Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (4) : 389-396     DOI: 10.1007/s11684-016-0468-5
REVIEW |
miRNAs in non-alcoholic fatty liver disease
Zhen He,Cheng Hu(),Weiping Jia
Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
Download: PDF(204 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver cirrhosis and hepatocellular carcinoma and is a considerable threat to public health. miRNAs are important post-transcriptional regulators of gene expression, and the dysregulation of miRNAs is involved in various biological processes in the liver, including lipid homeostasis, inflammation, apoptosis, and cell proliferation. Recently, a number of studies have described the association between miRNAs and NAFLD progression and have shown that circulating miRNAs reflect histological changes in the liver. Therefore, circulating miRNAs have potential use for the evaluation of NAFLD severity. In this review, we discuss the involvement of miRNAs in NAFLD pathogenesis and the key role of miRNAs in the screening, diagnosis, and staging of NAFLD.

Keywords nonalcoholic fatty liver disease      nonalcoholic steatohepatitis      hepatocellular carcinoma      miRNA     
Corresponding Authors: Cheng Hu   
Just Accepted Date: 19 August 2016   Online First Date: 28 September 2016    Issue Date: 01 December 2016
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-016-0468-5     OR     http://academic.hep.com.cn/fmd/EN/Y2016/V10/I4/389
Fig.1  miRNAs involved in the pathogenesis of NAFLD.
1 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence and outcomes. Hepatology 2015; 64(1): 73–84
doi: DOI: 10.1002/hep.28431 pmid: 26707365
2 Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 34(3): 274–285
doi: 10.1111/j.1365-2036.2011.04724.x pmid: 21623852
3 Attar BM, Van Thiel DH. Current concepts and management approaches in nonalcoholic fatty liver disease. Sci World J 2013; 2013: 481893
doi: 10.1155/2013/481893 pmid: 23576902
4 Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2(11): 901–910
doi: 10.1016/S2213-8587(14)70032-4 pmid: 24731669
5 Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis 2015; 239(1): 192–202
doi: 10.1016/j.atherosclerosis.2015.01.001 pmid: 25617860
6 Ul Hussain M. Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res 2012; 349(2): 405–413
doi: 10.1007/s00441-012-1438-0 pmid: 22622804
7 Wang XW, Heegaard NH, Orum H. MicroRNAs in liver disease. Gastroenterology 2012; 142(7): 1431–1443
doi: 10.1053/j.gastro.2012.04.007 pmid: 22504185
8 Pirola CJ, Fernández Gianotti T, Castaño GO, Mallardi P, San Martino J, Mora Gonzalez Lopez Ledesma M, Flichman D, Mirshahi F, Sanyal AJ, Sookoian S. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 2015; 64(5): 800–812
doi: 10.1136/gutjnl-2014-306996 pmid: 24973316
9 Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009; 50(9): 1756–1765
doi: 10.1194/jlr.M800509-JLR200 pmid: 19372595
10 Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ. Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 2008; 48(6): 1810–1820
doi: 10.1002/hep.22569 pmid: 19030170
11 Szabo G, Csak T. Role of microRNAs in NAFLD/NASH. Dig Dis Sci 2016; 61(5): 1314–1324
doi: 10.1007/s10620-015-4002-4 pmid: 26769057
12 Tessitore A, Cicciarelli G, Del Vecchio F, Gaggiano A, Verzella D, Fischietti M, Mastroiaco V, Vetuschi A, Sferra R, Barnabei R, Capece D, Zazzeroni F, Alesse E. MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice. BMC Cancer 2016; 16(1): 3
doi: 10.1186/s12885-015-2007-1 pmid: 26728044
13 Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, Hsu MT, Wu JC, Huang HD, Shiao MS, Hsiao M, Tsou AP. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122(8): 2884–2897
doi: 10.1172/JCI63455 pmid: 22820290
14 Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu Rev Nutr 2011; 31(1): 49–63
doi: 10.1146/annurev-nutr-081810-160756 pmid: 21548778
15 Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3(2): 87–98
doi: 10.1016/j.cmet.2006.01.005 pmid: 16459310
16 Csak T, Bala S, Lippai D, Satishchandran A, Catalano D, Kodys K, Szabo G. microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int 2015; 35(2): 532–541
doi: 10.1111/liv.12633 pmid: 25040043
17 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125–1131
doi: 10.1172/JCI0215593 pmid: 11994399
18 Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 2012; 23(2): 65–72
doi: 10.1016/j.tem.2011.10.004 pmid: 22154484
19 Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Näär AM. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328(5985): 1566–1569
doi: 10.1126/science.1189123 pmid: 20466882
20 Dávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suárez Y, Lai EC, Fernández-Hernando C. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108(22): 9232–9237
doi: 10.1073/pnas.1102281108 pmid: 21576456
21 Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, Khatsenko OG, Kaimal V, Lees CJ, Fernandez-Hernando C, Fisher EA, Temel RE, Moore KJ. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478(7369): 404–407
doi: 10.1038/nature10486 pmid: 22012398
22 Goedeke L, Salerno A, Ramírez CM, Guo L, Allen RM, Yin X, Langley SR, Esau C, Wanschel A, Fisher EA, Suárez Y, Baldán A, Mayr M, Fernández-Hernando C. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol Med 2014; 6(9): 1133–1141
doi: 10.15252/emmm.201404046 pmid: 25038053
23 Vega-Badillo J, Gutiérrez-Vidal R, Hernández-Pérez HA, Villamil-Ramírez H, León-Mimila P, Sánchez-Muñoz F, Morán-Ramos S, Larrieta-Carrasco E, Fernández-Silva I, Méndez-Sánchez N, Tovar AR, Campos-Pérez F, Villarreal-Molina T, Hernández-Pando R, Aguilar-Salinas CA, Canizales-Quinteros S. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int 2016 Mar 4. [Epub ahead of print]
doi: 10.1111/liv.13109 pmid: 26945479
24 Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramírez CM, Chamorro-Jorganes A, Wanschel AC, Lasuncion MA, Morales-Ruiz M, Suarez Y, Baldan Á, <?Pub Caret1?>Esplugues E, Fernández-Hernando C. mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012; 11(5): 922–933
doi: 10.4161/cc.11.5.19421 pmid: 22333591
25 Ding J, Li M, Wan X, Jin X, Chen S, Yu C, Li Y. Effect of miR-34a in regulating steatosis by targeting PPARa expression in nonalcoholic fatty liver disease. Sci Rep 2015; 5: 13729
doi: 10.1038/srep13729 pmid: 26330104
26 Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A, Wands JR. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol 2013; 58(4): 785–791
doi: 10.1016/j.jhep.2012.11.042 pmid: 23211317
27 Xu Y, Zalzala M, Xu J, Li Y, Yin L, Zhang Y. A metabolic stress-inducible miR-34a-HNF4a pathway regulates lipid and lipoprotein metabolism. Nat Commun 2015; 6: 7466
doi: 10.1038/ncomms8466 pmid: 26100857
28 Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4α (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21(4): 1393–1403
doi: 10.1128/MCB.21.4.1393-1403.2001 pmid: 11158324
29 Yin L, Ma H, Ge X, Edwards PA, Zhang Y. Hepatic hepatocyte nuclear factor 4a is essential for maintaining triglyceride and cholesterol homeostasis. Arterioscler Thromb Vasc Biol 2011; 31(2): 328–336
doi: 10.1161/ATVBAHA.110.217828 pmid: 21071704
30 Shan W, Gao L, Zeng W, Hu Y, Wang G, Li M, Zhou J, Ma X, Tian X, Yao J.Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease. Cell Death Dis 2015; 6: e1833
doi: 10.1038/cddis.2015.196 pmid: 26203862
31 Sun C, Huang F, Liu X, Xiao X, Yang M, Hu G, Liu H, Liao L. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med 2015; 35(3): 847–853
pmid: 25605429
32 Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol Nutr Food Res 2012; 56(11): 1665–1674
doi: 10.1002/mnfr.201200182 pmid: 22968990
33 Loyer X, Paradis V, Hénique C, Vion AC, Colnot N, Guerin CL, Devue C, On S, Scetbun J, Romain M, Paul JL, Rothenberg ME, Marcellin P, Durand F, Bedossa P, Prip-Buus C, Baugé E, Staels B, Boulanger CM, Tedgui A, Rautou PE. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARa expression. Gut 2015 Sep 3. [Epub ahead of print]
doi: 10.1136/gutjnl-2014-308883 pmid: 26338827
34 Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290(5): G852–G858
doi: 10.1152/ajpgi.00521.2005 pmid: 16603729
35 Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, Seki E. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology 2014; 59(2): 483–495
doi: 10.1002/hep.26698 pmid: 23996730
36 Dattaroy D, Pourhoseini S, Das S, Alhasson F, Seth RK, Nagarkatti M, Michelotti GA, Diehl AM, Chatterjee S. MicroRNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2015; 308(4): G298–G312
doi: 10.1152/ajpgi.00346.2014 pmid: 25501551
37 Wu H, Ng R, Chen X, Steer CJ, Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut 2015 Aug 17. [Epub ahead of print]
doi: 10.1136/gutjnl-2014-308430 pmid: 26282675
38 Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009; 49(4): 1176–1184
doi: 10.1002/hep.22737 pmid: 19072831
39 He Y, Huang C, Lin X, Li J. MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 2013; 95(7): 1355–1359
doi: 10.1016/j.biochi.2013.03.010 pmid: 23542596
40 Pogribny IP, Starlard-Davenport A, Tryndyak VP, Han T, Ross SA, Rusyn I, Beland FA. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab Invest 2010; 90(10): 1437–1446
doi: 10.1038/labinvest.2010.113 pmid: 20548288
41 Mattis AN, Song G, Hitchner K, Kim RY, Lee AY, Sharma AD, Malato Y, McManus MT, Esau CC, Koller E, Koliwad S, Lim LP, Maher JJ, Raffai RL, Willenbring H. A screen in mice uncovers repression of lipoprotein lipase by microRNA-29a as a mechanism for lipid distribution away from the liver. Hepatology 2015; 61(1): 141–152
doi: 10.1002/hep.27379 pmid: 25131933
42 Ahn J, Lee H, Chung CH, Ha T. High fat diet induced downregulation of microRNA-467b increased lipoprotein lipase in hepatic steatosis. Biochem Biophys Res Commun 2011; 414(4): 664–669
doi: 10.1016/j.bbrc.2011.09.120 pmid: 21986524
43 Kurtz CL, Fannin EE, Toth CL, Pearson DS, Vickers KC, Sethupathy P. Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Sci Rep 2015; 5: 12911
doi: 10.1038/srep12911 pmid: 26246194
44 Xiao J, Bei Y, Liu J, Dimitrova-Shumkovska J, Kuang D, Zhou Q, Li J, Yang Y, Xiang Y, Wang F, Yang C, Yang W. miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21. J Cell Mol Med 2016; 20(2): 204–216
doi: 10.1111/jcmm.12733 pmid: 26648452
45 Zhang ZC, Liu Y, Xiao LL, Li SF, Jiang JH, Zhao Y, Qian SW, Tang QQ, Li X. Upregulation of miR-125b by estrogen protects against non-alcoholic fatty liver in female mice. J Hepatol 2015; 63(6): 1466–1475
doi: 10.1016/j.jhep.2015.07.037 pmid: 26272872
46 Ng R, Wu H, Xiao H, Chen X, Willenbring H, Steer CJ, Song G. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology 2014; 60(2): 554–564
doi: 10.1002/hep.27153 pmid: 24677249
47 Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 2009; 50(4): 1152–1161
doi: 10.1002/hep.23100 pmid: 19711427
48 Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20(23): 7392–7402
doi: 10.3748/wjg.v20.i23.7392 pmid: 24966609
49 Povero D, Eguchi A, Li H, Johnson CD, Papouchado BG, Wree A, Messer K, Feldstein AE. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PLoS ONE 2014; 9(12): e113651
doi: 10.1371/journal.pone.0113651 pmid: 25470250
50 Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, Sugimoto K, Ohashi K, Teradaira R, Inoue T, Hamajima N, Hashimoto S. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 2013; 424: 99–103
doi: 10.1016/j.cca.2013.05.021 pmid: 23727030
51 Yamada H, Ohashi K, Suzuki K, Munetsuna E, Ando Y, Yamazaki M, Ishikawa H, Ichino N, Teradaira R, Hashimoto S. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin Chim Acta 2015; 446: 267–271
doi: 10.1016/j.cca.2015.05.002 pmid: 25958847
52 Clarke JD, Sharapova T, Lake AD, Blomme E, Maher J, Cherrington NJ. Circulating microRNA 122 in the methionine and choline-deficient mouse model of non-alcoholic steatohepatitis. J Appl Toxicol 2014; 34(6): 726–732
doi: 10.1002/jat.2960 pmid: 24217942
53 Miyaaki H, Ichikawa T, Kamo Y, Taura N, Honda T, Shibata H, Milazzo M, Fornari F, Gramantieri L, Bolondi L, Nakao K. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int 2014; 34(7): e302–e307
doi: 10.1111/liv.12429 pmid: 24313922
54 Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE 2011; 6(8): e23937
doi: 10.1371/journal.pone.0023937 pmid: 21886843
55 Celikbilek M, Baskol M, Taheri S, Deniz K, Dogan S, Zararsiz G, Gursoy S, Guven K, Ozbakır O, Dundar M, Yucesoy M. Circulating microRNAs in patients with non-alcoholic fatty liver disease. World J Hepatol 2014; 6(8): 613–620
pmid: 25232454
56 Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS ONE 2014; 9(8): e105192
doi: 10.1371/journal.pone.0105192 pmid: 25141008
[1] Nan Ding,Jiafei Xi,Yanming Li,Xiaoyan Xie,Jian Shi,Zhaojun Zhang,Yanhua Li,Fang Fang,Sihan Wang,Wen Yue,Xuetao Pei,Xiangdong Fang. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation[J]. Front. Med., 2016, 10(3): 297-310.
[2] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[3] Zhi Xu,Chunxiang Cao,Haiyan Xia,Shujing Shi,Lingzhi Hong,Xiaowei Wei,Dongying Gu,Jianmin Bian,Zijun Liu,Wenbin Huang,Yixin Zhang,Song He,Nikki Pui-Yue Lee,Jinfei Chen. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma[J]. Front. Med., 2016, 10(1): 52-60.
[4] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[5] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[6] Farhad Sahebjam,John M. Vierling. Autoimmune hepatitis[J]. Front. Med., 2015, 9(2): 187-219.
[7] Guanghua Rong,Wenlin Bai,Zheng Dong,Chunping Wang,Yinying Lu,Zhen Zeng,Jianhui Qu,Min Lou,Hong Wang,Xudong Gao,Xiujuan Chang,Linjing An,Yan Chen,Yongping Yang. Cryotherapy for cirrhosis-based hepatocellular carcinoma: a single center experience from 1595 treated cases[J]. Front. Med., 2015, 9(1): 63-71.
[8] Marielle Reataza,David K. Imagawa. Advances in managing hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 175-189.
[9] Kai Qu,Ting Lin,Zhixin Wang,Sinan Liu,Hulin Chang,Xinsen Xu,Fandi Meng,Lei Zhou,Jichao Wei,Minghui Tai,Yafeng Dong,Chang Liu. Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 227-235.
[10] Du Yan, Han Xue, Pu Rui, Xie Jiaxin, Zhang Yuwei, Cao Guangwen. Association of miRNA-122-binding site polymorphism at the interleukin-1 α gene and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk[J]. Front. Med., 2014, 8(2): 217-226.
[11] Carmen Chak-Lui Wong, Alan Ka-Lun Kai, Irene Oi-Lin Ng. The impact of hypoxia in hepatocellular carcinoma metastasis[J]. Front Med, 2014, 8(1): 33-41.
[12] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[13] Beicheng Sun, Michael Karin. Inflammation and liver tumorigenesis[J]. Front Med, 2013, 7(2): 242-254.
[14] Shuangwei Li, Diane DiFang Hsu, Hongyang Wang, Gen-Sheng Feng. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis[J]. Front Med, 2012, 6(3): 275-279.
[15] Qiang Gao, Yinghong Shi, Xiaoying Wang, Jian Zhou, Shuangjian Qiu, Jia Fan. Translational medicine in hepatocellular carcinoma[J]. Front Med, 2012, 6(2): 122-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed