Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (12) : 160    https://doi.org/10.1007/s11783-022-1595-7
RESEARCH ARTICLE
Effect of loading rate on shear strength parameters of mechanically and biologically treated waste
Guoyang Fan, Zhenying Zhang(), Jiahe Zhang, Jiayue Zhang, Qiaona Wang, Min Wang, Bang Wang, Chengyu Nie
School of Civil Engineering and Architecture, Zhejiang Sci-tech University, Hangzhou 310018, China
 Download: PDF(6422 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Mechanical behavior of MBT waste affected by loading rate was investigated.

● Shear strength ratio of MBT waste increases with an increase in loading rate.

● Cohesion is inversely related to loading rate.

● Internal friction angles are positively related to loading rate.

● MBT waste from China shows smaller range of φ.

Mechanical biological treatment (MBT) technology has attracted increasing attention because it can reduce the volume of waste produced. To deal with the current trend of increasing waste, MBT practices are being adopted to address waste generated in developing urban societies. In this study, a total of 20 specimens of consolidated undrained triaxial tests were conducted on waste obtained from the Hangzhou Tianziling landfill, China, to evaluate the effect of loading rate on the shear strength parameters of MBT waste. The MBT waste samples exhibited an evident strain-hardening behavior, and no peak was observed even when the axial strain exceeded 25%. Further, the shear strength increased with an increase in the loading rate; the effect of loading rate on shear strength under a low confining pressure was greater than that under a high confining pressure. Furthermore, the shear strength parameters of MBT waste were related to the loading rate. The relationship between the cohesion, internal friction angle, and logarithm of the loading rate could be fitted to a linear relationship, which was established in this study. Finally, the ranges of shear strength parameters cohesion c and effective cohesion c ´ were determined as 1.0–8.2 kPa and 2.1–14.9 kPa, respectively; the ranges of the internal friction angle φ and effective internal friction angle φ ´ were determined as 16.2°–29° and 19.8°–43.9°, respectively. These results could be used as a valuable reference for conducting stability analyses of MBT landfills.

Keywords Mechanically and biologically treated waste      Landfill      Triaxial test      Loading rate      Axial strain      Shear strength parameter     
Corresponding Author(s): Zhenying Zhang   
Issue Date: 04 July 2022
 Cite this article:   
Guoyang Fan,Zhenying Zhang,Jiahe Zhang, et al. Effect of loading rate on shear strength parameters of mechanically and biologically treated waste[J]. Front. Environ. Sci. Eng., 2022, 16(12): 160.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1595-7
https://academic.hep.com.cn/fese/EN/Y2022/V16/I12/160
Sample number Confining pressure (kPa) Initial void ratio Loading rate (%/min) a) Initial unit weight (kN/m3)
A-1 50 2.0 0.25 7.6
A-2 50 2.0 0.5 7.6
A-3 50 2.0 1 7.6
A-4 50 2.0 2 7.6
A-5 50 2.0 4 7.6
B-1 100 2.0 0.25 7.6
B-2 100 2.0 0.5 7.6
B-3 100 2.0 1 7.6
B-4 100 2.0 2 7.6
B-5 100 2.0 4 7.6
C-1 200 2.0 0.25 7.6
C-2 200 2.0 0.5 7.6
C-3 200 2.0 1 7.6
C-4 200 2.0 2 7.6
C-5 200 2.0 4 7.6
D-1 300 2.0 0.25 7.6
D-2 300 2.0 0.5 7.6
D-3 300 2.0 1 7.6
D-4 300 2.0 2 7.6
D-5 300 2.0 4 7.6
Tab.1  Test plan for consolidated undrained test
Fig.1  Relationship between deviator stress and axial strain at 1 %/min loading rate.
Fig.2  Relationship between deviator stress and axial strain under different confining pressures: (a) 50; (b) 100; (c) 200; and (d) 300 kPa.
Fig.3  Relationship between shear strength and logarithmic loading rate at a axial strain of (a) 10 % and (b) 20 %.
Fig.4  Relationship between shear strength ratio and loading rate at an axial strain of (a) 10 % and (b) 20 %.
Fig.5  Relationship between shear strength parameters and loading rate (cohesion and effective cohesion): (a) relationship between cohesion and loading rate; (b) relationship between effective cohesion and loading rate.
Fig.6  Relationship between shear strength parameters and logarithmic loading rate (internal friction angle and effective internal friction angle): (a) relationship between internal friction angle and logarithmic loading rate; (b) relationship between effective internal friction angle and logarithmic loading rate.
Fig.7  Relationship between shear strength parameters and axial strain: (a) relationship between cohesion and axial strain; (b) relationship between effective cohesion and axial strain; (c) relationship between internal friction angle and axial strain; (d) relationship between effective internal friction angle and axial strain.
Fig.8  Relationship between cohesion and internal friction angle for MBT and MSW in different studies. (CU- consolidated undrained Test, CD- consolidated drainage Tests, T- total stress parameters, and E- effective stress parameters).
1 D G Anderson E Jr Kavazanjian ( 1995). Performance of landfills under seismic loading. In: Proceedings of the 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Missouri . Colombia: University of Missouri-Rolla, 277– 306
2 G L S Babu, P Lakshmikanthan, L G Santhosh. (2015). Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore. Waste Management, 39 : 63– 70
https://doi.org/10.1016/j.wasman.2015.02.013
3 A R Bhandari, W Powrie. (2013). Behavior of an MBT waste in monotonic triaxial shear tests. Waste Management, 33( 4): 881– 891
https://doi.org/10.1016/j.wasman.2012.11.009
4 J Bray, D Zekkos, E Jr Kavazanjian, G Athanasopoulos, M Riemer. (2009). Shear strength of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 135( 6): 709– 722
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000063
5 H J Butt, M Kappl. (2009). Normal capillary forces. Advances in Colloid and Interface Science, 146( 1−2): 48– 60
https://doi.org/10.1016/j.cis.2008.10.002
6 J A C Calle ( 2007). Geomechanical behavior of urban solid waste. Dissertation for the Doctoral Degree. Rio de Janeiro: Federal University of Rio de Janeiro
7 J Cañizal P Lapeña J Castro A Costa C Sagaseta ( 2011). Determination of shear strength of MSW. Field tests vs. laboratory tests. In: 4th International Workshop “Hydro-Physico-Mechanics of Landfills,” Santander . Santander: University of Cantabria, 3005– 3008
8 M D T Casagrande, M R Coop, N C Consoli. (2006). Behavior of a fiber reinforced bentonite at large shear displacements. Journal of Geotechnical and Geoenvironmental Engineering, 132( 11): 1505– 1508
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1505
9 Y M Cho, J H Ko, L Chi, T G Townsend. (2011). Food waste impact on municipal solid waste angle of internal friction. Waste Management, 31( 1): 26– 32
https://doi.org/10.1016/j.wasman.2010.07.018
10 N C Consoli, M D T Casagrande, M R Coop. (2007). Performance of a fibre-reinforced sand at large shear strains. Geotechnique, 57( 9): 751– 756
https://doi.org/10.1680/geot.2007.57.9.751
11 A De Lamare Neto ( 2004). Shearing resistance of urban solid waste and granular materials with fibers. Dissertation for the Doctoral Degree. Rio de Janeiro: Federal University of Rio de Janeiro
12 J A Díaz-Rodríguez, J J Martínez-Vasquez, J C Santamarina. (2009). Strain-rate effects in Mexico City soil. Journal of Geotechnical and Geoenvironmental Engineering, 135( 2): 300– 305
https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(300
13 EC. (1999). Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Official Journal of the European Communities, 182 : 1– 19
14 A Falamaki, S Ghareh, M Homaee, S A Hamtaeipour, S Abedpour, S Kiani, N Mousavi, M Rezaei, M M Taghizadeh, M Dehbozorgi, A Nouri. (2020). Laboratory shear strength measurements of municipal solid waste at room and simulated in situ landfill temperature, Barmshoor Landfill, Iran. International Journal of Civil Engineering, 18( 2): 185– 197
https://doi.org/10.1007/s40999-019-00446-x
15 A Falamaki, M Homaee, Z Baneshi, M Salari. (2022). Simulating effect of potassium carbonate on quantity and quality of municipal solid waste leachate. International Journal of Civil Engineering, 20( 2): 185– 194
https://doi.org/10.1007/s40999-021-00643-7
16 S J Feng ( 2005). Static and dynamic strength properties of municipal solid waste and stability analyses of landfill. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University (in Chinese)
17 V I Fernando ( 2011). Shear strength characteristics of mechanically biologically treated (MBT) waste. Dissertation for the Doctoral Degree. Hampshire: University of Southampton
18 S Fucale, J F T Jucá, K Muennich. (2015). The mechanical behavior of MBT–waste. Electron Journal of Geotechnical and Geoenvironmental Engineering, 20( 13): 5927– 5937
19 S P Fucale ( 2005). Influence of the reinforcement components in the resistance of municipal solid waste. Dissertation for the Doctoral Degree. Recife: Federal Univesrity of Pernambuco
20 M A Gabr, S N Valero. (1995). Geotechnical properties of municipal solid waste. Geotechnical Testing Journal, 18( 2): 241– 251
https://doi.org/10.1520/GTJ10324J
21 M Grisolia Q Napoleoni G Tangredi ( 1995). The use of triaxial tests for the mechanical characterization of municipal solid waste. In: Proceedings of the 5th International Landfill Symposium-Sardinia . Cagliari, Italy: CISA, Environmental Sanitary Engineering Centre, 761– 767
22 J M Harris, A L Shafer, W DeGroff, G R Hater, M A Gabr, M Bariaz. (2006). Shear strength of degraded reconstituted municipal solid waste. Geotechnical Testing Journal, 29( 2): 141– 148
https://doi.org/10.1520/GTJ14089
23 H L Jessberger O Syllwasschy R Kockel ( 1995). Investigation of waste body behaviour and waste structure interaction. In: Proceedings of the 5th International Landfill Symposium-Sardinia . Cagliari, Italy: CISA, Environmental Sanitary Engineering Centre, 731– 743
24 M Karimpour-Fard, S L Machado, N Shariatmadari, A Noorzad. (2011). A laboratory study on the MSW mechanical behavior in triaxial apparatus. Waste Management, 31( 8): 1807– 1819
https://doi.org/10.1016/j.wasman.2011.03.011
25 S Kaza L Yao P Bhada-Tata F V Woerden ( 2018). What a waste 2.0: A global snapshot of solid waste management to 2050. Washington, DC: World Bank Publications
26 H Ke, J Hu, X B Xu, W F Wang, Y M Chen, L T Zhan. (2017). Evolution of saturated hydraulic conductivity with compression and degradation for municipal solid waste. Waste Management, 65 : 63– 74
https://doi.org/10.1016/j.wasman.2017.04.015
27 F Kölsch ( 1995). Material values for some mechanical properties of domestic waste. In: Proceedings of the 5th International Landfill Symposium-Sardinia . Cagliari, Italy: CISA, Environmental Sanitary Engineering Centre, 711– 729
28 P A Kralchevsky, K Nagayama. (1994). Capillary forces between colloidal particles. Langmuir, 10( 1): 23– 36
https://doi.org/10.1021/la00013a004
29 P Lakshmikanthan, P Sughosh, G L S Babu. (2018). Studies on characterization of mechanically biologically treated waste from Bangalore city. Indian Geotechnical Journal, 48( 2): 293– 304
https://doi.org/10.1007/s40098-018-0296-4
30 G Lefebvre, D LeBoeuf. (1987). Rate effects and cyclic loading of sensitive clays. Journal of Geotechnical Engineering, 113( 5): 476– 489
https://doi.org/10.1061/(ASCE)0733-9410(1987)113:5(476
31 G X Li ( 2016). Strength of soils. In: Li G X, ed. Advanced Soil Mechanics. 2nd ed. Beijing: Tsinghua University Press, 140– 146 (in Chinese)
32 W Lu, W Huo, H Gulina, C Pan. (2022). Development of machine learning multi-city model for municipal solid waste generation prediction. Frontiers of Environmental Science & Engineering, 16( 9): 119
33 S L Machado, M F Carvalho, O M Vilar. (2002). Constitutive model for municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 128( 11): 940– 951
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940
34 I Petrovic. (2016). Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste. Waste Management & Research, 34( 9): 840– 850
https://doi.org/10.1177/0734242X16649684
35 P Pimolthai, J F Wagner. (2014). Soil mechanical properties of MBT waste from Luxembourg, Germany and Thailand. Songklanakarin Journal of Science and Technology, 36( 6): 701– 709
36 W Powrie, R P Beaven. (1999). Hydraulic properties of household waste and implications for landfills. Geotechnical Engineering, 137( 4): 235– 247
https://doi.org/10.1680/gt.1999.370409
37 H F Pulat, Y Yukselen-Aksoy. (2017). Factors affecting the shear strength behavior of municipal solid wastes. Waste Management, 69 : 215– 224
https://doi.org/10.1016/j.wasman.2017.08.030
38 B J Ramaiah, G V Ramana. (2017). Study of stress-strain and volume change behavior of emplaced municipal solid waste using large-scale triaxial testing. Waste Management, 63 : 366– 379
https://doi.org/10.1016/j.wasman.2017.01.027
39 K R Reddy, H Hettiarachchi, N S Parakalla, J Gangathulasi, J E Bogner. (2009). Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Management, 29( 2): 952– 959
https://doi.org/10.1016/j.wasman.2008.05.011
40 N Shariatmadari, S L Machado, A Noorzad, M Karimpour-Fard. (2009). Municipal solid waste effective stress analysis. Waste Management, 29( 12): 2918– 2930
https://doi.org/10.1016/j.wasman.2009.07.009
41 O W Stoll ( 1971). Mechanical properties of milled refuse. Phoenix, Arizona: ASCE National Water Resources Engineering Meeting, 11– 15
