao , T Maraseni , G Qian . (2021). Implementation effect of municipal solid waste mandatory sorting policy in Shanghai. Journal of Environmental Management, 298: 113512
https://doi.org/10.1016/j.jenvman.2021.113512
43 Z Wang , B Peng , Y Huang , G Sun . (2019). Classification for plastic bottles recycling based on image recognition. Waste Management (New York, N.Y.), 88: 170–181
https://doi.org/10.1016/j.wasman.2019.03.032
44 S Wold , M Sjöström , L Eriksson . (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2): 109–130
https://doi.org/10.1016/S0169-7439(01)00155-1
45 S Xiao , H Dong , Y Geng , X Tian , C Liu , H Li . (2020). Policy impacts on municipal solid waste management in Shanghai: a system dynamics model analysis. Journal of Cleaner Production, 262: 121366
https://doi.org/10.1016/j.jclepro.2020.121366
46 S Xu , M Wang , X Shi , Q Yu , Z Zhang . (2021). Integrating hyperspectral imaging with machine learning techniques for the high-resolution mapping of soil nitrogen fractions in soil profiles. Science of the Total Environment, 754: 142135
https://doi.org/10.1016/j.scitotenv.2020.142135
47 Y Xu , J Liu , Y Sun , S Chen , X Miao . (2023). Fast detection of volatile fatty acids in biogas slurry using NIR spectroscopy combined with feature wavelength selection. Science of the Total Environment, 857: 159282
https://doi.org/10.1016/j.scitotenv.2022.159282
48 B Yan , R Liang , B Li , J Tao , G Chen , Z Cheng , Z Zhu , X Li . (2021). Fast identification and characterization of residual wastes via laser-induced breakdown spectroscopy and machine learning. Resources, Conservation and Recycling, 174: 105851
https://doi.org/10.1016/j.resconrec.2021.105851
49 C Zhang , F Liu , Y He . (2018). Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis. Scientific Reports, 8(1): 2166
https://doi.org/10.1038/s41598-018-20270-y
50 D Q Zhang , S K Tan , R M Gersberg . (2010). Municipal solid waste management in China: status, problems and challenges. Journal of Environmental Management, 91(8): 1623–1633
https://doi.org/10.1016/j.jenvman.2010.03.012
51 Y Zhang , S Kang , S Allen , D Allen , T Gao , M Sillanpää . (2020). Atmospheric microplastics: a review on current status and perspectives. Earth-Science Reviews, 203: 103118
https://doi.org/10.1016/j.earscirev.2020.103118
52 K Zheng , Q Li , J Wang , J Geng , P Cao , T Sui , X Wang , Y Du . (2012). Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra. Chemometrics and Intelligent Laboratory Systems, 112: 48–54
https://doi.org/10.1016/j.chemolab.2012.01.002
53 H Zou , S Huang , M Ren , J Liu , F Evrendilek , W Xie , G Zhang . (2022). Efficiency, by-product valorization, and pollution control of co-pyrolysis of textile dyeing sludge and waste solid adsorbents: their atmosphere, temperature, and blend ratio dependencies. Science of the Total Environment, 819: 152923
https://doi.org/10.1016/j.scitotenv.2022.152923
54 X Zou, J Zhao, M J W Povey, H Mei, H Mao (2010). Variables selection methods in near-infrared spectroscopy. Analytica Chimica Acta, 667(1–2): 14–32
https://doi.org/10.1016/j.aca.2010.03.048
[1] FSE-23011-OF-XHY_suppl_1 Download
[1] Yanpeng Huang, Chao Wang, Yuanhao Wang, Guangfeng Lyu, Sijie Lin, Weijiang Liu, Haobo Niu, Qing Hu. Application of machine learning models in groundwater quality assessment and prediction: progress and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(3): 29-.
[2] Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction[J]. Front. Environ. Sci. Eng., 2024, 18(2): 17-.
[3] Yang Zhang, Mei Lei, Kai Li, Tienan Ju. Spatial prediction of soil contamination based on machine learning: a review[J]. Front. Environ. Sci. Eng., 2023, 17(8): 93-.
[4] Kunsen Lin, Youcai Zhao, Lina Wang, Wenjie Shi, Feifei Cui, Tao Zhou. MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal solid waste sorting[J]. Front. Environ. Sci. Eng., 2023, 17(6): 77-.
[5] Zhongyao Liang, Yaoyang Xu, Gang Zhao, Wentao Lu, Zhenghui Fu, Shuhang Wang, Tyler Wagner. Approaching the upper boundary of driver-response relationships: identifying factors using a novel framework integrating quantile regression with interpretable machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(6): 76-.
[6] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[7] Rui Liang, Chao Chen, Akash Kumar, Junyu Tao, Yan Kang, Dong Han, Xianjia Jiang, Pei Tang, Beibei Yan, Guanyi Chen. State-of-the-art applications of machine learning in the life cycle of solid waste management[J]. Front. Environ. Sci. Eng., 2023, 17(4): 44-.
[8] Xianlai Zeng. Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality[J]. Front. Environ. Sci. Eng., 2023, 17(2): 23-.
[9] Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi. A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(12): 148-.
[10] Xiao Li, Yanan Ren, Xuezhao Chen, Yang Li, Marian R. Chertow. Exploring the development of municipal solid waste disposal facilities in Chinese cities: patterns and drivers[J]. Front. Environ. Sci. Eng., 2023, 17(11): 139-.
[11] Jin Xue, Fangting Wang, Kun Zhang, Hehe Zhai, Dan Jin, Yusen Duan, Elly Yaluk, Yangjun Wang, Ling Huang, Yuewu Li, Thomas Lei, Qingyan Fu, Joshua S. Fu, Li Li. Elucidate long-term changes of ozone in Shanghai based on an integrated machine learning method[J]. Front. Environ. Sci. Eng., 2023, 17(11): 138-.
[12] Weishuai Li, Jingang Huang, Zhuoer Shi, Wei Han, Ting Lü, Yuanyuan Lin, Jianfang Meng, Xiaobing Xu, Pingzhi Hou. Machine learning enabled prediction and process optimization of VFA production from riboflavin-mediated sludge fermentation[J]. Front. Environ. Sci. Eng., 2023, 17(11): 135-.
[13] Tienan Ju, Mei Lei, Guanghui Guo, Jinglun Xi, Yang Zhang, Yuan Xu, Qijia Lou. A new prediction method of industrial atmospheric pollutant emission intensity based on pollutant emission standard quantification[J]. Front. Environ. Sci. Eng., 2023, 17(1): 8-.
[14] Wenjing Lu, Weizhong Huo, Huwanbieke Gulina, Chao Pan. Development of machine learning multi-city model for municipal solid waste generation prediction[J]. Front. Environ. Sci. Eng., 2022, 16(9): 119-.
[15] Xiang Zhang, Yue Xuan, Bin Wang, Chuan Gao, Shengli Niu, Gaiju Zhao, Dong Wang, Junhua Li, Chunmei Lu, John C. Crittenden. Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility[J]. Front. Environ. Sci. Eng., 2022, 16(7): 88-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed