Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (1) : 92-97    https://doi.org/10.1007/s11684-017-0610-z
RESEARCH ARTICLE |
Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China
Haican Liu1, Yuanyuan Zhang1, Zhiguang Liu1, Jinghua Liu1,2, Yolande Hauck1,2, Jiao Liu1,4, Haiyan Dong1, Jie Liu1, Xiuqin Zhao1, Bing Lu1, Yi Jiang1, Gilles Vergnaud2,5, Christine Pourcel2(), Kanglin Wan1,2,3()
1. State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
2. University Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
3. CNRS, Orsay, France
4. Department of Epidemiology and Health Statistics, Public Health of Central South University, Changsha 421001, China
5. DGA/MRIS-Mission pour la Recherche et l’Innovation Scientifique, Bagneux, France
 Download: PDF(106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Investigations on the genetic diversity of Mycobacterium tuberculosis in China have shown that Beijing genotype strains play a dominant role. To study the association between the M.?tuberculosis Beijing genotype and the drug-resistance phenotype, 1286 M. tuberculosis clinical isolates together with epidemiological and clinical information of patients were collected from the center for tuberculosis (TB) prevention and control or TB hospitals in Beijing municipality and nine provinces or autonomous regions in China. Drug resistance testing was conducted on all the isolates to the four first-line anti-TB drugs (isoniazid, rifampicin, streptomycin, and ethambutol). A total of 585 strains were found to be resistant to at least one of the four anti-TB drugs. The Beijing family strains consisted of 499 (53.20%) drug-sensitive strains and 439 (46.80%) drug-resistant strains, whereas the non-Beijing family strains comprised 202 (58.05%) drug-sensitive strains and 146 (41.95%) drug-resistant strains. No significant difference was observed in prevalence (c2=2.41, P>0.05) between the drug-resistant and drug-sensitive strains among the Beijing family strains. Analysis of monoresistance, multidrug-resistant TB, and geographic distribution of drug resistance did not find any relationships between the M.?tuberculosis Beijing genotype and drug-resistance phenotype in China. Results confirmed that the Beijing genotype, the predominant M. tuberculosis genotype in China, was not associated with drug resistance.

Keywords tuberculosis      drug resistance      genotype      molecular biology     
Corresponding Authors: Christine Pourcel,Kanglin Wan   
Just Accepted Date: 30 November 2017   Online First Date: 05 January 2018    Issue Date: 06 February 2018
 Cite this article:   
Haican Liu,Yuanyuan Zhang,Zhiguang Liu, et al. Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China[J]. Front. Med., 2018, 12(1): 92-97.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0610-z
http://academic.hep.com.cn/fmd/EN/Y2018/V12/I1/92
Drug susceptibility test Beijing Non-Beijing c2 P
Drug susceptibility 499 202 2.41 >0.05
Drug resistance 439 146
Tab.1  Relationship between the Beijing genotype and drug resistance in 10 provinces of China
Kind of resistance Total (%) Beijing Non-Beijing c2 P OR (95% CI)
INH resistance 423 (32.89) 313 110 0.36 P>0.05 1.08 (0.83−1.42)
INH susceptibility 863 (67.11) 625 238
RFP resistance 377 (29.32) 284 93 1.55 P>0.05 1.19 (0.90−1.58)
RFP susceptibility 909 (70.68) 654 255
EMB resistance 168 (13.06) 118 50 0.71 P>0.05 0.86 (0.59−1.24)
EMB susceptibility 1118 (86.94) 820 298
SM resistance 353 (27.45) 269 84 2.63 P>0.05 1.26 (0.94−1.69)
SM susceptibility 933 (72.55) 669 264
Tab.2  Comparison of the relationship between the Beijing genotype and single-drug resistance to four drugs
Province Drug susceptibility test Total (%) Beijing (%) Non-Beijing (%) c2 P OR (95% CI)
Total of 10 provinces Drug susceptibility 701 (54.51) 499 (53.19) 202 (58.04)
Mono-drug resistance 153 (11.90) 119 (12.68) 34 (9.77) 2.730 0.098 0.706 (0.466–1.069)
Multidrug resistance 432 (33.59) 320 (34.11) 112 (32.18) 1.114 0.291 0.865 (0.660–1.133)
Beijing Drug susceptibility 81 (77.88) 76 (77.55) 5 (83.33)
Mono-drug resistance 11 (10.58) 10 (10.20) 1 (16.66) 0.545* 1.520 (0.161–14.364)
Multidrug resistance 12 (11.54) 12 (12.24) 0 (0.00) 1.000* 0.938 (0.887–0.992)
Tibet Drug susceptibility 73 (33.80) 68 (34.87) 5 (23.80)
Mono-drug resistance 24 (11.11) 22 (11.28) 2 (9.52) 0.000 1.000 1.236 (0.224–6.828)
Multidrug resistance 119 (50.09) 105 (53.84) 14 (66.66) 1.226 0.268 1.813 (0.625–2.264)
Jilin Drug susceptibility 5 (16.67) 5 (19.23) 0 (0.00)
Mono-drug resistance 3 (10.00) 3 (11.53) 0 (0.00)
Multidrug resistance 22 (73.33) 18 (69.23) 4 (100.00) 0.561* 1.222 (1.004–1.488)
Gansu Drug susceptibility 72 (45.57) 61 (45.52) 11 (45.83)
Mono-drug resistance 46 (29.11) 39 (29.10) 7 (29.16) 0.000 0.993 0.995 (0.356–2.786)
Multidrug resistance 40 (25.32) 34 (25.37) 6 (25.00) 0.002 0.969 0.979 (0.332–2.880)
Henan Drug susceptibility 43 (59.72) 36 (59.01) 7 (63.63)
Mono-drug resistance 9 (12.50) 7 (11.47) 2 (18.18) 0.000 1.000 1.469 (0.251–8.607)
Multidrug resistance 20 (27.78) 18 (29.50) 2 (18.18) 0.076 0.782 0.571 (0.108–3.036)
Hunan Drug susceptibility 50 (61.73) 37 (66.07) 13 (52.00)
Mono-drug resistance 7 (8.64) 4 (7.14) 3 (12.00) 0.231 0.631 2.135 (0.420–10.839)
Multidrug resistance 24 (29.63) 15 (26.78) 9 (36.00) 1.027 0.311 1.708 (0.603–4.833)
Xinjiang Drug susceptibility 121 (66.12) 79 (65.83) 42 (66.66)
Mono-drug resistance 22 (12.02) 12 (10.00) 10 (15.87) 0.929 0.335 1.567 (0.625–3.929)
Multidrug resistance 40 (21.86) 29 (24.16) 11 (17.46) 0.708 0.400 0.713 (0.324–1.570)
Sichuan Drug susceptibility 12 (20.00) 6 (17.14) 6 (24.00)
Mono-drug resistance 3 (5.00) 2 (5.71) 1 (4.00) 0.000 1.000 0.500 (0.035–7.104)
Multidrug resistance 45 (75.00) 27 (77.14) 18 (72.00) 0.389 0.533 0.667 (0.186–2.396)
Fujian Drug susceptibility 98 (55.37) 54 (54.00) 44 (57.14)
Mono-drug resistance 1 (0.56) 1 (1.00) 0 (0.00) 1.000* 0.551 (0.461–0.659)
Multidrug resistance 78 (44.07) 45 (45.00) 33 (42.85) 0.118 0.731 0.900 (0.494–1.640)
Guangxi Drug susceptibility 145 (70.73) 76 (67.25) 69 (75.00)
Mono-drug resistance 27 (13.17) 19 (16.81) 8 (8.69) 2.968 0.085 0.464 (0.191–1.127)
Multidrug resistance 33 (16.10) 18 (15.92) 15 (16.30) 0.049 0.825 0.918 (0.430–1.960)
Total 1286 938 348
Tab.3  Comparison of the relationship between the Beijing genotype and drug resistance in 10 provinces of China
1 van Soolingen D,  Qian L, de Haas  PE, Douglas JT,  Traore H,  Portaels F,  Qing HZ,  Enkhsaikan D,  Nymadawa P,  van Embden JD. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 1995; 33(12): 3234–3238
pmid: 8586708
2 Mokrousov I, Ly  HM, Otten T,  Lan NN, Vyshnevskyi  B, Hoffner S,  Narvskaya O. Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res 2005; 15(10): 1357–1364
https://doi.org/10.1101/gr.3840605 pmid: 16169923
3 Qian L, Van Embden  JD, Van Der Zanden  AG, Weltevreden EF,  Duanmu H,  Douglas JT. Retrospective analysis of the Beijing family of Mycobacterium tuberculosis in preserved lung tissues. J Clin Microbiol 1999; 37(2): 471–474
pmid: 9889247
4 Li WM, Wang  SM, Li CY,  Liu YH, Shen  GM, Zhang XX,  Niu TG, Gao  Q, van Soolingen D, Kremer K,  Duanmu HJ. Molecular epidemiology of Mycobacterium tuberculosis in China: a nationwide random survey in 2000. Int J Tuberc Lung Dis 2005; 9(12): 1314–1319
pmid: 16466052
5 Wan K, Liu  J, Hauck Y,  Zhang Y,  Liu J, Zhao  X, Liu Z,  Lu B, Dong  H, Jiang Y,  Kremer K,  Vergnaud G,  van Soolingen D,  Pourcel C. Investigation on Mycobacterium tuberculosis diversity in China and the origin of the Beijing clade. PLoS One 2011; 6(12): e29190
https://doi.org/10.1371/journal.pone.0029190 pmid: 22220207
6 WHO. Global Tuberculosis Report, 2016. 1st ed. Geneva: World Health Organization, 2016
7 Cox HS, Kubica  T, Doshetov D,  Kebede Y,  Rüsch-Gerdess S,  Niemann S. The Beijing genotype and drug resistant tuberculosis in the Aral Sea region of Central Asia. Respir Res 2005; 6(1): 134
https://doi.org/10.1186/1465-9921-6-134 pmid: 16277659
8 Sun YJ, Lee  AS, Wong SY,  Heersma H,  Kremer K,  van Soolingen D,  Paton NI. Genotype and phenotype relationships and transmission analysis of drug-resistant tuberculosis in Singapore. Int J Tuberc Lung Dis 2007; 11(4): 436–442
pmid: 17394691
9 Toungoussova OS, Sandven  P, Mariandyshev AO,  Nizovtseva NI,  Bjune G,  Caugant DA. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel Oblast, Russia. J Clin Microbiol 2002; 40(6): 1930–1937
https://doi.org/10.1128/JCM.40.6.1930-1937.2002 pmid: 12037045
10 Krüüner A,  Hoffner SE,  Sillastu H,  Danilovits M,  Levina K,  Svenson SB,  Ghebremichael S,  Koivula T,  Källenius G. Spread of drug-resistant pulmonary tuberculosis in Estonia. J Clin Microbiol 2001; 39(9): 3339–3345
https://doi.org/10.1128/JCM.39.9.3339-3345.2001 pmid: 11526173
11 Rieder HL, Chonde  TM, Myking H,  Urbanczik R,  Laszlo A,  Kim S, Van Deun  A. The public health service national tuberculosis reference laboratory and the national laboratory network: minimum requirements, role and operation in a low-income country. International Union Against Tuberculosis And Lung Disease (IUATLD), 1998. 68
12 Driscoll JR, Bifani  PJ, Mathema B,  McGarry MA,  Zickas GM,  Kreiswirth BN,  Taber HW. Spoligologos: a bioinformatic approach to displaying and analyzing Mycobacterium tuberculosis data. Emerg Infect Dis 2002; 8(11): 1306–1309
https://doi.org/10.3201/eid0811.020174 pmid: 12453361
13 Filliol I, Motiwala  AS, Cavatore M,  Qi W, Hazbón  MH, Bobadilla del Valle  M, Fyfe J,  García-García L,  Rastogi N,  Sola C, Zozio  T, Guerrero MI,  León CI,  Crabtree J,  Angiuoli S,  Eisenach KD,  Durmaz R,  Joloba ML,  Rendón A,  Sifuentes-Osornio J,  Ponce de León A, Cave MD,  Fleischmann R,  Whittam TS,  Alland D. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 2006; 188(2): 759–772
https://doi.org/10.1128/JB.188.2.759-772.2006 pmid: 16385065
14 Bifani PJ, Mathema  B, Kurepina NE,  Kreiswirth BN. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 2002; 10(1): 45–52
https://doi.org/10.1016/S0966-842X(01)02277-6 pmid: 11755085
15 Glynn JR, Whiteley  J, Bifani PJ,  Kremer K,  van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 2002; 8(8): 843–849
https://doi.org/10.3201/eid0805.020002 pmid: 12141971
16 Filliol I, Driscoll  JR, van Soolingen D, Kreiswirth BN,  Kremer K,  Valétudie G,  Dang DA,  Barlow R,  Banerjee D,  Bifani PJ,  Brudey K,  Cataldi A,  Cooksey RC,  Cousins DV,  Dale JW,  Dellagostin OA,  Drobniewski F,  Engelmann G,  Ferdinand S,  Gascoyne-Binzi D,  Gordon M,  Gutierrez MC,  Haas WH,  Heersma H,  Kassa-Kelembho E,  Ho ML, Makristathis  A, Mammina C,  Martin G,  Moström P,  Mokrousov I,  Narbonne V,  Narvskaya O,  Nastasi A,  Niobe-Eyangoh SN,  Pape JW,  Rasolofo-Razanamparany V,  Ridell M,  Rossetti ML,  Stauffer F,  Suffys PN,  Takiff H,  Texier-Maugein J,  Vincent V,  de Waard JH,  Sola C, Rastogi  N. Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 2003; 41(5): 1963–1970
https://doi.org/10.1128/JCM.41.5.1963-1970.2003 pmid: 12734235
17 Ebrahimi-Rad M, Bifani  P, Martin C,  Kremer K,  Samper S,  Rauzier J,  Kreiswirth B,  Blazquez J,  Jouan M,  van Soolingen D,  Gicquel B. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis 2003; 9(7): 838–845
https://doi.org/10.3201/eid0907.020803 pmid: 12890325
18 Bifani PJ, Mathema  B, Liu Z,  Moghazeh SL,  Shopsin B,  Tempalski B,  Driscol J,  Frothingham R,  Musser JM,  Alcabes P,  Kreiswirth BN. Identification of a W variant outbreak of Mycobacterium tuberculosis via population-based molecular epidemiology. JAMA 1999; 282(24): 2321–2327
https://doi.org/10.1001/jama.282.24.2321 pmid: 10612319
19 Bifani P, Mathema  B, Campo M,  Moghazeh S,  Nivin B,  Shashkina E,  Driscoll J,  Munsiff SS,  Frothingham R,  Kreiswirth BN. Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug-resistant W strain. Emerg Infect Dis 2001; 7(5): 842–848
https://doi.org/10.3201/eid0705.010512 pmid: 11747697
20 Anh DD, Borgdorff  MW, Van LN,  Lan NT, van Gorkom  T, Kremer K,  van Soolingen D. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerg Infect Dis 2000; 6(3): 302–305
https://doi.org/10.3201/eid0603.000312 pmid: 10827122
21 van Crevel R, Parwati  I, Sahiratmadja E,  Marzuki S,  Ottenhoff TH,  Netea MG,  van der Ven A,  Nelwan RH,  van der Meer JW,  Alisjahbana B,  van de Vosse E. Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis 2009; 200(11): 1671–1674
https://doi.org/10.1086/648477 pmid: 19863441
22 Laserson KF, Osorio  L, Sheppard JD,  Hernández H,  Benitez AM,  Brim S, Woodley  CL, Hazbón MH,  Villegas MV,  Castaño MC,  Henriquez N,  Rodriguez E,  Metchock B,  Binkin NJ. Clinical and programmatic mismanagement rather than community outbreak as the cause of chronic, drug-resistant tuberculosis in Buenaventura, Colombia, 1998. Int J Tuberc Lung Dis 2000; 4(7): 673–683
pmid: 10907771
[1] Chongguang Yang, Qian Gao. Recent transmission of Mycobacterium tuberculosis in China: the implication of molecular epidemiology for tuberculosis control[J]. Front. Med., 2018, 12(1): 76-83.
[2] Peter B. Alexander,Xiao-Fan Wang. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies[J]. Front. Med., 2015, 9(2): 134-138.
[3] Hui Li,Ran Li,Jiuxin Qu,Xiaomin Yu,Zhixin Cao,Yingmei Liu,Bin Cao. Ventricular tachycardia in a disseminated MDR-TB patient: a case report and brief review of literature[J]. Front. Med., 2014, 8(2): 259-263.
[4] Douglas D. Fang, Joan Cao, Jitesh P. Jani, Konstantinos Tsaparikos, Alessandra Blasina, Jill Kornmann, Maruja E. Lira, Jianying Wang, Zuzana Jirout, Justin Bingham, Zhou Zhu, Yin Gu, Gerrit Los, Zdenek Hostomsky, Todd VanArsdale. Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line[J]. Front Med, 2013, 7(4): 462-476.
[5] Xu Chen, Xiaomao Xu, Fei Xiao. Heterogeneity of chronic obstructive pulmonary disease: from phenotype to genotype[J]. Front Med, 2013, 7(4): 425-432.
[6] Xiangwei Li, Yu Yang, Jianmin Liu, Feng Zhou, Wei Cui, Ling Guan, Fei Shen, Cong Gao, Mufei Li, Qi Jin, Lei Gao. Treatment outcomes of pulmonary tuberculosis in the past decade in the mainland of China: a meta-analysis[J]. Front Med, 2013, 7(3): 354-366.
[7] Fung Zhao, Eric W.-F. Lam. Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance[J]. Front Med, 2012, 6(4): 376-380.
[8] Jia-Xin XIE, Jian-Hua YIN, Qi ZHANG, Rui PU, Wen-Ying LU, Hong-Wei ZHANG, Guang-Wen CAO, Jun ZHAO, Hong-Yang WANG, . Association of novel mutations and heplotypes in the preS region of hepatitis B virus with hepatocellular carcinoma[J]. Front. Med., 2010, 4(4): 419-429.
[9] Shi-Ming CHENG MD, Yu-Ji LAI MS, Er-Yong LIU MS, Lin ZHOU MD, Xue-Jing WANG MS, Qiu-Lan CHEN MS, Dong-Ming LI MS, Ning WANG MD, . Study on factors affecting TB/HIV co-infection in four counties of China[J]. Front. Med., 2010, 4(2): 185-191.
[10] Rong WANG, Shangwei WU, Xue LI, Ping HE, Yunde LIU. Detection of AmpC β-lactamase and drug resistance of Enterobacter cloacae[J]. Front Med Chin, 2009, 3(1): 72-75.
[11] ZHANG Tiejun, ZHOU Xiaoming, ZHANG Tao, YU Shunzhang, JIANG Qingwu, CHEN Yue. Using RAPD in genotyping and transmission detection[J]. Front. Med., 2008, 2(3): 269-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed