Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (11) : 139    https://doi.org/10.1007/s11783-023-1739-4
RESEARCH ARTICLE
Exploring the development of municipal solid waste disposal facilities in Chinese cities: patterns and drivers
Xiao Li1(), Yanan Ren2, Xuezhao Chen1, Yang Li3, Marian R. Chertow4
1. School of Public Policy and Administration and Research Center for Resource and Environmental Policy and Management, Xi’an Jiaotong University, Xi’an 710049, China
2. School of Environment, Tsinghua University, Beijing 100084, China
3. Growth Lab, Harvard Kennedy School, Harvard University, Cambridge, MA 02138, USA
4. Center for Industrial Ecology, School of the Environment, Yale University, New Haven, CT 06511, USA
 Download: PDF(1370 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● We tracked Chinese cities’ MSW disposal infrastructure development history.

● Diverse patterns and drivers were uncovered with empirical analysis.

● Patterns were shaped by regional imbalances and features.

Rapid urbanization in Chinese cities has led to a surge in municipal solid waste (MSW) generation, necessitating the development of high-quality MSW disposal facilities. This study utilizes multi-source data and regression models to examine the status, development pathways, and driving forces of MSW disposal facilities in China. Our findings reveal an inverted U-shaped relationship between the capacities or numbers of MSW disposal facilities and GDP per capita of cities. Historical data show that cities in East and Southeast China preferred incineration, while cities in West and Central China developed landfills more, largely shaped by the imbalance of development levels and endowments among regions in China. The study also identifies mixed and differentiated influences of socio-economic factors on capacity expansion and increases in the number of MSW disposal facilities. The results suggest the need for updated construction guidelines and regulations, as well as enhanced technological and managerial capabilities for MSW infrastructure. These findings can inform policymakers and practitioners in their efforts to promote sustainable waste management practices in China.

Keywords China      Municipal solid waste (MSW)      Landfill      Incineration      Proliferation patterns      Driving forces     
Corresponding Author(s): Xiao Li   
About author:

* These authors contributed equally to this work.

Issue Date: 15 November 2023
 Cite this article:   
Xiao Li,Yanan Ren,Xuezhao Chen, et al. Exploring the development of municipal solid waste disposal facilities in Chinese cities: patterns and drivers[J]. Front. Environ. Sci. Eng., 2023, 17(11): 139.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1739-4
https://academic.hep.com.cn/fese/EN/Y2023/V17/I11/139
VariablesDefinitionUnitData sources
num_mswNumber of MSW disposal facilitiesChina City Construction Statistical Yearbooks
num_landNumber of landfill facilities
num_inciNumber of incineration facilities
capa_mswCapacity of MSW disposal facilitiest/d
capa_landCapacity of landfill facilitiest/d
capa_inciCapacity of incineration facilitiest/d
gdppcGDP per capita1000 yuan/personCEIC Database
popdenPermanent population density1000 people/km2
serpercRatio of the added value of the tertiary industry to GDP
hpriceHouse price1000 yuan/m2
sodenAmount of industrial SO2 emission per km2t/km2
city_eipWhether the city has National-Class Eco-Industrial Parks (yes, 1; otherwise, 0)Ministry of Ecology and Environment of China
cleancityWhether the city won National Clean City Award (yes, 1; otherwise, 0)National Patriotic Health Campaign Committee
Tab.1  Definition and data sources of variables
Fig.1  Capacities of MSW disposal facilities in Chinese cities in 2019.
Fig.2  Numbers of MSW disposal facilities in Chinese cities in 2019.
Fig.3  Changes in capacities and numbers of MSW disposal facilities in Chinese cities from 2006 to 2019. (a) Changes in landfill and incineration capacities; (b) changes in numbers of landfill and incineration facilities.
Fig.4  Estimated IRRs of socio-economic factors affecting numbers of MSW disposal facilities in Chinese cities. (a) MSW treatment; (b) Landfill; (c) Incineration (*95% confidence intervals of the estimated IRRs are shown. *p < 0.10, **p < 0.05, ***p < 0.01).
Variables(1) capa_msw(2) capa_msw(3) capa_msw(4) capa_msw(5) capa_land(6) capa_land(7) capa_land(8) capa_land(9) capa_inci(10) capa_inci(11) capa_inci(12) capa_inci
gdppc12.02**10.35*14.44***21.30***7.098**3.913?0.5191.6905.517**7.868*14.49***18.89***
(5.322)(5.316)(5.141)(5.806)(3.433)(2.870)(3.769)(4.486)(2.396)(4.382)(3.640)(5.319)
popden1251.2***2789.8***2764.8**3090.0**653.6**1413.2*1636.7**1066.5628.1***1345.6*1152.81808.6***
(401.0)(945.6)(1099.6)(1199.7)(250.9)(723.4)(797.6)(765.1)(126.7)(706.7)(681.4)(629.0)
serperc48.56***6.728?4.5301.14734.71***2.886?3.733?0.43111.77**6.0661.3651.586
(9.956)(5.680)(7.796)(7.830)(8.422)(3.841)(3.295)(6.312)(4.900)(4.927)(6.857)(8.409)
hprice253.6**166.9181.950.3575.63?6.544?22.85?9.477136.6***132.9158.440.47
(121.3)(98.47)(117.9)(86.73)(58.37)(26.57)(29.23)(30.40)(43.17)(80.34)(97.08)(73.18)
soden?0.570?39.34**?33.46*?27.84**5.623?5.620?3.8141.812?8.918*?34.97**?31.50**?26.68*
(9.689)(17.35)(16.66)(13.25)(7.082)(7.061)(7.311)(5.188)(4.372)(15.53)(14.13)(13.21)
city_eip2300.5**1383.4*1340.5*1185.71008.2242.3295.0602.5*1070.4**940.9**866.1*516.3
(1102.6)(710.0)(711.9)(721.2)(626.1)(244.0)(251.2)(327.6)(396.4)(457.5)(460.2)(444.0)
cleancity?656.9**?309.3***?317.9***?225.3**?381.6**?73.92?119.7?110.9?172.7**?218.3**?191.6**?123.4
(265.4)(106.6)(89.12)(91.93)(178.5)(82.67)(77.95)(70.64)(84.24)(90.61)(76.54)(80.50)
constant?2684.6***10250.9***10635.3***22435.1***?1411.4***8247.5***9016.1***5558.6***?1096.3***?611.4?837.99845.3***
(433.1)(1182.4)(1913.9)(2286.1)(331.5)(866.7)(768.0)(1470.8)(164.5)(1237.2)(1953.7)(2643.0)
City FEYYYYYYYYY
Year FEYYY
Province*Year FEYYY
N363436343634363436343634363436343634363436343634
R20.6250.8770.8800.9230.4120.8470.8480.8910.5590.7400.7510.839
Tab.2  Regression results for fixed-effect models.
1 B Assamoi , Y Lawryshyn . (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Management (New York, N.Y.), 32(5): 1019–1030
https://doi.org/10.1016/j.wasman.2011.10.023
2 P H Brunner , H Rechberger . (2015). Waste to energy–key element for sustainable waste management. Waste Management (New York, N.Y.), 37: 3–12
https://doi.org/10.1016/j.wasman.2014.02.003
3 M Carlsson Reich . (2005). Economic assessment of municipal waste management systems—case studies using a combination of life cycle assessment (LCA) and life cycle costing (LCC). Journal of Cleaner Production, 13(3): 253–263
https://doi.org/10.1016/j.jclepro.2004.02.015
4 X Chen , Y Geng , T Fujita . (2010). An overview of municipal solid waste management in China. Waste Management (New York, N.Y.), 30(4): 716–724
https://doi.org/10.1016/j.wasman.2009.10.011
5 Y C Chen , S L Lo . (2016). Evaluation of greenhouse gas emissions for several municipal solid waste management strategies. Journal of Cleaner Production, 113: 606–612
https://doi.org/10.1016/j.jclepro.2015.11.058
6 J Cheng , F Shi , J Yi , H Fu . (2020). Analysis of the factors that affect the production of municipal solid waste in China. Journal of Cleaner Production, 259: 120808
https://doi.org/10.1016/j.jclepro.2020.120808
7 S Dhakal, M Ruth (2017). Creating Low Carbon Cities. Cham: Springer International Publishing AG
8 Y Ding , J Zhao , J W Liu , J Zhou , L Cheng , J Zhao , Z Shao , Ç Iris , B Pan , X Li . et al.. (2021). A review of China’s municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization. Journal of Cleaner Production, 293: 126144
https://doi.org/10.1016/j.jclepro.2021.126144
9 EEA (2009). Diverting waste from landfill: effectiveness of waste-management policies in the European Union. Copenhagen: European Environment Agency
10 N Fabian , L I T Lou . (2019). The struggle for sustainable waste management in Hong Kong (China): 1950s–2010s. Worldwide Waste. Journal of Interdisciplinary Studies, 2(1): 1–12
https://doi.org/10.5334/wwwj.27
11 Y Geng . (2012). Toward safe treatment of municipal solid wastes in China’s urban areas. Environmental Science & Technology, 46(13): 7067–7068
https://doi.org/10.1021/es3022446
12 L Giusti . (2009). A review of waste management practices and their impact on human health. Waste Management (New York, N.Y.), 29(8): 2227–2239
https://doi.org/10.1016/j.wasman.2009.03.028
13 B Gu , S Jiang , H Wang , Z Wang , R Jia , J Yang , S He , R Cheng . (2017). Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: a review. Waste Management (New York, N.Y.), 61: 67–77
https://doi.org/10.1016/j.wasman.2016.11.039
14 J A Hausman , B H Hall , Z Griliches . (1984). Econometric models for count data with an application to the patents-R&D relationship. Econometrica, 52(4): 909–938
https://doi.org/10.2307/1911191
15 J Hong , Y Chen , M Wang , L Ye , C Qi , H Yuan , T Zheng , X Li . (2017). Intensification of municipal solid waste disposal in China. Renewable & Sustainable Energy Reviews, 69: 168–176
16 N Johnstone , J Labonne . (2004). Generation of household solid waste in OECD countries: an empirical analysis using macroeconomic data. Land Economics, 80(4): 529–538
https://doi.org/10.2307/3655808
17 G A Kristanto , W Koven . (2019). Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City and Environment Interactions, 4: 100027
https://doi.org/10.1016/j.cacint.2020.100027
18 D Laner, J Fellner, P H Brunner (2009). Flooding of municipal solid waste landfills—An environmental hazard? Science of the Total Environment, 407(12): 3674–3680
https://doi.org/10.1016/j.scitotenv.2009.03.006
19 J W Lu , S Zhang , J Hai , M Lei . (2017). Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions. Waste Management (New York, N.Y.), 69: 170–186
https://doi.org/10.1016/j.wasman.2017.04.014
20 W Lu , W Huo , H Gulina , C Pan . (2022). Development of machine learning multi-city model for municipal solid waste generation prediction. Frontiers of Environmental Science & Engineering, 16(9): 119
https://doi.org/10.1007/s11783-022-1551-6
21 C Magazzino, M Mele, N Schneider, S A Sarkodie (2021). Waste generation, wealth and GHG emissions from the waste sector: Is Denmark on the path towards circular economy? Science of the Total Environment, 755: 142510
https://doi.org/10.1016/j.scitotenv.2020.142510
22 L Makarichi , W Jutidamrongphan , K A Techato . (2018). The evolution of waste-to-energy incineration: a review. Renewable & Sustainable Energy Reviews, 91: 812–821
https://doi.org/10.1016/j.rser.2018.04.088
23 S Mukherjee , S Mukhopadhyay , M A Hashim , B Sen Gupta . (2015). Contemporary environmental issues of landfill leachate: Assessment and remedies. Critical Reviews in Environmental Science and Technology, 45(5): 472–590
https://doi.org/10.1080/10643389.2013.876524
24 J Pérez , Andrés J M de , J Lumbreras , E Rodríguez . (2018). Evaluating carbon footprint of municipal solid waste treatment: Methodological proposal and application to a case study. Journal of Cleaner Production, 205: 419–431
https://doi.org/10.1016/j.jclepro.2018.09.103
25 A Rabl , J V Spadaro , A Zoughaib . (2008). Environmental impacts and costs of solid waste: a comparison of landfill and incineration. Waste Management & Research, 26(2): 147–162
https://doi.org/10.1177/0734242X07080755
26 N Stanisavljevic , J W Levis , M A Barlaz . (2018). Application of a life cycle model for European Union policy-driven waste management decision making in emerging economies. Journal of Industrial Ecology, 22(2): 341–355
https://doi.org/10.1111/jiec.12564
27 N J Themelis , P A Ulloa . (2007). Methane generation in landfills. Renewable Energy, 32(7): 1243–1257
https://doi.org/10.1016/j.renene.2006.04.020
28 X Wang , Y Geng . (2012). Municipal solid waste management in Dalian: practices and challenges. Frontiers of Environmental Science & Engineering, 6(4): 540–548
https://doi.org/10.1007/s11783-011-0361-z
29 J M Wooldridge (2015). Introductory Econometrics: A Modern Approach. 4th ed. Mason: South-Western Cengage Learning
30 M Xu , B Lin . (2020). Exploring the “not in my backyard” effect in the construction of waste incineration power plants: based on a survey in metropolises of China. Environmental Impact Assessment Review, 82: 106377
https://doi.org/10.1016/j.eiar.2020.106377
31 C Zeng , D Niu , Y Zhao . (2015). A comprehensive overview of rural solid waste management in China. Frontiers of Environmental Science & Engineering, 9(6): 949–961
https://doi.org/10.1007/s11783-015-0816-8
32 H Zhang , Z Wen , Y Chen . (2016). Environment and economic feasibility of municipal solid waste central sorting strategy: a case study in Beijing. Frontiers of Environmental Science & Engineering, 10(4): 10
https://doi.org/10.1007/s11783-016-0852-z
33 X Zhang . (2021). Stability and change in strategic action fields: municipal solid waste incineration in China, 1988–2020. Chinese Journal of Sociology, 7(1): 48–73
https://doi.org/10.1177/2057150X20980843
34 C Zhou , N Huang , G Yang , S Ma . (2022). Assessing the sustainability of municipal solid waste management in China 1980–2019. Sustainable Horizons, 2: 100020
https://doi.org/10.1016/j.horiz.2022.100020
35 Y Zhu , Y Zhang , D Luo , Z Chong , E Li , X Kong . (2021). A review of municipal solid waste in China: characteristics, compositions, influential factors and treatment technologies. Environment, Development and Sustainability, 23(5): 6603–6622
https://doi.org/10.1007/s10668-020-00959-9
[1] FSE-23035-OF-LX_suppl_1 Download
[1] Zhou Yang, Murui Zheng, Ze-Lin Yan, Hui Liu, Xiangyi Liu, Jie-Qi Jin, Jiagang Wu, Chun-Quan Ou. Magnitude and direction of temperature variability affect hospitalization for myocardial infarction and stroke: population-based evidence from Guangzhou, China[J]. Front. Environ. Sci. Eng., 2024, 18(3): 27-.
[2] Yao Wang, Alejandro Ruiz-Acevedo, Eemaan Rameez, Vijaya Raghavan, Abid Hussain, Xunchang Fei. Toward sustainable waste management in small islands developing states: integrated waste-to-energy solutions in Maldives context[J]. Front. Environ. Sci. Eng., 2024, 18(2): 24-.
[3] Xiping Kan, Xia Yu, Wentao Zhao, Shuguang Lyu, Shuying Sun, Gang Yu, Qian Sui. Screening of indicator pharmaceuticals and personal care products in landfill leachates: a case study in Shanghai, China[J]. Front. Environ. Sci. Eng., 2023, 17(9): 116-.
[4] Hao Zheng, Jian Cheng, Hung Chak Ho, Baoli Zhu, Zhen Ding, Wencong Du, Xin Wang, Yang Yu, Juan Fei, Zhiwei Xu, Jinyi Zhou, Jie Yang. Evaluating the short-term effect of ambient temperature on non-fatal outdoor falls and road traffic injuries among children and adolescents in China: a time-stratified case-crossover study[J]. Front. Environ. Sci. Eng., 2023, 17(9): 105-.
[5] Yujie Pan, Yalan Li, Hongxia Peng, Yiping Yang, Min Zeng, Yang Xie, Yao Lu, Hong Yuan. Relationship between groundwater cadmium and vicinity resident urine cadmium levels in the non-ferrous metal smelting area, China[J]. Front. Environ. Sci. Eng., 2023, 17(5): 56-.
[6] Yuan Cheng, Qinqin Yu, Jiumeng Liu, Youwen Sun, Linlin Liang, Zhenyu Du, Guannan Geng, Wanli Ma, Hong Qi, Qiang Zhang, Kebin He. Formation of secondary inorganic aerosol in a frigid urban atmosphere[J]. Front. Environ. Sci. Eng., 2022, 16(2): 18-.
[7] Shansi Wang, Siwei Li, Jia Xing, Jie Yang, Jiaxin Dong, Yu Qin, Shovan Kumar Sahu. Evaluation of the influence of El Niño–Southern Oscillation on air quality in southern China from long-term historical observations[J]. Front. Environ. Sci. Eng., 2022, 16(2): 26-.
[8] Yanfeng Yang, Ruina Zhang, Ziyang Lou. Bioaerosol emissions variations in large-scale landfill region and their health risk impacts[J]. Front. Environ. Sci. Eng., 2022, 16(12): 158-.
[9] Guoyang Fan, Zhenying Zhang, Jiahe Zhang, Jiayue Zhang, Qiaona Wang, Min Wang, Bang Wang, Chengyu Nie. Effect of loading rate on shear strength parameters of mechanically and biologically treated waste[J]. Front. Environ. Sci. Eng., 2022, 16(12): 160-.
[10] Yangyan Cheng, Ye Shan, Yuhuan Xue, Yujiao Zhu, Xinfeng Wang, Likun Xue, Yanguang Liu, Fangli Qiao, Min Zhang. Variation characteristics of atmospheric methane and carbon dioxide in summertime at a coastal site in the South China Sea[J]. Front. Environ. Sci. Eng., 2022, 16(11): 139-.
[11] Fengping Hu, Yongming Guo. Health impacts of air pollution in China[J]. Front. Environ. Sci. Eng., 2021, 15(4): 74-.
[12] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[13] Chi Zhang, Wenhui Kuang, Jianguo Wu, Jiyuan Liu, Hanqin Tian. Industrial land expansion in rural China threatens environmental securities[J]. Front. Environ. Sci. Eng., 2021, 15(2): 29-.
[14] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[15] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed