Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2010, Vol. 4 Issue (4) : 363-370     DOI: 10.1007/s11684-010-0210-7
Research articles |
Molecular mechanisms of leukemia-associated protein degradation
Ying-Li WU1,Guo-Qiang CHEN1,Hu-Chen ZHOU2,
1.Department of Pathophysiology and Chemical Biology Division of Shanghai Universities E-Institutes, Key laboratory of Cell Differentiation and Apoptosis of the Ministry of Education of China, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; 2.The School of Pharmacy and E-Institute of Chemical Biology, Shanghai JiaoTong University, Shanghai 200240, China;
Download: PDF(136 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  Chemical biology, using small molecules as probes to study the cellular signaling network, has developed rapidly in recent years. The interaction between chemistry and biology not only provides new insight into the understanding of cellular activities, but also generates new lead compounds for the treatment of diseases. Transcription factors and kinases such as retinoic acid receptor-alpha (RARα), acute myeloid leukemia 1 (AML1), CAAT/enhancer-binding protein α (C/EBPα), c-myc, and c-abl play important roles in the differentiation of hematopoietic stem/progenitor cells. Abnormalities in these proteins may cause the dysregulation of hematopoiesis and even the occurrence of leukemia. Ubiquitin-mediated protein degradation represents a critical mechanism in regulating the cellular levels and functions of these proteins. Thus, targeting protein degradation has been emerging as an important strategy to conquer malignant diseases. In this review, we will summarize the recent advances in the understanding of the roles of protein degradation in leukemia, with an emphasis on the mechanisms revealed by small molecules.
Keywords protein degradation      leukemia      chemical biology      transcription factors      oncoprotein      
Issue Date: 05 December 2010
URL:     OR
Martens J H, Stunnenberg H G. The molecular signature of oncofusion proteins in acute myeloid leukemia.FEBS Lett, 2010, 584(12): 2662―2669
PMID: 20388510
Melnick A, Licht J D. Deconstructinga disease: RARalpha, its fusion partners, and their roles in the pathogenesisof acute promyelocytic leukemia.Blood, 1999, 93(10): 3167―3215
PMID: 10233871
Naka K, Hoshii T, Hirao A. Novel therapeutic approach to eradicatetyrosine kinase inhibitor resistant chronic myeloid leukemia stemcells.Cancer Sci, 2010, 101(7): 1577―1581
PMID: 20491777
Jamieson C H, Ailles L E, Dylla S J, Muijtjens M, Jones C, Zehnder J L, Gotlib J, Li K, Manz M G, Keating A, Sawyers C L, Weissman I L. Granulocyte-macrophage progenitorsas candidate leukemic stem cells in blast-crisis CML.N Engl J Med, 2004, 351(7): 657―667
PMID: 15306667
Scandura J M, Boccuni P, Cammenga J, Nimer S D. Transcription factor fusions in acute leukemia: variationson a theme.Oncogene, 2002, 21(21): 3422―3444
PMID: 12032780
Insinga A, Pelicci P G, Inucci S. Leukemia-associated fusionproteins. Multiple mechanisms of action to drive cell transformation.Cell Cycle, 2005, 4(1): 67―69
PMID: 15611639
Chen G Q, Shi X G, Tang W, Xiong S M, Zhu J, Cai X, Han Z G, Ni J H, Shi G Y, Jia P M, Liu M M, He K L, Niu C, Ma J, Zhang P, Zhang T D, Paul P, Naoe T, Kitamura K, Miller W, Waxman S, Wang Z Y, de The H, Chen S J, Chen Z. Use of arsenic trioxide (As2O3)in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exertsdose-dependent dual effects on APL cells.Blood, 1997, 89(9): 3345―3353
PMID: 9129041
Chen G Q, Zhu J, Shi X G, Ni J H, Zhong H J, Si G Y, Jin X L, Tang W, Li X S, Xong S M, Shen Z X, Sun G L, Ma J, Zhang P, Zhang T D, Gazin C, Naoe T, Chen S J, Wang Z Y, Chen Z. In vitro studies on cellular and molecularmechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocyticleukemia: As2O3 induces NB4 cell apoptosis with downregulation ofBcl-2 expression and modulation of PML-RAR alpha/PML proteins.Blood, 1996, 88(3): 1052―1061
PMID: 8704214
Nasr R, Guillemin M C, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi P P, Rochette-Egly C, Zhu J, de Thé H. Eradication of acute promyelocyticleukemia-initiating cells through PML-RARA degradation.Nat Med, 2008, 14(12): 1333―1342
PMID: 19029980
Chen G Q, Shen Z X, Wu F, Han J Y, Miao J M, Zhong H J, Li X S, Zhao J Q, Zhu J, Fang Z W, Chen S J, Chen Z, Wang Z Y. Pharmacokinetics and efficacy of low-dose all-trans retinoicacid in the treatment of acute promyelocytic leukemia.Leukemia, 1996, 10(5): 825―828
PMID: 8656678
Huang M E, Ye Y C, Chen S R, Chai J R, Lu J X, Zhoa L, Gu L J, Wang Z Y. Use of all-trans retinoic acid in thetreatment of acute promyelocytic leukemia.Blood, 1988, 72(2): 567―572
PMID: 3165295
Niu C, Yan H, Yu T, Sun H P, Liu J X, Li X S, Wu W, Zhang F Q, Chen Y, Zhou L, Li J M, Zeng X Y, Yang R R, Yuan M M, Ren M Y, Gu F Y, Cao Q, Gu B W, Su X Y, Chen G Q, Xiong S M, Zhang T D, Waxman S, Wang Z Y, Chen Z, Hu J, Shen Z X, Chen S J. Studies on treatment of acute promyelocytic leukemiawith arsenic trioxide: remission induction, follow-up, and molecularmonitoring in 11 newly diagnosed and 47 relapsed acute promyelocyticleukemia patients.Blood, 1999, 94(10): 3315―3324
PMID: 10552940
Shen Z X, Chen G Q, Ni J H, Li X S, Xiong S M, Qiu Q Y, Zhu J, Tang W, Sun G L, Yang K Q, Chen Y, Zhou L, Fang Z W, Wang Y T, Ma J, Zhang P, Zhang T D, Chen S J, Chen Z, Wang Z Y. Use of arsenic trioxide (As2O3)in the treatment of acute promyelocytic leukemia (APL): II. Clinicalefficacy and pharmacokinetics in relapsed patients.Blood, 1997, 89(9): 3354―3360
PMID: 9129042
Zhu J, Lallemand-Breitenbach V, de Thé H. Pathways of retinoic acid-or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogenedegradation in disease remission.Oncogene, 2001, 20(49): 7257―7265
PMID: 11704854
Zheng X, Seshire A, Rüster B, Bug G, Beissert T, Puccetti E, Hoelzer D, Henschler R, Ruthardt M. Arsenic but not all-transretinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positiveleukemic stem cells.Haematologica, 2007, 92(3): 323―331
PMID: 17339181
Zhou G B, Zhang J, Wang Z Y, Chen S J, Chen Z. Treatment of acute promyelocyticleukaemia with all-trans retinoic acid and arsenic trioxide: a paradigmof synergistic molecular targeting therapy.Philos Trans R Soc Lond B Biol Sci, 2007, 362(1482): 959―971
PMID: 17317642
Deininger M, Buchdunger E, Druker B J. The development of imatinibas a therapeutic agent for chronic myeloid leukemia.Blood, 2005, 105(7): 2640―2653
PMID: 15618470
Kharas M G, Fruman D A. ABL oncogenesand phosphoinositide 3-kinase: mechanism of activation and downstreameffectors.Cancer Res, 2005, 65(6): 2047―2053
PMID: 15781610
Chen G Q, Zhang J, Zhao Q. Active compounds-based discoveries aboutthe differentiation and apoptosis of leukemic cells.Chin Sci Bull, 2009, 54(22): 4094―4101
Pickart C M, Eddins M J. Ubiquitin:structures, functions, mechanisms.BiochimBiophys Acta, 2004, 1695(1―3): 55―72
PMID: 15571809
Klionsky D J, Emr S D. Autophagyas a regulated pathway of cellular degradation.Science, 2000, 290(5497): 1717―1721
PMID: 11099404
Collins S J. Retinoic acid receptors, hematopoiesis and leukemogenesis.Curr Opin Hematol, 2008, 15(4): 346―351
PMID: 18536573
Zhu J, Gianni M, Kopf E, Honoré N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de Thé H. Retinoic acid induces proteasome-dependent degradationof retinoic acid receptor alpha (RARalpha) and oncogenic RARalphafusion proteins.Proc Natl Acad Sci U SA, 1999, 96(26): 14807―14812
PMID: 10611294
Isakson P, Bjoras M, Boe SO, Simonsen A.Autophagycontributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood, 2010, 116(13): 2324―2331
Lane A A, Ley T J. Neutrophilelastase cleaves PML-RARalpha and is important for the developmentof acute promyelocytic leukemia in mice.Cell, 2003, 115(3): 305―318
PMID: 14636558
Kopf E, Plassat J L, Vivat V, de Thé H, Chambon P, Rochette-Egly C. Dimerization with retinoidX receptors and phosphorylation modulate the retinoic acid-induceddegradation of retinoic acid receptors alpha and gamma through theubiquitin-proteasome pathway.J Biol Chem, 2000, 275(43): 33280―33288
PMID: 10869350
Kitareewan S, Pitha-Rowe I, Sekula D, Lowrey C H, Nemeth M J, Golub T R, Freemantle S J, Dmitrovsky E. UBE1L is a retinoid targetthat triggers PML/RARalpha degradation and apoptosis in acute promyelocyticleukemia.Proc Natl Acad Sci U S A, 2002, 99(6): 3806―3811
PMID: 11891284
Pitha-Rowe I, Hassel B A, Dmitrovsky E. Involvement of UBE1L in ISG15conjugation during retinoid-induced differentiation of acute promyelocyticleukemia.J Biol Chem, 2004, 279(18): 18178―18187
PMID: 14976209
Shah S J, Blumen S, Pitha-Rowe I, Kitareewan S, Freemantle S J, Feng Q, Dmitrovsky E. UBE1L represses PML/RARalpha by targeting the PML domainfor ISG15ylation.Mol Cancer Ther, 2008, 7(4): 905―914
PMID: 18413804
Gaillard E, Bruck N, Brelivet Y, Bour G, Lalevée S, Bauer A, Poch O, Moras D, Rochette-Egly C. Phosphorylation by PKA potentiates retinoic acid receptor alpha activityby means of increasing interaction with and phosphorylation by cyclinH/cdk7.Proc Natl Acad Sci U S A, 2006, 103(25): 9548―9553
PMID: 16769902
Zhu Q, Zhang J W, Zhu H Q, Shen Y L, Flexor M, Jia P M, Yu Y, Cai X, Waxman S, Lanotte M, Chen S J, Chen Z, Tong J H. Synergic effects of arsenic trioxideand cAMP during acute promyelocytic leukemia cell maturation subtendsa novel signaling cross-talk.Blood, 2002, 99(3): 1014―1022
PMID: 11807007
Yen H C, Elledge S J. Identification of SCF ubiquitin ligase substrates by global proteinstability profiling.Science, 2008, 322(5903): 923―929
PMID: 18988848
Jing X, Infante J, Nachtman R G, Jurecic R. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoieticprogenitors by governing steady-state levels of cytokine and retinoicacid receptors.Exp Hematol, 2008, 36(9): 1110―1120
PMID: 18495327
Gianni' M, Boldetti A, Guarnaccia V, Rambaldi A, Parrella E, Raska I Jr, Rochette-Egly C, Del Sal G, Rustighi A, Terao M, Garattini E. Inhibition of the peptidyl-prolyl-isomerase Pin1 enhances the responsesof acute myeloid leukemia cells to retinoic acid via stabilizationof RARalpha and PML-RARalpha.Cancer Res, 2009, 69(3): 1016―1026
PMID: 19155306
Zhu J, Koken M H, Quignon F, Chelbi-Alix M K, Degos L, Wang Z Y, Chen Z, de Thé H. Arsenic-induced PML targetingonto nuclear bodies: implications for the treatment of acute promyelocyticleukemia.Proc Natl Acad Sci U S A, 1997, 94(8): 3978―3983
PMID: 9108090
Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann O G, Ruthardt M. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenictrioxide-induced apoptosis in acute promyelocytic leukemia.Mol Cell Biol, 1999, 19(7): 5170―5178
PMID: 10373566
Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de Thé H. Arsenic degrades PML or PML-RARalpha through a SUMO-triggeredRNF4/ubiquitin-mediated pathway.Nat CellBiol, 2008, 10(5): 547―555
PMID: 18408733
Zhang X W, Yan X J, Zhou Z R, Yang F F, Wu Z Y, Sun H B, Liang W X, Song A X, Lallemand-Breitenbach V, Jeanne M, Zhang Q Y, Yang H Y, Huang Q H, Zhou G B, Tong J H, Zhang Y, Wu J H, Hu H Y, de Thé H, Chen S J, Chen Z. Arsenic trioxide controls the fate of the PML-RARalphaoncoprotein by directly binding PML.Science, 2010, 328(5975): 240―243
PMID: 20378816
Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, de Thé H. PML/RARA oxidation and arsenic binding initiate the antileukemiaresponse of As2O3.Cancer Cell, 2010, 18(1): 88―98
PMID: 20609355
B?e S O, Simonsen A. Autophagic degradation of an oncoprotein.Autophagy, 2010, 6(7): 964―965
PMID: 20724820
Gu ZM, Wu YL, Zhou MY, Liu CX, Xu HZ, Yan H, Zhao Y, Huang Y, Sun HD, Chen GQ: Pharicin B stabilizes retinoicacid receptor-{alpha} and presents synergistic differentiation inductionwith ATRA in myeloid leukemic cells. Blood, 2010, Aug25. [Epub ahead of print]
PMID: 20739655
Finch R A, Li J, Chou T C, Sartorelli A C. Maintenance of retinoic acid receptor alpha pools by granulocytecolony-stimulating factor and lithium chloride in all-trans retinoicacid-treated WEHI-3B leukemia cells: relevance to the synergisticinduction of terminal differentiation.Blood, 2000, 96(6): 2262―2268
PMID: 10979975
Gianni' M, Kala? Y, Ponzanelli I, Rambaldi A, Terao M, Garattini E. Tyrosine kinase inhibitor STI571 potentiatesthe pharmacologic activity of retinoic acid in acute promyelocyticleukemia cells: effects on the degradation of RARalpha and PML-RARalpha.Blood, 2001, 97(10): 3234―3243
PMID: 11342454
Launay S, Giannì M, Diomede L, Machesky L M, Enouf J, Papp B. Enhancement of ATRA-induced cell differentiationby inhibition of calcium accumulation into the endoplasmic reticulum:cross-talk between RAR alpha and calcium-dependent signaling.Blood, 2003, 101(8): 3220―3228
PMID: 12515718
Witcher M, Shiu H Y, Guo Q, Miller W H Jr. Combination of retinoic acid and tumor necrosis factor overcomesthe maturation block in a variety of retinoic acid-resistant acutepromyelocytic leukemia cells.Blood, 2004, 104(10): 3335―3342
PMID: 15256426
Alarid E T. Lives and times of nuclear receptors.Mol Endocrinol, 2006, 20(9): 1972―1981
PMID: 16423879
Andela V B, Rosier R N. The proteosomeinhibitor MG132 attenuates retinoic acid receptor trans-activationand enhances trans-repression of nuclear factor kappaB. Potentialrelevance to chemo-preventive interventions with retinoids.Mol Cancer, 2004, 3: 8
PMID: 15035668
Nasr R, de Thé H. Eradication of acute promyelocytic leukemia-initiating cells by PML/RARA-targeting.Int J Hematol, 2010, 91(5): 742―747
PMID: 20455087
Kurokawa M. AML1/Runx1 as a versatile regulator of hematopoiesis:regulation of its function and a role in adult hematopoiesis.Int J Hematol, 2006, 84(2): 136―142
PMID: 16926135
Elagib K E, Goldfarb A N. Oncogenic pathways of AML1-ETO in acute myeloid leukemia: multifacetedmanipulation of marrow maturation.CancerLett, 2007, 251(2): 179―186
PMID: 17125917
Biggs J R, Peterson L F, Zhang Y, Kraft A S, Zhang D E. AML1/RUNX1phosphorylation by cyclin-dependent kinases regulates the degradationof AML1/RUNX1 by the anaphase-promoting complex.Mol Cell Biol, 2006, 26(20): 7420―7429
PMID: 17015473
Lu Y, Xu Y B, Yuan T T, Song M G, Lübbert M, Fliegauf M, Chen G Q. Inducibleexpression of AML1-ETO fusion protein endows leukemic cells with susceptibilityto extrinsic and intrinsic apoptosis.Leukemia, 2006, 20(6): 987―993
PMID: 16598301
Lu Y, Peng Z G, Yuan T T, Yin Q Q, Xia L, Chen G Q. Multi-sites cleavage of leukemogenic AML1-ETO fusionprotein by caspase-3 and its contribution to increased apoptotic sensitivity.Leukemia, 2008, 22(2): 378―386
PMID: 17989718
Corsello S M, Roti G, Ross K N, Chow K T, Galinsky I, DeAngelo D J, Stone R M, Kung A L, Golub T R, Stegmaier K. Identification of AML1-ETOmodulators by chemical genomics.Blood, 2009, 113(24): 6193―6205
PMID: 19377049
Yang G, Thompson M A, Brandt S J, Hiebert S W. Histone deacetylase inhibitors induce the degradationof the t(8;21) fusion oncoprotein.Oncogene, 2007, 26(1): 91―101
PMID: 16799637
Jin Y H, Jeon E J, Li Q L, Lee Y H, Choi J K, Kim W J, Lee K Y, Bae S C. Transforming growth factor-beta stimulatesp300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediateddegradation.J Biol Chem, 2004, 279(28): 29409―29417
PMID: 15138260
Kr?mer O H, Müller S, Buchwald M, Reichardt S, Heinzel T. Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETOand PML-RARalpha.FASEB J, 2008, 22(5): 1369―1379
PMID: 18073335
Fanelli M, Fantozzi A, De Luca P, Caprodossi S, Matsuzawa S, Lazar M A, Pelicci P G, Minucci S. The coiled-coil domain is the structural determinant for mammalianhomologues of Drosophila Sina-mediated degradation of promyelocyticleukemia protein and other tripartite motif proteins by the proteasome.J Biol Chem, 2004, 279(7): 5374―5379
PMID: 14645235
Mueller B U, Pabst T. C/EBPalphaand the pathophysiology of acute myeloid leukemia.Curr Opin Hematol, 2006, 13(1): 7―14
PMID: 16319681
Shim M, Smart R C. Lithiumstabilizes the CCAAT/enhancer-binding protein alpha (C/EBPalpha) througha glycogen synthase kinase 3 (GSK3)-independent pathway involvingdirect inhibition of proteasomal activity.J Biol Chem, 2003, 278(22): 19674―19681
PMID: 12668682
Bengoechea-Alonso M T, Ericsson J. The ubiquitin ligase Fbxw7 controls adipocyte differentiation bytargeting C/EBPalpha for degradation.ProcNatl Acad Sci U S A, 2010, 107(26): 11817―11822
PMID: 20534483
Zhao M, Duan X F, Zhao X Y, Zhang B, Lu Y, Liu W, Cheng J K, Chen G Q. Protein kinase Cdelta stimulates proteasome-dependentdegradation of C/EBPalpha during apoptosis induction of leukemic cells.PLoS One, 2009, 4(8): e6552
PMID: 19662097
Hoffman B, Amanullah A, Shafarenko M, Liebermann D A. The proto-oncogene c-myc in hematopoietic developmentand leukemogenesis.Oncogene, 2002, 21(21): 3414―3421
PMID: 12032779
Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S, Kogel U, Scheffner M, Helin K, Eilers M. The ubiquitin ligase HectH9 regulatestranscriptional activation by Myc and is essential for tumor cellproliferation.Cell, 2005, 123(3): 409―421
PMID: 16269333
Boquoi A, Enders G. Ubiquitinationof Myc: flipping the switch.Cancer BiolTher, 2006, 5(8): 907―908
PMID: 16969074
von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama K I, S?derberg O, Kerppola T K, Larsson L G. The F-box protein Skp2 participates in c-Myc proteosomaldegradation and acts as a cofactor for c-Myc-regulated transcription.Mol Cell, 2003, 11(5): 1189―1200
PMID: 12769844
Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge S J, Eilers M. The ubiquitin-specific protease USP28 is required for MYC stability.Nat Cell Biol, 2007, 9(7): 765―774
PMID: 17558397
Li Q, Kluz T, Sun H, Costa M. Mechanisms of c-myc degradation by nickel compounds and hypoxia.PLoS One, 2009, 4(12): e8531
PMID: 20046830
Agrawal M, Garg R J, Kantarjian H, Cortes J. Chronic myeloid leukemia in the tyrosine kinase inhibitorera: what is the “best” therapy?Curr Oncol Rep, 2010, 12(5): 302―313
PMID: 20640942
Mahalingam D, Swords R, Carew J S, Nawrocki S T, Bhalla K, Giles F J. Targeting HSP90 for cancer therapy.Br J Cancer, 2009, 100(10): 1523―1529
PMID: 19401686
Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer.Nat Rev Cancer, 2010, 10(8): 537―549
PMID: 20651736
Blagosklonny M V, Fojo T, Bhalla K N, Kim J S, Trepel J B, Figg W D, Rivera Y, Neckers L M. The Hsp90 inhibitor geldanamycinselectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxicchemotherapy.Leukemia, 2001, 15(10): 1537―1543
PMID: 11587211
Zhang Q Y, Mao J H, Liu P, Huang Q H, Lu J, Xie Y Y, Weng L, Zhang Y, Chen Q, Chen S J, Chen Z. A systems biology understanding of the synergistic effectsof arsenic sulfide and Imatinib in BCR/ABL-associated leukemia.Proc Natl Acad Sci U S A, 2009, 106(9): 3378―3383
PMID: 19208803
Tsukahara F, Maru Y.Bag1 directlyroutes immature BCR-ABL for proteasomal degradation. Blood, 2010, 116(18): 3582―3592
Bartholomeusz G A, Talpaz M, Kapuria V, Kong L Y, Wang S, Estrov Z, Priebe W, Wu J, Donato N J. Activation of a novel Bcr/Abl destruction pathway byWP1130 induces apoptosis of chronic myelogenous leukemia cells.Blood, 2007, 109(8): 3470―3478
PMID: 17202319
[1] Yuting Tan,Han Liu,Saijuan Chen. Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse[J]. Front. Med., 2015, 9(4): 412-420.
[2] Joseph Cannova,Peter Breslin S.J.,Jiwang Zhang. Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases[J]. Front. Med., 2015, 9(3): 288-303.
[3] Lanping Xu,Huanling Zhu,Jianda Hu,Depei Wu,Hao Jiang,Qian Jiang,Xiaojun Huang. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase[J]. Front. Med., 2015, 9(3): 304-311.
[4] Ching-Hon Pui. Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia[J]. Front. Med., 2015, 9(1): 1-9.
[5] Jessica Fredericks, Ruibao Ren. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia[J]. Front Med, 2013, 7(4): 452-461.
[6] Meilin Ma, Xiang Wang, Jingyan Tang, Huiliang Xue, Jing Chen, Ci Pan, Hua Jiang, Shuhong Shen. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia[J]. Front Med, 2012, 6(4): 416-420.
[7] Shuangwei Li, Diane DiFang Hsu, Hongyang Wang, Gen-Sheng Feng. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis[J]. Front Med, 2012, 6(3): 275-279.
[8] Megan A. Hatlen, Lan Wang, Stephen D. Nimer. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches[J]. Front Med, 2012, 6(3): 248-262.
[9] Haiyan He, Yang Shen, Yongmei Zhu, Saijuan Chen. Prognostic analysis of chronic myeloid leukemia in Chinese population in an imatinib era[J]. Front Med, 2012, 6(2): 204-211.
[10] Jianqing Mi. Current treatment strategy of acute promyelocytic leukemia[J]. Front Med, 2011, 5(4): 341-347.
[11] Jiong HU. Arsenic in the treatment of newly diagnosed acute promyelocytic leukemia: current status and future research direction[J]. Front Med, 2011, 5(1): 45-52.
[12] Felicitas THOL, Arnold GANSER. Molecular pathogenesis of acute myeloid leukemia: A diverse disease with new perspectives[J]. Front. Med., 2010, 4(4): 356-362.
[13] Zhi-Ruo ZHANG PhD, Jian-Qing MI MD, Zhao-Jun WEN MA, Sai-Juan CHEN MD, PhD, Zhu CHEN PhD, Long-Jun GU MD, Jing-Yan TANG MD, PhD, Shu-Hong SHEN MD, PhD, . Using sound Clinical Paths and Diagnosis-related Groups (DRGs)-based payment reform to bring benefits to patient care: A case study of leukemia therapy[J]. Front. Med., 2010, 4(1): 8-15.
[14] WU Kui, BI Yutian, WANG Yaoli, WANG Changzheng. Changes of phenotype and function of human CD4 CD25 T cells induced by transfection of Foxp3[J]. Front. Med., 2008, 2(4): 366-369.
Full text