42 W F Van Impe ( 1998). Environmental geotechnics: ITC 5 activities, state of art. In: Proceedings of the 3rd International Congress on Environmental Geotechnics . Lisbon, Portugal: Balkema, 1163– 1187
43 O M Vilar M F Carvalho ( 2005). Shear strength and consolidation properties of municipal solid waste. In: International Workshop on Hydro-Physico-Mechanics of Landfills. Grenoble, France: Grenoble 1 University, 21– 22
44 Q Xue J S Li Y Zhao Z L Chen X T Feng S P Ma Z G Deng Y Liu H J Lu X L Liu X Y Chen W G Xie ( 2013). Technical Specification for Soil Test of Landfilled Municipal Solid Waste CJJ/T204-2013. Beijing: China Architecture and Building Press (in Chinese)
45 D Zekkos, G A Athanasopoulos, J D Bray, A Grizi, A Theodoratos. (2010). Large-scale direct shear testing of municipal solid waste. Waste Management, 30( 8-9): 1544– 1555
https://doi.org/10.1016/j.wasman.2010.01.024
46 D Zekkos J D Bray G A Athanasopoulos M F Riemer E Kavazanjian X Founta A Grizi ( 2007). Compositional and loading rate effects on the shear strength of municipal solid waste. In: Proceedings of the 4th International conference on earthquake geotechnical engineering . Thessaloniki, Greece: Springer, 25– 28
47 Z Y Zhang, Y X Wang, Y H Fang, X F Pan, J H Zhang, H Xu. (2020). Global study on slope instability modes based on 62 municipal solid waste landfills. Waste Management & Research, 38( 12): 1389– 1404
48 Y R Zhao, Q Xie, G L Wang, Y J Zhang, Y X Zhang, W Su. (2014). A study of shear strength properties of municipal solid waste in Chongqing landfill, China. Environmental Science and Pollution Research International, 21( 22): 12605– 12615
https://doi.org/10.1007/s11356-014-3183-2
[1] FSE-22040-OF-FGY_suppl_1 Download
[1] Yanfeng Yang, Ruina Zhang, Ziyang Lou. Bioaerosol emissions variations in large-scale landfill region and their health risk impacts[J]. Front. Environ. Sci. Eng., 2022, 16(12): 158-.
[2] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[3] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[4] Zhiqiang Chen, Lizhi Zhao, Ye Ji, Qinxue Wen, Long Huang. Reconsideration on the effect of nitrogen on mixed culture polyhydroxyalkanoate production toward high organic loading enrichment history[J]. Front. Environ. Sci. Eng., 2019, 13(4): 54-.
[5] Liguo Zhang, Qiaoying Ban, Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4-.
[6] Munawar Ali, Junli Zhang, Roberto Raga, Maria Cristina Lavagnolo, Alberto Pivato, Xu Wang, Yuanyuan Zhang, Raffaello Cossu, Dongbei Yue. Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling[J]. Front. Environ. Sci. Eng., 2018, 12(3): 5-.
[7] Rasool Bux MAHAR, Abdul Razaque SAHITO, Dongbei YUE, Kamranullah KHAN. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator[J]. Front. Environ. Sci. Eng., 2016, 10(1): 159-167.
[8] Wenjing LU,Zhonge FU,Yan ZHAO. Combined reticular blind drainage and vertical hierarchical drainage system for landfills located in areas with high rainfall and high groundwater level[J]. Front. Environ. Sci. Eng., 2016, 10(1): 177-184.
[9] Ziyang LOU, Xiaoli CHAI, Youcai ZHAO, Yu SONG, Nanwen ZHU, Jinping JIA. Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill[J]. Front. Environ. Sci. Eng., 2014, 8(3): 405-410.
[10] Xiaoli CHAI, Yongxia HAO, Xin ZHAO, Guixiang LIU, Ying ZHU, Rong JI, Jun WU, Huanhuan TONG, Youcai ZHAO. Abiotic association of phthalic acid esters with humic acid of a sludge landfill[J]. Front Envir Sci Eng, 2012, 6(6): 778-783.
[11] Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation[J]. Front Envir Sci Eng, 2012, 6(6): 892-900.
[12] Guangxia QI, Dongbei YUE, Yongfeng NIE. Characterization of humic substances in bio-treated municipal solid waste landfill leachate[J]. Front Envir Sci Eng, 2012, 6(5): 711-716.
[13] Sheng CHANG, Jianzheng LI, Feng LIU. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor[J]. Front Envir Sci Eng Chin, 2011, 5(1): 140-148.
[14] Pinjing HE, Min LI, Suyun XU, Liming SHAO, . Anaerobic treatment of fresh leachate from a municipal solid waste incinerator by upflow blanket filter reactor[J]. Front.Environ.Sci.Eng., 2009, 3(4): 404-411.
[15] Jiajun CHEN , Hao WANG , Na ZHANG , . Modified landfill gas generation rate model of first-order kinetics and two-stage reaction[J]. Front.Environ.Sci.Eng., 2009, 3(3): 313-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed