Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (5) : 711-716    https://doi.org/10.1007/s11783-012-0421-z
RESEARCH ARTICLE
Characterization of humic substances in bio-treated municipal solid waste landfill leachate
Guangxia QI, Dongbei YUE(), Yongfeng NIE
Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education), Tsinghua University, Beijing 100084, China
 Download: PDF(147 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Considerable organic matter remains in municipal solid waste landfill leachate after biological treatments. Humic substances (HSs) dominate the organic matter in bio-treated landfill leachate. In this study, the HSs from landfill leachate treated by membrane bioreactor (MBR-HSs) were analyzed via elemental analysis, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and charge polarized magic-angle spinning-13C-nuclear magnetic resonance. The characteristic absorption in the UV wavelength range indicated the presence of high C=C and C=O double bonds within the MBR-HSs. Compared with commercial HSs, MBR-HSs had lower carbon content [48.14% for fulvic acids (FA) and 49.52% for humic acids (HA)], higher nitrogen content (4.31% for FA and 6.16% for HA), lower aromatic structure content, and higher carbohydrate and carboxylic atoms of carbon content. FA predominantly had an aliphatic structure, and HA had less condensed or substituted aromatic ring structures than natural HA. The aromatic carbon content of MBR-HSs was lower than that of humus-derived HSs but higher than that of waste-derived HSs, indicating that MBR-HSs appeared to be more similar to humus-derived HSs than waste-derived HA.

Keywords bio-treated landfill leachate      humic substances      elemental analysis      spectroscopic characteristics     
Corresponding Author(s): YUE Dongbei,Email:yuedb@tsinghua.edu.cn   
Issue Date: 01 October 2012
 Cite this article:   
Guangxia QI,Dongbei YUE,Yongfeng NIE. Characterization of humic substances in bio-treated municipal solid waste landfill leachate[J]. Front Envir Sci Eng, 2012, 6(5): 711-716.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0421-z
https://academic.hep.com.cn/fese/EN/Y2012/V6/I5/711
HSssourceCHNSON/CO/CH/C
FAMBR-HSs48.147.054.312.3538.150.080.591.76
Ohio River2455.035.241.422.0036.080.020.491.14
River Vouga2553.404.501.50-37.300.020.521.01
Suwannee River (IHSS)2552.404.300.70-32.900.010.470.98
Biscayne groundwater2655.444.171.771.0635.590.030.480.90
Sanhedron soil2448.714.362.770.8143.940.050.681.07
HAMBR-HSs49.523.886.163.5536.890.110.560.94
Ohio River2454.994.842.241.5133.700.030.461.06
River Vouga2555.403.902.40-42.200.040.570.84
Suwannee River (IHSS)2552.504.401.20-42.500.020.611.01
Biscayne groundwater2658.283.395.841.4330.360.090.390.70
Sanhedron soil2458.033.643.260.4733.690.050.440.75
IHSS leonardite standard2463.253.641.170.8431.050.020.370.69
Aldrich commercial (sodium salt)2468.985.260.744.2443.450.010.470.92
Tab.1  Elemental composition of HSs extracted from the samples and of natural HSs compiled from the literature (elemental contents expressed on a percentage by weight ash-free and moisture-free basis)
Fig.1  UV-visible spectra of MBR-HSs (200 mg·L in 0.05 NaHCO solution at pH 8.0)
Fig.2  FTIR spectra of MBR-HSs
Fig.3  Solid-state CP-MAS C NMR spectra of MBR-HSs
HSssourceatoms of C/%
aliphaticcarbohydratearomaticcarboxylic
HAsewage sludge3029.240.817.912.2
compost3020.041.126.012.9
peat3029.120.541.49.0
leonardite3015.916.455.812.2
commercial3030.120.440.87.8
MBR-HSs22.824.237.315.7
FAMBR-HSs31.720.725.821.8
Tab.2  Percentage distribution of carbon in MBR-HSs and in HA from sewage sludge, compost, peat, leonardite, and market based on solid-state CP-MAS C NMR spectral analysis
1 Trebouet D, Schlumpf J P, Jaouen P, Quemeneur F. Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research , 2001, 35(12): 2935–2942
doi: 10.1016/S0043-1354(01)00005-7 pmid:11471693
2 Rivas F J, Beltrán F, Carvalho F, Acedo B, Gimeno O. Stabilized leachates: sequential coagulation-flocculation+ chemical oxidation process. Journal of Hazardous Materials , 2004, 116(1–2): 95–102
doi: 10.1016/j.jhazmat.2004.07.022 pmid:15561367
3 Ntampou X, Zouboulis A I, Samaras P. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates. Chemosphere , 2006, 62(5): 722–730
doi: 10.1016/j.chemosphere.2005.04.067 pmid:15967479
4 Satyawali Y, van de Wiele T, Saveyn H, van der Meeren P, Verstraete W. Electrolytic reduction improves treatability of humic acids containing water streams. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2007, 82(8): 730–737
doi: 10.1002/jctb.1715
5 Liu Y, Li X, Wang B, Liu S. Performance of landfill leachate treatment system with disc-tube reverse osmosis units. Frontiers of Environmental Science & Engineering in China , 2008, 2(1): 24–31
doi: 10.1007/s11783-008-0024-x
6 Labanowski J, Pallier V, Feuillade-Cathalifaud G. Study of organic matter during coagulation and electrocoagulation processes: application to a stabilized landfill leachate. Journal of Hazardous Materials , 2010, 179(1–3): 166–172
doi: 10.1016/j.jhazmat.2010.02.074 pmid:20303652
7 Alvarez-Vazquez H, Jefferson B, Judd S J. Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. Journal of Chemical Technology and Biotechnology , 2004, 79(10): 1043–1049
doi: 10.1002/jctb.1072
8 Robinson T. Membrane bioreactors: Nanotechnology improves landfill leachate quality. Filtration & separation , 2007, 44(9): 38–39
doi: 10.1016/S0015-1882(07)70288-4
9 Zouboulis A I, Chai X L, Katsoyiannis I A. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management , 2004, 70(1): 35–41
doi: 10.1016/j.jenvman.2003.10.003 pmid:15125543
10 Xu Y D, Yue D B, Zhu Y, Nie Y F. Fractionation of dissolved organic matter in mature landfill leachate and its recycling by ultrafiltration and evaporation combined processes. Chemosphere , 2006, 64(6): 903–911
doi: 10.1016/j.chemosphere.2006.01.039 pmid:16510169
11 Zhang L, Li A, Lu Y, Yan L, Zhong S, Deng C. Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration. Waste Management (New York, N.Y.) , 2009, 29(3): 1035–1040
doi: 10.1016/j.wasman.2008.08.020 pmid:18947991
12 Kang K H, Shin H S, Park H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research , 2002, 36(16): 4023–4032
doi: 10.1016/S0043-1354(02)00114-8 pmid:12405411
13 Stevenson F J. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley & Sons, 1982
14 Grinhut T, Hertkorn N, Schmitt-Kopplin P, Hadar Y, Chen Y. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry. Environmental Science & Technology , 2011, 45(7): 2748–2754
doi: 10.1021/es1036139 pmid:21405116
15 Hubbe M A, Nazhad M, Sánchez C. Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: a review. BioResources , 2010, 5(4): 2808–2854
16 Giannouli A, Kalaitzidis S, Siavalas G, Chatziapostolou A, Christanis K, Papazisimou S, Papanicolaou C, Foscolos A. Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. International Journal of Coal Geology , 2009, 77(3–4): 383–393
doi: 10.1016/j.coal.2008.07.008
17 Christensen J B, Jensen D L, Gr?n C, Filip Z, Christensen T H. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater. Water Research , 1998, 32(1): 125–135
doi: 10.1016/S0043-1354(97)00202-9
18 Nanny M A, Ratasuk N. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Research , 2002, 36(6): 1572–1584
doi: 10.1016/S0043-1354(01)00359-1 pmid:11996346
19 Han Y S, Lee J Y, Miller C J, Franklin L. Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners. Waste management & research , 2009, 27(3): 233–241
doi: 10.1177/0734242X08095230 pmid:19423593
20 Hertkorn N, Claus H, Schmitt-Kopplin Ph, Perdue E M, Filip Z. Utilization and transformation of aquatic humic substances by autochthonous microorganisms. Environmental Science & Technology , 2002, 36(20): 4334–4345
doi: 10.1021/es010336o pmid:12387406
21 Reemtsma T, These A, Springer A, Linscheid M. Fulvic acids as transition state of organic matter: indications from high resolution mass spectrometry. Environmental Science & Technology , 2006, 40(19): 5839–5845
doi: 10.1021/es060318c pmid:17051768
22 Li R, Yue D, Liu J, Nie Y. Size fractionation of organic matter and heavy metals in raw and treated leachate. Waste Management (New York, N.Y.) , 2009, 29(9): 2527–2533
doi: 10.1016/j.wasman.2009.05.001 pmid:19482464
23 Huffman E W D, Stuber H A. Analytical methodology for elemental analysis of humic substances. In: Aiken G R, McKnight D M, Warshaw R L, eds. Humic Substances in Soil, Sediment, and Water . New York: Wiley, 1985, 433–455
24 Malcolm R L, Maccarthy P. Limitations in the use of commercial humic acids in water and soil research. Environmental Science & Technology , 1986, 20(9): 904–911
doi: 10.1021/es00151a009 pmid:22263823
25 Duarte R M B O, Santos E B H, Pio C A, Duarte A C. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmospheric Environment , 2007, 41(37): 8100–8113
doi: 10.1016/j.atmosenv.2007.06.034
26 Thurman E M, Malcolm R L. Preparative isolation of aquatic humic substances. Environmental Science & Technology , 1981, 15(4): 463–466
doi: 10.1021/es00086a012 pmid:22248415
27 Almendros G, Guadalix M E, González-Vila F J, Martin F. Preservation of aliphatic macromolecules in soil humins. Organic Geochemistry , 1996, 24(6–7): 651–659
doi: 10.1016/0146-6380(96)00056-3
28 Abbt-Braun G, Lankes U, Frimmel F H. Structural characterization of aquatic humic substances- the need for a multiple method approach. Aquatic Sciences , 2004, 66(2): 151–170
doi: 10.1007/s00027-004-0711-z
29 Langhals H, Abbt-Braun G, Frimmel F H. Association of humic substances: verification of lambert-beer law. Acta Hydrochimica et Hydrobiologica , 2000, 28(6): 329–332
doi: 10.1002/1521-401X(200012)28:6<329::AID-AHEH329>3.0.CO;2-E
30 Ayuso M, Moreno J L, Hernández T, García C. Characterisation and evaluation of humic acids extracted from urban waste as liquid fertilisers. Journal of the Science of Food and Agriculture , 1997, 75(4): 481–488
doi: 10.1002/(SICI)1097-0010(199712)75:4<481::AID-JSFA901>3.0.CO;2-K
31 Carvalho S I M, Otero M, Duarte A C, Santos E B H. Spectroscopic changes on fulvic acids from a kraft pulp mill effluent caused by sun irradiation. Chemosphere , 2008, 73(11): 1845–1852
doi: 10.1016/j.chemosphere.2008.08.012 pmid:18804839
[1] Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 5-.
[2] Yafang Shi, Yunchao Dai, Ziwen Liu, Xiaofeng Nie, Song Zhao, Chi Zhang, Hanzhong Jia. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Front. Environ. Sci. Eng., 2020, 14(6): 106-.
[3] Yuning YANG,Huan LI. Recovering humic substances from the dewatering effluent of thermally treated sludge and its performance as an organic fertilizer[J]. Front. Environ. Sci. Eng., 2016, 10(3): 578-584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed