Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (12) : 158    https://doi.org/10.1007/s11783-022-1593-9
RESEARCH ARTICLE
Bioaerosol emissions variations in large-scale landfill region and their health risk impacts
Yanfeng Yang1, Ruina Zhang2(), Ziyang Lou3,4
1. College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2. Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200323, China
3. Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(3801 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The airborne bacteria in landfills were 4–50 times higher than fungi.

● Bioaerosols released from the working area would pose risk to on-site workers.

● The safe distance for the working area should be set as 80 m.

Landfills are widely complained about due to the long-term odor and landfill gas emissions for local residents, while the bioaerosols are always neglected as another threat to on-site workers. In this study, bioaerosols samples were collected from the typical operation scenes in the large-scale modern landfill, and the emission levels of airborne bacteria, pathogenic species, and fungi were quantified and co-related. The corresponding exposure risks were assessed based on the average daily dose via inhalation and skin contact. It was found that the levels of culturable bacteria and fungi in all landfill samples were around 33–22778 CFU/m3 and 8–450 CFU/m3, and the active-working landfill area and the covered area were the maximum and minimum emission sources, respectively, meaning that the bioaerosols were mainly released from the areas related with the fresh waste operation. Acinetobacter sp., Massilia sp., Methylobacterium-Methylorubrum sp. and Noviherbaspirillum sp. were the main bacterial populations, with a percentage of 42.56%, 89.82%, 70.24% and 30.20% respectively in total bioaerosols measured. With regards to the health risk, the health risks via inhalation were the main potential risks, with four orders of magnitude higher than that of skin contact. Active-working area showed the critical point for non-carcinogenic risks, with a hazard quotient of 1.68, where 80 m protection distance is recommended for on-site worker protection, plus more careful protection measures.

Keywords Microbial aerosols      Landfill sites      Health risk assessment      CALPUFF     
Corresponding Author(s): Ruina Zhang   
Issue Date: 04 July 2022
 Cite this article:   
Yanfeng Yang,Ruina Zhang,Ziyang Lou. Bioaerosol emissions variations in large-scale landfill region and their health risk impacts[J]. Front. Environ. Sci. Eng., 2022, 16(12): 158.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1593-9
https://academic.hep.com.cn/fese/EN/Y2022/V16/I12/158
Fig.1  Bioaerosols emission level at five sampling sites. (AWA-active working area, ULW-unloading wharf, TPR-transportation road, COA-coverage area, LPA-leachate pool area).
Fig.2  Bacterial populations at five sampling sites. (a-active working area, b-unloading wharf, c-transportation road, d-coverage area, e-leachate pool area).
Fig.3  HQ of airborne bacterial by inhalation or skin contact. (AWA-active working area, ULW-unloading wharf, TPR-transportation road, COA-coverage area, LPA-leachate pool area).
Fig.4  Health risk distribution of bioaerosols in high-risk area (a), medium-risk area (b) and low-risk area (c).
MSW Municipal solid waste
ULW Unloading wharf
TPR Transportation road
AWA Active working area
COA Coverage area
LPA Leachate pool area
TSP Total suspended particles samplers
LB Luria-Bertani
WRF Weather research and forecasting
PD Pathogen dose
HQ Hazard quotient
  
1 A Abo-Zed , M Yassin , T Phan . (2020). Acinetobacter junii as a rare pathogen of urinary tract infection. Urology Case Reports, 32 : 101209
https://doi.org/10.1016/j.eucr.2020.101209
2 Y Akeda . (2021). Current situation of carbapenem-resistant Enterobacteriaceae and Acinetobacter in Japan and Southeast Asia. Microbiology and Immunology, 65( 6): 229– 237
https://doi.org/10.1111/1348-0421.12887
3 Y Bezyk , D Oshurok , M Dorodnikov , I Sówka . (2021). Evaluation of the CALPUFF model performance for the estimation of the urban ecosystem CO2 flux. Atmospheric Pollution Research, 12( 3): 260– 277
https://doi.org/10.1016/j.apr.2020.12.013
4 B Breza-Boruta . (2016). The assessment of airborne bacterial and fungal contamination emitted by a municipal landfill site in Northern Poland. Atmospheric Pollution Research, 7( 6): 1043– 1052
https://doi.org/10.1016/j.apr.2016.06.011
5 L Capelli , S Sironi . (2018). Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmospheric Environment, 191 : 273– 290
https://doi.org/10.1016/j.atmosenv.2018.08.007
6 H Chen , K E Carter . (2017). Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD. Environmental Pollution, 224 : 300– 309
https://doi.org/10.1016/j.envpol.2017.02.008
7 H Chen , K Fu , B Pang , J Wang , H Li , Z Jiang , Y Feng , W Tian , R Cao . (2020). Determination of uterine bacterial community in postpartum dairy cows with metritis based on 16S rDNA sequencing. Veterinary and Animal Science, 10 : 100102
https://doi.org/10.1016/j.vas.2020.100102
8 E de Boer . (1998). Update on media for isolation of Enterobacteriaceae from foods. International Journal of Food Microbiology, 45( 1): 43– 53
https://doi.org/10.1016/S0168-1605(98)00146-9
9 Z Duan C Scheutz P Kjeldsen ( 2021). Trace gas emissions from municipal solid waste landfills: A review. Waste Management (New York, N.Y.), 119: 39− 62
pmid: 33039980
10 R S Dungan . (2014). Estimation of infectious risks in residential populations exposed to airborne pathogens during center pivot irrigation of dairy wastewaters. Environmental Science & Technology, 48( 9): 5033– 5042
https://doi.org/10.1021/es405693v
11 X Y Fan , J F Gao , K L Pan , D C Li , H H Dai , X Li . (2019). More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM25. . Environmental Pollution, 251 : 668– 680
https://doi.org/10.1016/j.envpol.2019.05.004
12 K Frączek , J Kozdroj , R L Gorny , M Cyprowski , M Golofit-Szymczak . (2017). Fungal air contamination in distinct sites within a municipal landfill area. International Journal of Environmental Science and Technology, 14( 12): 2637– 2648
https://doi.org/10.1007/s13762-017-1344-9
13 I Gandolfi , V Bertolini , G Bestetti , R Ambrosini , E Innocente , G Rampazzo , M Papacchini , A Franzetti . (2015). Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Applied Microbiology and Biotechnology, 99( 11): 4867– 4877
https://doi.org/10.1007/s00253-014-6348-5
14 Y Han , L Li , Y Wang , J Ma , P Li , C Han , J Liu . (2021). Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Frontiers of Environmental Science & Engineering, 15( 3): 38
15 Y Han , K Yang , T Yang , M Zhang , L Li . (2019). Bioaerosols emission and exposure risk of a wastewater treatment plant with A2O treatment process. Ecotoxicology and Environmental Safety, 169 : 161– 168
https://doi.org/10.1016/j.ecoenv.2018.11.018
16 H Heida , F Bartman , S C van der Zee . (1995). Occupational exposure and indoor air quality monitoring in a composting facility. American Industrial Hygiene Association Journal, 56( 1): 39– 43
https://doi.org/10.1080/15428119591017295
17 H Heinonen-Tanski , T Reponen , J Koivunen . (2009). Airborne enteric coliphages and bacteria in sewage treatment plants. Water Research, 43( 9): 2558– 2566
https://doi.org/10.1016/j.watres.2009.03.006
18 M A Jahne , S W Rogers , T M Holsen , S J Grimberg , I P Ramler . (2015). Emission and dispersion of bioaerosols from dairy manure application sites: Human health risk assessment. Environmental Science & Technology, 49( 16): 9842– 9849
https://doi.org/10.1021/acs.est.5b01981
19 K H Kim , E Kabir , S A Jahan . (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences-China, 67 : 23– 35
https://doi.org/10.1016/j.jes.2017.08.027
20 M Kowalski , J Wolany , J S Pastuszka , G Płaza , A Wlazło , K Ulfig , A Malina . (2017). Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 14( 10): 2181– 2192
https://doi.org/10.1007/s13762-017-1314-2
21 L Li M Gao J Liu ( 2011). Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process. Process Biochemistry (Barking, London, England), 46( 4): 910− 915
22 L Li , J Ma , K Yang , F Chai , J Liu , X Guo . (2021). Microbial aerosol particles in four seasons of sanitary landfill site: Molecular approaches, traceability and risk assessment. Journal of Environmental Sciences-China, 108 : 120– 133
https://doi.org/10.1016/j.jes.2021.01.013
23 Y Li , H Zhang , X Qiu , Y Zhang , H Wang . (2013). Dispersion and risk assessment of bacterial aerosols emitted from rotating-brush aerator during summer in a wastewater treatment plant of Xi’an, China. Aerosol and Air Quality Research, 13( 6): 1807– 1814
https://doi.org/10.4209/aaqr.2012.09.0245
24 J H Lim , S H Nam , J Kim , N H Kim , G S Park , J S Maeng , S J Yook . (2021). High-volume sampler for size-selective sampling of bioaerosols including viruses. Atmospheric Environment, 265 : 118720
https://doi.org/10.1016/j.atmosenv.2021.118720
25 H Liu , Z Zhang , N Wen , C Wang . (2018). Determination and risk assessment of airborne endotoxin concentrations in a university campus. Journal of Aerosol Science, 115 : 146– 157
https://doi.org/10.1016/j.jaerosci.2017.09.002
26 J Liu , C Lu , L Huang , J Sun , P Yue , X Liu , X Kang . (2021a). Performance and economic analyses of a combined bioreactor for treating odors, volatile organic compounds, and aerosols from a landfill site. Journal of Cleaner Production, 278 : 124161
https://doi.org/10.1016/j.jclepro.2020.124161
27 J Liu J Sun C Lu P Yue X Kang X Liu ( 2021b). Bioaerosol emissions of pilot-scale low-pH and neutral-pH biofilters treating odors from landfill leachate: Characteristics and impact factors. Waste Management (New York, N.Y.), 128: 64− 72
pmid: 33965674
28 Y Liu , Y Liu , H Li , X Fu , H Guo , R Meng , W Lu , M Zhao , H Wang . (2016). Health risk impacts analysis of fugitive aromatic compounds emissions from the working face of a municipal solid waste landfill in China. Environment International, 97 : 15– 27
https://doi.org/10.1016/j.envint.2016.10.010
29 Y Liu , Y Zhang , Y Shi , F Shen , Y Yang , M Wang , G Zhang , T Deng , S Lai . (2021c). Characterization of fungal aerosol in a landfill and an incineration plants in Guangzhou, Southern China: The link to potential impacts. Science of the Total Environment, 764 : 142908
https://doi.org/10.1016/j.scitotenv.2020.142908
30 D L MacIntosh , J H Stewart , T A Myatt , J E Sabato , G C Flowers , K W Brown , D J Hlinka , D A Sullivan . (2010). Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmospheric Environment, 44( 2): 262– 270
https://doi.org/10.1016/j.atmosenv.2009.09.023
31 S Madhwal , V Prabhu , S Sundriyal , V Shridhar . (2020). Distribution, characterization and health risk assessment of size fractionated bioaerosols at an open landfill site in Dehradun, India. Atmospheric Pollution Research, 11( 1): 156– 169
https://doi.org/10.1016/j.apr.2019.10.002
32 M Olsen , K Andersson , K Åkerstrand . (1997). Quality control of two rose bengal and modified DRBC and DG18 media. International Journal of Food Microbiology, 35( 2): 163– 168
https://doi.org/10.1016/S0168-1605(96)01215-9
33 T Reponen ( 2011). Encyclopedia of environmental health. In: Nriagu J O, ed. Methodologies for Assessing Bioaerosol Exposures. Burlington: Elsevier, 722− 730
34 S Rocchi G Reboux ( 2022). Indoor fungi threshold levels. In: Pacheco-Torgal F, Ivanov V, Falkinham J O, eds. Viruses, Bacteria and Fungi in the Built Environment. Cambridge: Woodhead Publishing, 231− 250
35 O Schlosser , S Robert , C Debeaupuis . (2016). Aspergillus fumigatus and mesophilic moulds in air in the surrounding environment downwind of non-hazardous waste landfill sites. International Journal of Hygiene and Environmental Health, 219( 3): 239– 251
https://doi.org/10.1016/j.ijheh.2016.02.003
36 D Tartakovsky , D M Broday , E Stern . (2013). Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environmental Pollution, 179 : 138– 145
https://doi.org/10.1016/j.envpol.2013.04.023
37 J Thorn , L Beijer , R Rylander . (2002). Work related symptoms among sewage workers: A nationwide survey in Sweden. Occupational and Environmental Medicine, 59( 8): 562– 566
https://doi.org/10.1136/oem.59.8.562
38 J H Tian , C Yan , Z A Nasir , S G Alcega , S Tyrrel , F Coulon . (2020). Real time detection and characterisation of bioaerosol emissions from wastewater treatment plants. Science of the Total Environment, 721 : 137629
https://doi.org/10.1016/j.scitotenv.2020.137629
39 R Tignat-Perrier , A Dommergue , A Thollot , O Magand , P Amato , M Joly , K Sellegri , T M Vogel , C Larose . (2020). Seasonal shift in airborne microbial communities. Science of the Total Environment, 716 : 137129
https://doi.org/10.1016/j.scitotenv.2020.137129
40 Y Tong , B Lighthart . (1998). Effect of simulated solar radiation on mixed outdoor atmospheric bacterial populations. FEMS Microbiology Ecology, 26( 4): 311– 316
https://doi.org/10.1111/j.1574-6941.1998.tb00515.x
41 K Uhrbrand , A C Schultz , A J Koivisto , U Nielsen , A M Madsen . (2017). Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant. Water Research, 112 : 110– 119
https://doi.org/10.1016/j.watres.2017.01.046
42 M Wei , C Xu , X Xu , C Zhu , J Li , G Lv . (2019). Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM10. ) and fine (PM2.5) particles. Ecotoxicology and Environmental Safety , 171 : 37– 46
43 D Wu L Wang Y Su J Dolfing B Xie ( 2021). Associations between human bacterial pathogens and ARGs are magnified in leachates as landfill ages. Chemosphere, 264(Pt 1): 128446
pmid: 33038756
44 S Wushke , D B Levin , N Cicek , R Sparling . (2013). Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources. Canadian Journal of Microbiology, 59( 10): 679– 683
https://doi.org/10.1139/cjm-2013-0430
45 W Xie , P Li , W Bai , J Hou , T Ma , X Zeng , L Zhang , T An . (2021). The source and transport of bioaerosols in the air: A review. Frontiers of Environmental Science & Engineering, 15( 3): 44
https://doi.org/10.1007/s11783-020-1336-8
46 C Xu M Wei J Chen C Zhu J Li X Xu W Wang Q Zhang A Ding H Kan Z Zhao A Mellouki ( 2019). Profile of inhalable bacteria in PM2.5 at Mt . Tai, China: Abundance, community, and influence of air mass trajectories. Ecotoxicology and Environmental Safety, 168: 110− 119
pmid: 30384158
47 C Yan , R N Wang , X Y Zhao . (2021). Emission characteristics of bioaerosol and quantitative microbiological risk assessment for equipping individuals with various personal protective equipment in a WWTP. Chemosphere, 265 : 129117
https://doi.org/10.1016/j.chemosphere.2020.129117
48 K Yang , L Li , Y Wang , S Xue , Y Han , J Liu . (2019). Airborne bacteria in a wastewater treatment plant: Emission characterization, source analysis and health risk assessment. Water Research, 149 : 596– 606
https://doi.org/10.1016/j.watres.2018.11.027
49 K Yoo , T K Lee , E J Choi , J Yang , S K Shukla , S I Hwang , J Park . (2017). Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. Journal of Environmental Sciences-China, 51 : 234– 247
https://doi.org/10.1016/j.jes.2016.07.002
50 Y Zhang X Ning Y Li J Wang H Cui J Meng C Teng G Wang X Shang( 2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management (New York, N.Y.), 126: 771− 780
pmid: 33892363
51 Y Zhang , D Wu , Q Kong , A Li , Y Li , S Geng , X Dong , Y Liu , P Chen . (2020). Exposure level and distribution of airborne bacteria and fungi in an urban utility tunnel: A case study. Tunnelling and Underground Space Technology, 96 : 103215
https://doi.org/10.1016/j.tust.2019.103215
[1] FSE-22036-OF-YYF_suppl_1 Download
[1] Junmei Guo, Yuexing Wei, Junxing Yang, Tongbin Chen, Guodi Zheng, Tianwei Qian, Xiaona Liu, Xiaofei Meng, Mengke He. Cultivars and oil extraction techniques affect Cd/Pb contents and health risks in oil of rapeseed grown on Cd/Pb-contaminated farmland[J]. Front. Environ. Sci. Eng., 2023, 17(7): 87-.
[2] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[3] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[4] Xinshu Jiang, Yingxi Qu, Liquan Liu, Yuan He, Wenchao Li, Jun Huang, Hongwei Yang, Gang Yu. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment[J]. Front. Environ. Sci. Eng., 2019, 13(2): 27-.
[5] Bingbing XU, Qiujin XU, Cunzhen LIANG, Li LI, Lijia JIANG. Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China[J]. Front. Environ. Sci. Eng., 2015, 9(3): 482-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed