Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2017, Vol. 11 Issue (3) : 410-422    https://doi.org/10.1007/s11684-017-0527-6
RESEARCH ARTICLE
Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia
Dan Huang1, Yan Yang1, Jian Sun1, Xiaorong Dong1, Jiao Wang1, Hongchen Liu1, Chengquan Lu2, Xueyu Chen1, Jing Shao2(), Jinsong Yan1()
1. Dalian Key Laboratory of Hematology, Liaoning Hematopoeitic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian 116027, China
2. Dalian Key Laboratory of Hematology, Liaoning Hematopoeitic Stem Cell Transplantation Medical Center, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
 Download: PDF(508 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aberrant expression of annexin A2-S100A10 heterotetramer (AIIt) associated with PML/RARα fusion protein causes lethal hyperfibrinolysis in acute promyelocytic leukemia (APL), but the mechanism is unclear. To facilitate the investigation of regulatory association between ANXA2 and promyelocytic leukemia/retinoic acid receptor a (PML/RARα) fusion protein, this work was performed to determine the transcription start site of ANXA2 promoter with rapid amplification of 5′-cDNA ends analysis. Zinc-induced U937/PR9 cells expressed PML/RARα fusion protein, and resultant increases in ANXA2 transcripts and translational expressions of both ANXA2 and S100A10, while S100A10 transcripts remained constitutive. The transactivation of ANXA2 promoter by PML/RARα fusion protein was 3.29±0.13 fold higher than that by control pSG5 vector or wild-type RARα. The overexpression of ANXA2 in U937 transfected with full-length ANXA2 cDNA was associated with increased S100A10 subunit, although S100A10 transcripts remained constitutive. The tPA-dependent initial rate of plasmin generation (IRPG) in zinc-treated U937/PR9 increased by 2.13-fold, and cell invasiveness increased by 27.6%. Antibodies against ANXA2, S100A10, or combination of both all remarkably inhibited the IRPG and invasiveness in U937/PR9 and NB4. Treatment of zinc-induced U937/PR9 or circulating APL blasts with all-trans retinoic acid (ATRA) significantly reduced cell surface ANXA2 and S100A10 and associated reductions in IRPG and invasiveness. Thus, PML/RARα fusion protein transactivated the ANXA2 promoter to upregulate ANXA2 and accumulate S100A10. Increased AIIt promoted IRPG and invasiveness, both of which were partly abolished by antibodies against ANXA2 and S100A10 or by ATRA.

Keywords annexin A2-S100A10 heterotetramer      PML/RARα fusion protein      plasmin      cell invasion      acute promyelocytic leukemia     
Corresponding Author(s): Jing Shao,Jinsong Yan   
Just Accepted Date: 02 June 2017   Online First Date: 10 July 2017    Issue Date: 29 August 2017
 Cite this article:   
Dan Huang,Yan Yang,Jian Sun, et al. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia[J]. Front. Med., 2017, 11(3): 410-422.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0527-6
https://academic.hep.com.cn/fmd/EN/Y2017/V11/I3/410
Fig.1  PML/RARa fusion protein upregulated AIIt expression. (A) Using house-keeping gene β actin as the internal control, ANXA2 transcripts increased from constitutive level up to 106.3±0.37 fold at 72 h in U937/PR9 cells with induction of 100 µmol/L zinc at varied time points. (B) S100A10 transcripts maintained no more than 1.74±0.98 fold with the internal control gene of β actin at varied time points. (C) U937/PR9 cell nuclear extracts expressed PML/RARa fusion protein with induction of 100 µmol/L zinc, and U937/PR9 cell lysates with anti-ANXA2 and anti-S100A10 antibodies showed that the expression of ANXA2 and S100A10 increased 2 h after zinc induction. (D) By flow cytometry analysis, U937/PR9 cell-surface ANXA2 and S100A10 increased by 26.9% and 18.9%, respectively, after a 24 h exposure to zinc. *P<0.05.
Fig.2  Determination of transcription start site of ANXA2 promoter by 5′-RACE. The 3′-primers (outer primer, 5′-CTTGTAGACTCTGTTAATTTCCTG-3′; inner primer, 5′-TACTGAGCAGGTGTCTTCAATAGG-3′) specific for ANXA2CDS and designated primers in SMARTer RACE 5′/3′Kit (634859; Takara Bio, Japan) were used to amplify ANXA2 fragments by PCR, followed by a nested-PCR reaction. The amplified ANXA2 fragments were resolved on a 1% agarose gel and purified with TaKaRa MiniBEST Agarose Gel DNA Extraction Kit (9762; Takara, Japan). The extracted ANXA2 fragments were sequenced with 3′-end inner primer of ANXA2, and nucleotide base G, which is located at 60397986 of the genomic sequence NC_000015.10 on chromosome 15, was determined as the TSS of ANXA2 promoter.
Fig.3  PML/RARa fusion protein transactivated ANXA2 promoter to upregulate ANXA2, which led to the increases of S100A10 subunit. (A) U937 cells transfected with ANXA2 cDNA overexpressed ANXA2 and S100A10 with Western blotting; however, U937 transfected with S100A10 cDNA showed an overexpression of S100A10 but no effect on ANXA2 subunit. (B) U937 cells transfected with S100A10 cDNA or ANXA2 cDNA showed an elevated expression of S100A10 or ANXA2 transcripts, respectively. (C) Eukaryocytic expression plasmids, including pSG5-PML/RARa, pSG5-RARa, or pSG5 vector, and pRL-SV40 vector, along with pGL3-A2 promoter reporter or pGL3-S100A10 promoter reporter, were co-transfected into COS-7 cells; luciferase activity showed that pSG5-PML/RARa plasmid led to a markedly elevated luciferase activity, which was abolished by 24-h exposure of 106 mol/L ATRA. (D) No transactivated luciferase activity occurred on S100A10 promoter by pSG5-PML/RARa, pSG5-RARa plasmid.
Fig.4  AIIt promoted initial rate of plasmin generation (IRPG) and invasiveness in zinc-induced U937/PR9 and NB4 cells, which were abrogated by monoclonal antibodies against ANXA2 and/or S100A10. (A) U937/PR9 cells showed an increase in IRPG from 1.75±0.84 RFU/min2 to 3.73±1.67 RFU/min2 in the presence of zinc at 24 h, when addition of monoclonal antibodies against ANXA2 or S100A10, or a combination of both, markedly inhibited the increase of the IRPG in zinc-induced U937/PR9 cells compared with that in U937/PR9 cells (*P<0.05). (B) Cell invasion in zinc-treated U937/PR9 cells increased to 87.13%±1.11% from 60.29%±0.71% in U937/PR9 cells without zinc induction. Blockage with antibodies against ANXA2 or S100A10, or a combination of both, markedly inhibited the invasion of zinc-treated U937/PR9 cells (*P<0.05). (C) IRPG in NB4 cells was 3.49±0.77 RFU/min2 and was inhibited in the presence of monoclonal antibodies against ANXA2 or S100A10, or a combination of both (*P<0.05, **P<0.01). (D) Cell invasion was 93.62%±7.62% in NB4 cells and was inhibited in the presence of monoclonal antibodies against ANXA2 or S100A10, or a combination of both (*P<0.05, **P<0.01).
Fig.5  ATRA downregulated the AIIt expression in cells harboring PML/RARα and subsequently led to the reduction of initial rate of plasmin generation (IRPG) and cell invasion. (A) ATRA reduced the expression of ANXA2 and S100A10 in zinc-induced U937/PR9 cells after exposure to 106 mol/L ATRA. (B) Cell surface expression of AIIt subunits decreased following ATRA treatment. As revealed by flow cytometry, the expression of ANXA2 at cell surface was 93.9%±6.2% prior to ATRA treatment and then dropped to 33.4%±1.3% at 48 h and 17.2%±4.2% at 120 h post-treatment. The expression of S100A10 was 88.3%±5.7% prior to ATRA treatment and dropped to 43.8%±2.3% at 48 h and 14.9%±2.7% at 120 h post-treatment. **P<0.01. (C) ANXA2 transcripts decreased after ATRA treatment by TaqMan PCR with house-keeping gene β actin as the internal control. (D) S100A10 transcripts showed a decreased expression with β actin as the internal control at varied time points. (E) After exposure to ATRA, the IRPG in zinc-induced U937/PR9 cells decreased to 0.57±0.04 RFU/min2 at 96 h post-ATRA from 2.18±0.47 RFU/min2 prior to ATRA. *P<0.05. (F) After exposure to ATRA, the cell invasion of zinc-induced U937/PR9 cells decreased to 13.18%±8.38% at 96 h after exposure to ATRA from 82.84%±6.99% before treatment with ATRA. **P<0.01. (G) After exposure to ATRA, the IRPG in NB4 cells started to decrease to 2.38±1.08 RFU/min2 at 24 h and 1.83±0.90 RFU/min2 at 96 h from 3.95±0.41 RFU/min2 prior to ATRA. *P<0.05. (H) The cell invasion in NB4 cells decreased from 74.55%±19.37% pre-treatment of ATRA to 8.26%±5.26% at 96 h post-ATRA treatment. **P<0.01.
Fig.6  Effects of ATRA treatment on the mRNA levels of ANXA2 and S100A10, the cell surface expression of ANXA2 and S100A10, and the IRPG and the cell invasiveness in the isolated APL blasts. The APL blasts were isolated from nine patients newly diagnosed with APL. (A) ATRA treatment decreased ANXA2 transcripts from onefold at pre-treatment to 0.35±0.19 fold at day 6 post-treatment, with β actin as the internal control. (B) ATRA treatment decreased S100A10 transcripts from onefold at pre-treatment to 0.38±0.12 fold at day 6 post-treatment, with β actin as the internal control. (C) Flow cytometry analysis on cell surface expression of ANXA2 expression. ANXA2 expression reduced from 15.80%±4.81% prior to treatment to 3.74%±1.49% at day 6 post-ATRA treatment. (D) Flow cytometry analysis on cell surface expression of S100A10 expression. S100A10 expression decreased from 27.9%±8.7% prior to treatment to 2.94%±1.41% at day 6 post-treatment. (E) ATRA treatment decreased the level of IRPG from the pre-treatment level of 1.66±0.38 fold to 1.08±0.50 fold at day 3 and 0.33±0.26 fold at day 6 post-treatment. In addition, blockage with antibodies against ANXA2 or S100A10, or a combination of both, further reduced the IRPG level of the isolated APL blasts from days 1 to 3. However, no inhibitory effect from antibodies was observed at day 6. (F) ATRA treatment decreased the level of the invasiveness of the isolated APL blasts from 27.9%±8.70% prior to treatment to 8.08%±4.28% at day 3 and 2.95%±1.41% at day 6. Antibodies against ANXA2 or S100A10, or a combination of both, further inhibited the invasiveness. However, the inhibitory effects became weaker along with ATRA treatment, particularly at day 6.
1 Melnick A, Licht JD. Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93(10): 3167–3215
2 Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM, Li JM, Tang W, Zhao WL, Wu W, Sun HP, Chen QS, Chen B, Zhou GB, Zelent A, Waxman S, Wang ZY, Chen SJ, Chen Z. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2009; 106(9): 3342–3347
https://doi.org/10.1073/pnas.0813280106
3 Iland HJ, Bradstock K, Supple SG, Catalano A, Collins M, Hertzberg M, Browett P, Grigg A, Firkin F, Hugman A, Reynolds J, Di Iulio J, Tiley C, Taylor K, Filshie R, Seldon M, Taper J, Szer J, Moore J, Bashford J, Seymour JF; Australasian Leukaemia and Lymphoma Group. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 2012; 120(8): 1570–1580
4 Iland H, Bradstock K, Seymour J, Hertzberg M, Grigg A, Taylor K, Catalano J, Cannell P, Horvath N, Deveridge S, Browett P, Brighton T, Chong L, Springall F, Ayling J, Catalano A, Supple S, Collins M, Di Iulio J, Reynolds J; Australasian Leukaemia and Lymphoma Group. Results of the APML3 trial incorporating all-trans-retinoic acid and idarubicin in both induction and consolidation as initial therapy for patients with acute promyelocytic leukemia. Haematologica 2012; 97(2): 227–234
https://doi.org/10.3324/haematol.2011.047506
5 Zhou J, Zhang Y, Li J, Li X, Hou J, Zhao Y, Liu X, Han X, Hu L, Wang S, Zhao Y, Zhang Y, Fan S, Lv C, Li L, Zhu L. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood 2010; 115(9): 1697–1702
https://doi.org/10.1182/blood-2009-07-230805
6 Thirugnanam R, George B, Chendamarai E, Lakshmi KM, Balasubramanian P, Viswabandya A, Srivastava A, Chandy M, Mathews V. Comparison of clinical outcomes of patients with relapsed acute promyelocytic leukemia induced with arsenic trioxide and consolidated with either an autologous stem cell transplant or an arsenic trioxide-based regimen. Biol Blood Marrow Transplant 2009; 15(11): 1479–1484
https://doi.org/10.1016/j.bbmt.2009.07.010
7 Park JH, Qiao B, Panageas KS, Schymura MJ, Jurcic JG, Rosenblat TL, Altman JK, Douer D, Rowe JM, Tallman MS. Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood 2011; 118(5): 1248–1254
https://doi.org/10.1182/blood-2011-04-346437
8 Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM, Shi JY, Zheng PZ, Yan H, Liu YF, Chen Y, Shen Y, Wu W, Tang W, Waxman S, de Th Hé, Wang ZY, Chen SJ, Chen Z. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004; 101(15): 5328–5335
https://doi.org/10.1073/pnas.0400053101
9 Mathews V, George B, Chendamarai E, Lakshmi KM, Desire S, Balasubramanian P, Viswabandya A, Thirugnanam R, Abraham A, Shaji RV, Srivastava A, Chandy M. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol 2010; 28(24): 3866–3871
https://doi.org/10.1200/JCO.2010.28.5031
10 Liu YJ, Wu DP, Liang JY, Qiu HY, Jin ZM, Tang XW, Fu CC, Ma X. Long-term survey of outcome in acute promyelocytic leukemia: a single center experience in 340 patients. Med Oncol 2011; 28(Suppl 1): S513–S521
https://doi.org/10.1007/s12032-010-9733-7
11 Avvisati G, Lo Coco F, Mandelli F. Acute promyelocytic leukemia: clinical and morphologic features and prognostic factors. Semin Hematol 2001; 38(1): 4–12
https://doi.org/10.1053/shem.2001.20861
12 Breen KA, Grimwade D, Hunt BJ. The pathogenesis and management of the coagulopathy of acute promyelocytic leukaemia. Br J Haematol 2012; 156(1): 24–36
https://doi.org/10.1111/j.1365-2141.2011.08922.x
13 Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med 1999; 340(13): 994–1004
https://doi.org/10.1056/NEJM199904013401303
14 Yan J, Wang K, Dong L, Liu H, Chen W, Xi W, Ding Q, Kieffer N, Caen JP, Chen S, Chen Z, Xi X. PML/RARα fusion protein transactivates the tissue factor promoter through a GAGC-containing element without direct DNA association. Proc Natl Acad Sci USA 2010; 107(8): 3716–3721
https://doi.org/10.1073/pnas.0915006107
15 Flood EC, Hajjar KA. The annexin A2 system and vascular homeostasis. Vascul Pharmacol 2011; 54(3–6): 59–67
https://doi.org/10.1016/j.vph.2011.03.003
16 O’Connell PA, Madureira PA, Berman JN, Liwski RS, Waisman DM. Regulation of S100A10 by the PML-RAR-α oncoprotein. Blood 2011; 117(15): 4095–4105
https://doi.org/10.1182/blood-2010-07-298851
17 Udalova IA, Kwiatkowski D. Interaction of AP-1 with a cluster of NF-κB binding elements in the huma n TNF promoter region. Biochem Biophys Res Commun 2001; 289(1): 25–33
https://doi.org/10.1006/bbrc.2001.5929
18 Meng YS, Khoury H, Dick JE, Minden MD. Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia 2005; 19(11): 1941–1947
https://doi.org/10.1038/sj.leu.2403836
19 Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 1983; 11(5): 1475–1489
https://doi.org/10.1093/nar/11.5.1475
20 Surette AP, Madureira PA, Phipps KD, Miller VA, Svenningsson P, Waisman DM. Regulation of fibrinolysis by S100A10 in vivo. Blood 2011; 118(11): 3172–3181
https://doi.org/10.1182/blood-2011-05-353482
21 Brownstein C, Deora AB, Jacovina AT, Weintraub R, Gertler M, Khan KM, Falcone DJ, Hajjar KA. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood 2004; 103(1): 317–324
https://doi.org/10.1182/blood-2003-04-1304
22 Kassam G, Choi KS, Ghuman J, Kang HM, Fitzpatrick SL, Zackson T, Zackson S, Toba M, Shinomiya A, Waisman DM. The role of annexin II tetramer in the activation of plasminogen. J Biol Chem 1998; 273(8): 4790–4799
https://doi.org/10.1074/jbc.273.8.4790
23 Olwill SA, McGlynn H, Gilmore WS, Alexander HD. Annexin II cell surface and mRNA expression in human acute myeloid leukaemia cell lines. Thromb Res 2005; 115(1–2): 109–114
https://doi.org/10.1016/j.thromres.2004.07.014
24 Nervi C, Ferrara FF, Fanelli M, Rippo MR, Tomassini B, Ferrucci PF, Ruthardt M, Gelmetti V, Gambacorti-Passerini C, Diverio D, Grignani F, Pelicci  PG, Testi R. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARα fusion protein. Blood 1998; 92(7): 2244–2251
25 Bharadwaj A, Bydoun M, Holloway R, Waisman D. Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14(3): 6259–6305
https://doi.org/10.3390/ijms14036259
26 Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, Puri C, Lee S, Siddiqi F, Menzies FM, Ravikumar B, Rubinsztein DC. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun 2015; 6: 8045
https://doi.org/10.1038/ncomms9045
27 Huang B, Deora AB, He KL, Chen K, Sui G, Jacovina AT, Almeida D, Hong P, Burgman P, Hajjar KA. Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice. Blood 2011; 118(10): 2918–2929
https://doi.org/10.1182/blood-2011-03-341214
28 Madureira PA, Surette AP, Phipps KD, Taboski MAS, Miller VA, Waisman DM. The role of the annexin A2 heterotetramer in vascular fibrinolysis. Blood 2011; 118(18): 4789–4797
https://doi.org/10.1182/blood-2011-06-334672
29 Sharma MC, Sharma M. The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des 2007; 13(35): 3568–3575
https://doi.org/10.2174/138161207782794167
30 Hou Y, Yang L, Mou M, Hou Y, Zhang A, Pan N, Qiang R, Wei L, Zhang N. Annexin A2 regulates the levels of plasmin, S100A10 and Fascin in L5178Y cells. Cancer Invest 2008; 26(8): 809–815
https://doi.org/10.1080/07357900801898664
31 He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008; 283(28): 19192–19200
https://doi.org/10.1074/jbc.M800100200
32 Nazmi AR, Ozorowski G, Pejic M, Whitelegge JP, Gerke V, Luecke H. N-terminal acetylation of annexin A2 is required for S100A10 binding. Biol Chem 2012; 393(10): 1141–1150
https://doi.org/10.1515/hsz-2012-0179
33 Hedhli N, Falcone DJ, Huang B, Cesarman-Maus G, Kraemer R, Zhai H, Tsirka SE, Santambrogio L, Hajjar KA. The annexin A2/S100A10 system in health and disease: emerging paradigms. J Biomed Biotechnol 2012; 2012: 406273
34 Das R, Burke T, Plow EF. Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 2007; 110(10): 3763–3772
https://doi.org/10.1182/blood-2007-03-079392
[1] Melvin E. Klegerman. Translational initiatives in thrombolytic therapy[J]. Front. Med., 2017, 11(1): 1-19.
[2] Xiaoling Wang,Yun Tan,Yizhen Li,Jingming Li,Wen Jin,Kankan Wang. Repression of CDKN2C caused by PML/RARα binding promotes the proliferation and differentiation block in acute promyelocytic leukemia[J]. Front. Med., 2016, 10(4): 420-429.
[3] Jianqing Mi. Current treatment strategy of acute promyelocytic leukemia[J]. Front Med, 2011, 5(4): 341-347.
[4] Jiong HU. Arsenic in the treatment of newly diagnosed acute promyelocytic leukemia: current status and future research direction[J]. Front Med, 2011, 5(1): 45-52.
[5] Zhi-Ruo ZHANG PhD, Jian-Qing MI MD, Zhao-Jun WEN MA, Sai-Juan CHEN MD, PhD, Zhu CHEN PhD, Long-Jun GU MD, Jing-Yan TANG MD, PhD, Shu-Hong SHEN MD, PhD, . Using sound Clinical Paths and Diagnosis-related Groups (DRGs)-based payment reform to bring benefits to patient care: A case study of leukemia therapy[J]. Front. Med., 2010, 4(1): 8-15.
[6] Chen WANG PhD, MD, Zhen-Guo ZHAI PhD, MD, Ying H. SHEN PhD, MD, Lan ZHAO PhD, MD, . Clinical and genetic risk factors for venous thromboembolism in Chinese population[J]. Front. Med., 2010, 4(1): 29-35.
[7] DING Xiaofang, LI Honggang, XIONG Chengliang. Chemotactic effect of urokinase-type plasminogen activator on mouse spermatozoa [J]. Front. Med., 2008, 2(2): 195-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed