Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (5) : 511-530    https://doi.org/10.1007/s11684-019-0711-y
REVIEW
The FGF metabolic axis
Xiaokun Li()
School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
 Download: PDF(1070 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are important for bone health and systemic mineral balance. The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs. Thus, the term “FGF Metabolic Axis,” which distinguishes the unique pathways and functions of endocrine FGFs from other autocrine/paracrine mitogenic FGFs, is coined.

Keywords FGF19      FGF21      FGF23      FGFR      metabolism      endocrine      Klotho     
Corresponding Author(s): Xiaokun Li   
Just Accepted Date: 06 August 2019   Online First Date: 11 September 2019    Issue Date: 14 October 2019
 Cite this article:   
Xiaokun Li. The FGF metabolic axis[J]. Front. Med., 2019, 13(5): 511-530.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0711-y
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I5/511
Fig.1  Scheme of FGF metabolic axis evolution. The FGF family originates from a common FGF13-like ancestor molecule in early metazoans that bifurcates into the so-called intracrine FGF-homologous factor (FHF) subgroup (black arrow), including FGF11, 12, 13, and 14 (not shown), and FGF4-like molecule, which continues to bifurcate into two major functional subgroups with diverging structural and functional specifications. The so-called mitogenic FGF subgroups, including the FGF5, 8, 9, and 10 subfamilies (red arrows, Table 1), bind extracellular matrix heparan sulfate and drive autocrine/paracrine mitogenic signal axes to promote cell proliferation and population growth. By contrast, the endocrine FGF subgroup members (green arrow, Table 2), including FGF19, 21, and 23, drive metabolic signal axes that elicit broad-spectrum functions in regulating the metabolic homeostasis of bile acid, lipids, glucose, energy, and minerals without direct proliferation-promoting activity. However, both the FGF mitogenic and FGF metabolic axes are designed to promote cell and organismal survival in the vertebrates (orange arrows and blue-colored font).
Subfamily Ligand member Physiological function (knockout phenotypes) Known pathologies Receptor specificity
1b 1c 2b 2c 3b 3c 4
FGF1 FGF1 Adipose tissue homeostasis Amplification — ovarian cancer
FGF2 Wound healing and angiogenesis Overexpression — several cancer types
FGF4 FGF4 Limb bud and heart development Amplification — breast cancer
FGF5 Hair follicle growth and development Overexpression — glioblastoma
FGF6 Muscle development and regeneration Overexpression — prostate cancer
FGF7 FGF3 Inner ear and skeleton development 1. Missense mutation — Michel aplasia, LAMM syndrome
2. Haploinsufficiency — otodental syndrome
3. Amplification — breast cancer
FGF7 Branching morphogenesis 1. Polymorphism — COPD
2. Overexpression — lung adenocarcinoma
FGF10 1. Lung branching morphogenesis
2. Inner ear development
3. Hair follicle development
4. Fore and hind limb
1. Polymorphism — myopia
2. Nonsense mutation— LADD syndrome and ALSG
3. Overexpression — breast and prostate cancer
FGF22 Synaptogenesis Undefined
FGF8 FGF8 Brain, eye, ear, limb bud, kidney, and heart development 1. Missense mutation — cleft lip and palate, holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction
2. Nonsense mutation — familial hypogonadotropic hypogonadism
FGF17 Cerebellum and frontal cortex development 1. Missense mutation — familial hypogonadotropic hypogonadism
2. Overexpression — liver and prostate cancer
FGF18 Lung alveolar and bone, CNS, skeletal, and palate development 1. Polymorphism — cleft lip and palate
2. Overexpression — liver cancer
FGF9 FGF9 Inner ear, gonad, and kidney development 1. Promoter mutation — sertoli cell-only syndrome
2. Missense mutation — multisynostosis syndrome
3. Mutations — colorectal and endometrial cancers
4. Overexpression — lung cancer
FGF16 Heart development 1. Nonsense mutation — 4-5 metacarpal fusion
2. Overexpression — ovarian cancer
FGF20 Kidney, hair, teeth, cochlea, and central nervous development 1. Frame-shift mutation — bilateral renal agenesis
2. Polymorphism — risk of Parkinson’s disease
Tab.1  The mitogenic FGF axis
Subfamily Members of ligands Physiological function (knockout phenotypes) Known pathologies Receptor specificity
1b 1c 2b 2c 3b 3c 4 KL KLB
FGF19 FGF19 1. Bile acid metabolism
2. Gall bladder filling
3. Lipid and energy metabolism
1. Bile acid diarrhea, IBD
2. Cholestasis
3. Overexpression — liver cancer
FGF21 1. Lipid metabolism — lipolysis, fatty acid oxidation, lipogenesis
2. Energy metabolism — uncoupling thermogenesis
3. Macronutrient preference
4. Starvation response and associated physiology
5. Insulin sensitivity and glucose homeostasis
1. Obesity
2. Diabetes
3. NAFLD
4. Hyperlipidemia
5. Metabolic syndrome
6. Pancreatitis
FGF23 Phosphate, calcium, sodium, and vitamin D homeostasis 1. Activation mutation — autosomal dominant hypophosphatemic rickets and tumor-induced osteomalacia
2. Inactivation mutation — familial tumoral calcinosis
3. Increase — X-linked dominant hypophosphatemia, CKD
4. Decrease — GALNT3-related familial tumoral calcinosis
Tab.2  The metabolic FGF axis.
Fig.2  FGF19 metabolic axis. The major FGF19 metabolic axis drives a temporal interorgan crosstalk from the ileum to the liver in response to the increase in postprandial serum and transintestinal flux of bile acids to discontinue the biosynthesis of new bile acids after sufficient food digestion, thereby preventing the prolonged exposure of tissues to potential bile acid toxicity. Pharmacological FGF19 may also initiate multiple signal axes to drive effects on multiple tissues/organs, such as promoting (green arrow) energy expenditure in white and brown adipose tissues, increasing muscle mass and insulin sensitivity, and preventing (red long-tailed “T” sign) systemic hyperglycemia and hyperlipidemia. FAA: free fatty acids.
Fig.3  FGF21 metabolic axis. The liver is the major organ of origin of endocrine FGF21 in response to a broad spectrum of stress conditions. The hepatic and pharmacological FGF21 drive multiple signal axes in multiple tissues/organs, resulting in multifaceted beneficiary metabolic effects, including promoting (green arrow) glucose, lipid, and energy homeostasis; offsetting metabolic derangements; and preventing (red long-tailed “T” sign) metaflammation, inflammatory tissue damage, and tissue-specific pathogenesis, including obesity, type 2 diabetes, fatty liver disease, metabolic syndrome, and associated comorbidities. FAA: free fatty acids. Black semicircular arrows indicate possibility of paracrine mode of FGF21 within local tissue environment.
Fig.4  FGF23 metabolic axis. The bone-derived FGF23 drives signal axes to promote (green arrows) the metabolic homeostasis of phosphate, vitamin D, and calcium through a complex interorgan crosstalk network for bone health and systemic mineral balance. The bone to the kidney axis of FGF23 is central to the metabolic roles of FGF23, which inhibits (red long-tailed “T” sign) the reabsorption of phosphate and the production of active calcitriol in renal proximal tubules while increasing the calcium and sodium reabsorption in renal distal tubules. The bone to parathyroid axis of FGF23 inhibits the production and secretion of parathyroid hormone that also plays critical roles in mineral and vitamin D balance.
1 A Beenken, M Mohammadi. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8(3): 235–253
https://doi.org/10.1038/nrd2792 pmid: 19247306
2 Y Luo, S Ye, X Li, W Lu. Emerging structure-function paradigm of endocrine FGFs in metabolic diseases. Trends Pharmacol Sci 2019; 40(2): 142–153
https://doi.org/10.1016/j.tips.2018.12.002 pmid: 30616873
3 X Li, C Wang, J Xiao, WL McKeehan, F Wang. Fibroblast growth factors, old kids on the new block. Semin Cell Dev Biol 2016; 53: 155–167
https://doi.org/10.1016/j.semcdb.2015.12.014 pmid: 26768548
4 AE Eriksson, LS Cousens, LH Weaver, BW Matthews. Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci USA 1991; 88(8): 3441–3445
https://doi.org/10.1073/pnas.88.8.3441 pmid: 1707542
5 G Chen, Y Liu, R Goetz, L Fu, S Jayaraman, MC Hu, OW Moe, G Liang, X Li, M Mohammadi. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 2018; 553(7689): 461–466
https://doi.org/10.1038/nature25451 pmid: 29342138
6 C Degirolamo, C Sabbà, A Moschetta. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2016; 15(1): 51–69
https://doi.org/10.1038/nrd.2015.9 pmid: 26567701
7 Y Luo, S Ye, X Chen, F Gong, W Lu, X Li. Rush to the fire: FGF21 extinguishes metabolic stress, metaflammation and tissue damage. Cytokine Growth Factor Rev 2017; 38: 59–65
https://doi.org/10.1016/j.cytogfr.2017.08.001 pmid: 28887067
8 WL McKeehan, F Wang, M Kan. The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 1998; 59: 135–176
https://doi.org/10.1016/S0079-6603(08)61031-4 pmid: 9427842
9 N Itoh, DM Ornitz. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004; 20(11): 563–569
https://doi.org/10.1016/j.tig.2004.08.007 pmid: 15475116
10 N Itoh, DM Ornitz. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2011; 149(2): 121–130
https://doi.org/10.1093/jb/mvq121 pmid: 20940169
11 Y Luo, W Lu, X Li. Unraveling endocrine FGF signaling complex to combat metabolic diseases. Trends Biochem Sci 2018; 43(8): 563–566
https://doi.org/10.1016/j.tibs.2018.05.001 pmid: 29895507
12 X Zhang, OA Ibrahimi, SK Olsen, H Umemori, M Mohammadi, DM Ornitz. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006; 281(23): 15694–15700
https://doi.org/10.1074/jbc.M601252200 pmid: 16597617
13 HA Armelin. Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci USA 1973; 70(9): 2702–2706
https://doi.org/10.1073/pnas.70.9.2702 pmid: 4354860
14 D Gospodarowicz. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 1974; 249(453): 123–127
https://doi.org/10.1038/249123a0 pmid: 4364816
15 WH Burgess, T Maciag. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989; 58(1): 575–606
https://doi.org/10.1146/annurev.bi.58.070189.003043 pmid: 2549857
16 Y Luo, S Ye, M Kan, WL McKeehan. Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 2006; 281(30): 21052–21061
https://doi.org/10.1074/jbc.M601559200
17 D Gospodarowicz, CR Ill, PJ Hornsby, GN Gill. Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology 1977; 100(4): 1080–1089
https://doi.org/10.1210/endo-100-4-1080 pmid: 189990
18 SL Mansour, JM Goddard, MR Capecchi. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 1993; 117(1): 13–28
pmid: 8223243
19 C Guo, Y Sun, B Zhou, RM Adam, X Li, WT Pu, BE Morrow, A Moon, X Li. A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Invest 2011; 121(4): 1585–1595
https://doi.org/10.1172/JCI44630 pmid: 21364285
20 DM Ornitz, PJ Marie. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev 2015; 29(14): 1463–1486
https://doi.org/10.1101/gad.266551.115 pmid: 26220993
21 M Kan, F Wang, J Xu, JW Crabb, J Hou, WL McKeehan. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993; 259(5103): 1918–1921
https://doi.org/10.1126/science.8456318 pmid: 8456318
22 S Ye, Y Luo, W Lu, RB Jones, RJ Linhardt, I Capila, T Toida, M Kan, H Pelletier, WL McKeehan. Structural basis for interaction of FGF-1, FGF-2, and FGF-7 with different heparan sulfate motifs. Biochemistry 2001; 40(48): 14429–14439
https://doi.org/10.1021/bi011000u pmid: 11724555
23 R Goetz, M Mohammadi. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 2013; 14(3): 166–180
https://doi.org/10.1038/nrm3528 pmid: 23403721
24 H Kouhara, YR Hadari, T Spivak-Kroizman, J Schilling, D Bar-Sagi, I Lax, J Schlessinger. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997; 89(5): 693–702
https://doi.org/10.1016/S0092-8674(00)80252-4 pmid: 9182757
25 Z Huang, WM Marsiglia, U Basu Roy, N Rahimi, D Ilghari, H Wang, H Chen, W Gai, S Blais, TA Neubert, A Mansukhani, NJ Traaseth, X Li, M Mohammadi. Two FGF receptor kinase molecules act in concert to recruit and transphosphorylate phospholipase Cg. Mol Cell 2016; 61(1): 98–110
https://doi.org/10.1016/j.molcel.2015.11.010 pmid: 26687682
26 K Dorey, E Amaya. FGF signalling: diverse roles during early vertebrate embryogenesis. Development 2010; 137(22): 3731–3742
https://doi.org/10.1242/dev.037689 pmid: 20978071
27 W Lu, Y Luo, M Kan, WL McKeehan. Fibroblast growth factor-10. A second candidate stromal to epithelial cell andromedin in prostate. J Biol Chem 1999; 274(18): 12827–12834
https://doi.org/10.1074/jbc.274.18.12827 pmid: 10212269
28 C Jin, F Wang, X Wu, C Yu, Y Luo, WL McKeehan. Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors. Cancer Res 2004; 64(13): 4555–4562
https://doi.org/10.1158/0008-5472.CAN-03-3752 pmid: 15231666
29 EP Carter, AE Fearon, RP Grose. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol 2015; 25(4): 221–233
https://doi.org/10.1016/j.tcb.2014.11.003 pmid: 25467007
30 JD Goldberg, J Zheng, H Castro-Malaspina, AA Jakubowski, G Heller, MR van den Brink, MA Perales. Palifermin is efficacious in recipients of TBI-based but not chemotherapy-based allogeneic hematopoietic stem cell transplants. Bone Marrow Transplant 2013; 48(1): 99–104
https://doi.org/10.1038/bmt.2012.115 pmid: 22750997
31 H Uchi, A Igarashi, K Urabe, T Koga, J Nakayama, R Kawamori, K Tamaki, H Hirakata, T Ohura, M Furue. Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol 2009; 19(5): 461–468
pmid: 19638336
32 S Akita, K Akino, T Imaizumi, A Hirano. Basic fibroblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair Regen 2008; 16(5): 635–641
https://doi.org/10.1111/j.1524-475X.2008.00414.x pmid: 19128258
33 X Fu, Z Shen, Y Chen, J Xie, Z Guo, M Zhang, Z Sheng. Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. Lancet 1998; 352(9141): 1661–1664
https://doi.org/10.1016/S0140-6736(98)01260-4 pmid: 9853438
34 L Maddaluno, C Urwyler, S Werner. Fibroblast growth factors: key players in regeneration and tissue repair. Development 2017; 144(22): 4047–4060
https://doi.org/10.1242/dev.152587 pmid: 29138288
35 YZ Zhao, M Zhang, HL Wong, XQ Tian, L Zheng, XC Yu, FR Tian, KL Mao, ZL Fan, PP Chen, XK Li, CT Lu. Prevent diabetic cardiomyopathy in diabetic rats by combined therapy of aFGF-loaded nanoparticles and ultrasound-targeted microbubble destruction technique. J Control Release 2016; 223: 11–21
https://doi.org/10.1016/j.jconrel.2015.12.030 pmid: 26712588
36 G Liang, L Song, Z Chen, Y Qian, J Xie, L Zhao, Q Lin, G Zhu, Y Tan, X Li, M Mohammadi, Z Huang. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int 2018; 93(1): 95–109
https://doi.org/10.1016/j.kint.2017.05.013 pmid: 28750927
37 R Li, Y Li, Y Wu, Y Zhao, H Chen, Y Yuan, K Xu, H Zhang, Y Lu, J Wang, X Li, X Jia, J Xiao. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats. Biomaterials 2018; 168: 24–37
https://doi.org/10.1016/j.biomaterials.2018.03.044 pmid: 29609091
38 J Wu, J Zhu, C He, Z Xiao, J Ye, Y Li, A Chen, H Zhang, X Li, L Lin, Y Zhao, J Zheng, J Xiao. Comparative study of heparin-poloxamer hydrogel modified bFGF and aFGF for in vivo wound healing efficiency. ACS Appl Mater Interfaces 2016; 8(29): 18710–18721
https://doi.org/10.1021/acsami.6b06047 pmid: 27384134
39 J Wu, J Ye, J Zhu, Z Xiao, C He, H Shi, Y Wang, C Lin, H Zhang, Y Zhao, X Fu, H Chen, X Li, L Li, J Zheng, J Xiao. Heparin-based coacervate of FGF2 improves dermal regeneration by asserting a synergistic role with cell proliferation and endogenous facilitated VEGF for cutaneous wound healing. Biomacromolecules 2016; 17(6): 2168–2177
https://doi.org/10.1021/acs.biomac.6b00398 pmid: 27196997
40 Q Wang, Y He, Y Zhao, H Xie, Q Lin, Z He, X Wang, J Li, H Zhang, C Wang, F Gong, X Li, H Xu, Q Ye, J Xiao. A thermosensitive heparin-poloxamer hydrogel bridges aFGF to treat spinal cord injury. ACS Appl Mater Interfaces 2017; 9(8): 6725–6745
https://doi.org/10.1021/acsami.6b13155 pmid: 28181797
41 M Katoh. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol Sci 2016; 37(12): 1081–1096
https://doi.org/10.1016/j.tips.2016.10.003 pmid: 27992319
42 G Liang, Z Liu, J Wu, Y Cai, X Li. Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol Sci 2012; 33(10): 531–541
https://doi.org/10.1016/j.tips.2012.07.001 pmid: 22884522
43 P Cuevas, F Carceller, S Ortega, M Zazo, I Nieto, G Giménez-Gallego. Hypotensive activity of fibroblast growth factor. Science 1991; 254(5035): 1208–1210
https://doi.org/10.1126/science.1957172 pmid: 1957172
44 M Konishi, T Mikami, M Yamasaki, A Miyake, N Itoh. Fibroblast growth factor-16 is a growth factor for embryonic brown adipocytes. J Biol Chem 2000; 275(16): 12119–12122
https://doi.org/10.1074/jbc.275.16.12119 pmid: 10766846
45 IC Rulifson, P Collins, L Miao, D Nojima, KJ Lee, M Hardy, J Gupte, K Hensley, K Samayoa, C Cam, JB Rottman, M Ollmann, WG Richards, Y Li. In vitro and in vivo analyses reveal profound effects of fibroblast growth factor 16 as a metabolic regulator. J Biol Chem 2017; 292(5): 1951–1969
https://doi.org/10.1074/jbc.M116.751404 pmid: 28011645
46 JW Jonker, JM Suh, AR Atkins, M Ahmadian, P Li, J Whyte, M He, H Juguilon, YQ Yin, CT Phillips, RT Yu, JM Olefsky, RR Henry, M Downes, RMA Evans. A PPARg-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 2012; 485(7398): 391–394
https://doi.org/10.1038/nature10998 pmid: 22522926
47 Z Huang, Y Tan, J Gu, Y Liu, L Song, J Niu, L Zhao, L Srinivasan, Q Lin, J Deng, Y Li, DJ Conklin, TA Neubert, L Cai, X Li, M Mohammadi. Uncoupling the mitogenic and metabolic functions of FGF1 by tuning FGF1-FGF receptor dimer stability. Cell Reports 2017; 20(7): 1717–1728
https://doi.org/10.1016/j.celrep.2017.06.063 pmid: 28813681
48 MK Badman, P Pissios, AR Kennedy, G Koukos, JS Flier, E Maratos-Flier. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5(6): 426–437
https://doi.org/10.1016/j.cmet.2007.05.002 pmid: 17550778
49 T Inagaki, M Choi, A Moschetta, L Peng, CL Cummins, JG McDonald, G Luo, SA Jones, B Goodwin, JA Richardson, RD Gerard, JJ Repa, DJ Mangelsdorf, SA Kliewer. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2(4): 217–225
https://doi.org/10.1016/j.cmet.2005.09.001 pmid: 16213224
50 T Inagaki, P Dutchak, G Zhao, X Ding, L Gautron, V Parameswara, Y Li, R Goetz, M Mohammadi, V Esser, JK Elmquist, RD Gerard, SC Burgess, RE Hammer, DJ Mangelsdorf, SA Kliewer. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5(6): 415–425
https://doi.org/10.1016/j.cmet.2007.05.003 pmid: 17550777
51 A Kharitonenkov, TL Shiyanova, A Koester, AM Ford, R Micanovic, EJ Galbreath, GE Sandusky, LJ Hammond, JS Moyers, RA Owens, J Gromada, JT Brozinick, ED Hawkins, VJ Wroblewski, DS Li, F Mehrbod, SR Jaskunas, AB Shanafelt. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115(6): 1627–1635
https://doi.org/10.1172/JCI23606 pmid: 15902306
52 R Goetz, M Ohnishi, X Ding, H Kurosu, L Wang, J Akiyoshi, J Ma, W Gai, Y Sidis, N Pitteloud, OM Kuro, MS Razzaque, M Mohammadi. Klotho co-receptors inhibit signaling by paracrine FGF8 subfamily ligands. Mol Cell Biol 32(10):1944–1954
https://doi.org/10.1128/MCB.06603-11 pmid: 22451487
53 Y Luo, C Yang, W Lu, R Xie, C Jin, P Huang, F Wang, WL McKeehan. Metabolic regulator βKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation. J Biol Chem 2010; 285(39): 30069–30078
https://doi.org/10.1074/jbc.M110.148288
54 M Itoh, JC Nacher, K Kuma, S Goto, M Kanehisa. Evolutionary history and functional implications of protein domains and their combinations in eukaryotes. Genome Biol 2007; 8(6): R121
https://doi.org/10.1186/gb-2007-8-6-r121 pmid: 17588271
55 H Kurosu, M Choi, Y Ogawa, AS Dickson, R Goetz, AV Eliseenkova, M Mohammadi, KP Rosenblatt, SA Kliewer, M Kuro-o. Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282(37): 26687–26695
https://doi.org/10.1074/jbc.M704165200 pmid: 17623664
56 K Fon Tacer, AL Bookout, X Ding, H Kurosu, GB John, L Wang, R Goetz, M Mohammadi, M Kuro-o, DJ Mangelsdorf, SA Kliewer. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 2010; 24(10): 2050–2064
https://doi.org/10.1210/me.2010-0142 pmid: 20667984
57 H Wang, L Qiang, SR Farmer. Identification of a domain within peroxisome proliferator-activated receptor γ regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol 2008; 28(1): 188–200
https://doi.org/10.1128/MCB.00992-07 pmid: 17954559
58 K Iizuka, J Takeda, Y Horikawa. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett 2009; 583(17): 2882–2886
https://doi.org/10.1016/j.febslet.2009.07.053 pmid: 19660458
59 Y Wang, LA Solt, TP Burris. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor α. J Biol Chem 2010; 285(21): 15668–15673
https://doi.org/10.1074/jbc.M110.102160 pmid: 20332535
60 T Uebanso, Y Taketani, H Yamamoto, K Amo, S Tanaka, H Arai, Y Takei, M Masuda, H Yamanaka-Okumura, E Takeda. Liver X receptor negatively regulates fibroblast growth factor 21 in the fatty liver induced by cholesterol-enriched diet. J Nutr Biochem 2012; 23(7): 785–790
https://doi.org/10.1016/j.jnutbio.2011.03.023 pmid: 21889884
61 R Masuyama, I Stockmans, S Torrekens, R Van Looveren, C Maes, P Carmeliet, R Bouillon, G Carmeliet. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 2006; 116(12): 3150–3159
https://doi.org/10.1172/JCI29463 pmid: 17099775
62 OI Kolek, ER Hines, MD Jones, LK LeSueur, MA Lipko, PR Kiela, JF Collins, MR Haussler, FK Ghishan. 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 2005; 289(6): G1036–G1042
https://doi.org/10.1152/ajpgi.00243.2005 pmid: 16020653
63 Y Zhang, T Lei, JF Huang, SB Wang, LL Zhou, ZQ Yang, XD Chen. The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol Cell Endocrinol 2011; 342(1-2): 41–47
https://doi.org/10.1016/j.mce.2011.05.003 pmid: 21664250
64 TF Liu, JJ Tang, PS Li, Y Shen, JG Li, HH Miao, BL Li, BL Song. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab 2012; 16(2): 213–225
https://doi.org/10.1016/j.cmet.2012.06.014 pmid: 22863805
65 ES Muise, B Azzolina, DW Kuo, M El-Sherbeini, Y Tan, X Yuan, J Mu, JR Thompson, JP Berger, KK Wong. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states. Mol Pharmacol 2008; 74(2): 403–412
https://doi.org/10.1124/mol.108.044826 pmid: 18467542
66 AL De Sousa-Coelho, PF Marrero, D Haro. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 2012; 443(1): 165–171
https://doi.org/10.1042/BJ20111748 pmid: 22233381
67 C Yang, C Jin, X Li, F Wang, WL McKeehan, Y Luo. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 2012; 7(3): e33870
https://doi.org/10.1371/journal.pone.0033870 pmid: 22442730
68 S Lee, J Choi, J Mohanty, LP Sousa, F Tome, E Pardon, J Steyaert, MA Lemmon, I Lax, J Schlessinger. Structures of b-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling. Nature 2018; 553(7689): 501–505
https://doi.org/10.1038/nature25010 pmid: 29342135
69 Y Luo, WL McKeehan. Stressed liver and muscle call on adipocytes with FGF21. Front Endocrinol (Lausanne) 2013; 4: 194
https://doi.org/10.3389/fendo.2013.00194 pmid: 24385972
70 SA Harrison, ME Rinella, MF Abdelmalek, JF Trotter, AH Paredes, HL Arnold, M Kugelmas, MR Bashir, MJ Jaros, L Ling, SJ Rossi, AM DePaoli, R Loomba. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2018; 391(10126): 1174–1185
https://doi.org/10.1016/S0140-6736(18)30474-4 pmid: 29519502
71 GM Hirschfield, O Chazouillères, JP Drenth, D Thorburn, SA Harrison, CS Landis, MJ Mayo, AJ Muir, JF Trotter, DJ Leeming, MA Karsdal, MJ Jaros, L Ling, KH Kim, SJ Rossi, RM Somaratne, AM DePaoli, U Beuers. Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial. J Hepatol 2019; 70(3): 483–493
https://doi.org/10.1016/j.jhep.2018.10.035 pmid: 30414864
72 SA Harrison, SJ Rossi, AH Paredes, JF Trotter, MR Bashir, CD Guy, R Banerjee, MJ Jaros, S Owers, BA Baxter, L Ling, AM DePaoli. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 2019 Feb 25. [Epub ahead of print] doi:10.1002/hep.30590
pmid: 30805949
73 A Sanyal, ED Charles, BA Neuschwander-Tetri, R Loomba, SA Harrison, MF Abdelmalek, EJ Lawitz, D Halegoua-DeMarzio, S Kundu, S Noviello, Y Luo, R Christian. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 2018; 392(10165): 2705–2717
https://doi.org/10.1016/S0140-6736(18)31785-9 pmid: 30554783
74 S Talukdar, Y Zhou, D Li, M Rossulek, J Dong, V Somayaji, Y Weng, R Clark, A Lanba, BM Owen, MB Brenner, JK Trimmer, KE Gropp, JR Chabot, DM Erion, TP Rolph, B Goodwin, RA Calle. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab 2016; 23(3): 427–440
https://doi.org/10.1016/j.cmet.2016.02.001 pmid: 26959184
75 TO Carpenter, EA Imel, MD Ruppe, TJ Weber, MA Klausner, MM Wooddell, T Kawakami, T Ito, X Zhang, J Humphrey, KL Insogna, M Peacock. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest 2014; 124(4): 1587–1597
https://doi.org/10.1172/JCI72829 pmid: 24569459
76 C Yu, F Wang, M Kan, C Jin, RB Jones, M Weinstein, CX Deng, WL McKeehan. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 2000; 275(20): 15482–15489
https://doi.org/10.1074/jbc.275.20.15482 pmid: 10809780
77 L Fu, LM John, SH Adams, XX Yu, E Tomlinson, M Renz, PM Williams, R Soriano, R Corpuz, B Moffat, R Vandlen, L Simmons, J Foster, JP Stephan, SP Tsai, TA Stewart. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004; 145(6): 2594–2603
https://doi.org/10.1210/en.2003-1671 pmid: 14976145
78 E Tomlinson, L Fu, L John, B Hultgren, X Huang, M Renz, JP Stephan, SP Tsai, L Powell-Braxton, D French, TA Stewart. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143(5): 1741–1747
https://doi.org/10.1210/endo.143.5.8850 pmid: 11956156
79 AC Adams, C Yang, T Coskun, CC Cheng, RE Gimeno, Y Luo, A Kharitonenkov. The breadth of FGF21’s metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2013; 2(1): 31–37
https://doi.org/10.1016/j.molmet.2012.08.007 pmid: 24024127
80 JR Walters, AM Tasleem, OS Omer, WG Brydon, T Dew, CW le Roux. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin Gastroenterol Hepatol 2009 7(11):1189–1194
https://doi.org/10.1016/j.cgh.2009.04.024 pmid: 19426836
81 I Oduyebo, M Camilleri, AD Nelson, D Khemani, SL Nord, I Busciglio, D Burton, D Rhoten, M Ryks, P Carlson, L Donato, A Lueke, K Kim, SJ Rossi, AR Zinsmeister. Effects of NGM282, an FGF19 variant, on colonic transit and bowel function in functional constipation: a randomized phase 2 trial. Am J Gastroenterol 2018; 113(5): 725–734
https://doi.org/10.1038/s41395-018-0042-7 pmid: 29717197
82 R Pai, D French, N Ma, K Hotzel, E Plise, L Salphati, KD Setchell, J Ware, V Lauriault, L Schutt, D Hartley, D Dambach. Antibody-mediated inhibition of fibroblast growth factor 19 results in increased bile acids synthesis and ileal malabsorption of bile acids in cynomolgus monkeys. Toxicol Sci 2012; 126(2): 446–456
https://doi.org/10.1093/toxsci/kfs011 pmid: 22268002
83 GS Gerhard, AM Styer, GC Wood, SL Roesch, AT Petrick, J Gabrielsen, WE Strodel, CD Still, G Argyropoulos. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 2013; 36(7): 1859–1864
https://doi.org/10.2337/dc12-2255 pmid: 23801799
84 J Luo, B Ko, M Elliott, M Zhou, DA Lindhout, V Phung, C To, RM Learned, H Tian, AM DePaoli, L Ling. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med 2014; 6(247): 247ra100
https://doi.org/10.1126/scitranslmed.3009098 pmid: 25080475
85 FG Schaap, NA van der Gaag, DJ Gouma, PL Jansen. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 2009; 49(4): 1228–1235
https://doi.org/10.1002/hep.22771 pmid: 19185005
86 B Benoit, E Meugnier, M Castelli, S Chanon, A Vieille-Marchiset, C Durand, N Bendridi, S Pesenti, PA Monternier, AC Durieux, D Freyssenet, J Rieusset, E Lefai, H Vidal, J Ruzzin. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med 2017; 23(8): 990–996
https://doi.org/10.1038/nm.4363 pmid: 28650457
87 K Nicholes, S Guillet, E Tomlinson, K Hillan, B Wright, GD Frantz, TA Pham, L Dillard-Telm, SP Tsai, JP Stephan, J Stinson, T Stewart, DM French. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 2002; 160(6): 2295–2307
https://doi.org/10.1016/S0002-9440(10)61177-7 pmid: 12057932
88 M Zhou, RM Learned, SJ Rossi, AM DePaoli, H Tian, L Ling. Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 2016; 63(3): 914–929
https://doi.org/10.1002/hep.28257 pmid: 26418580
89 MJ Mayo, AJ Wigg, BA Leggett, H Arnold, AJ Thompson, M Weltman, EJ Carey, AJ Muir, L Ling, SJ Rossi, AM DePaoli. NGM282 for treatment of patients with primary biliary cholangitis: a multicenter, randomized, double-blind, placebo-controlled trial. Hepatol Commun 2018; 2(9): 1037–1050
https://doi.org/10.1002/hep4.1209 pmid: 30202819
90 LD BonDurant, MJ Potthoff. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu Rev Nutr 2018; 38(1): 173–196
https://doi.org/10.1146/annurev-nutr-071816-064800 pmid: 29727594
91 C Giannini, AE Feldstein, N Santoro, G Kim, R Kursawe, B Pierpont, S Caprio. Circulating levels of FGF-21 in obese youth: associations with liver fat content and markers of liver damage. J Clin Endocrinol Metab 2013; 98(7): 2993–3000
https://doi.org/10.1210/jc.2013-1250 pmid: 23626003
92 Z Lin, Q Gong, C Wu, J Yu, T Lu, X Pan, S Lin, X Li. Dynamic change of serum FGF21 levels in response to glucose challenge in human. J Clin Endocrinol Metab 2012; 97(7): E1224–E1228
https://doi.org/10.1210/jc.2012-1132 pmid: 22539584
93 Y Yilmaz, F Eren, O Yonal, R Kurt, B Aktas, CA Celikel, O Ozdogan, N Imeryuz, C Kalayci, E Avsar. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest 2010; 40(10): 887–892
https://doi.org/10.1111/j.1365-2362.2010.02338.x pmid: 20624171
94 SA Kliewer, DJ Mangelsdorf. A dozen years of discovery: insights into the physiology and pharmacology of FGF21. Cell Metab 2019; 29(2): 246–253
https://doi.org/10.1016/j.cmet.2019.01.004 pmid: 30726758
95 T Laeger, TM Henagan, DC Albarado, LM Redman, GA Bray, RC Noland, H Münzberg, SM Hutson, TW Gettys, MW Schwartz, CD Morrison. FGF21 is an endocrine signal of protein restriction. J Clin Invest 2014; 124(9): 3913–3922
https://doi.org/10.1172/JCI74915 pmid: 25133427
96 FM Fisher, M Kim, L Doridot, JC Cunniff, TS Parker, DM Levine, MK Hellerstein, LC Hudgins, E Maratos-Flier, MA Herman. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 2017; 6(1): 14–21
https://doi.org/10.1016/j.molmet.2016.11.008 pmid: 28123933
97 S von Holstein-Rathlou, LD BonDurant, L Peltekian, MC Naber, TC Yin, KE Claflin, AI Urizar, AN Madsen, C Ratner, B Holst, K Karstoft, A Vandenbeuch, CB Anderson, MD Cassell, AP Thompson, TP Solomon, K Rahmouni, SC Kinnamon, AA Pieper, MP Gillum, MJ Potthoff. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab 2016; 23(2): 335–343
https://doi.org/10.1016/j.cmet.2015.12.003 pmid: 26724858
98 S Talukdar, BM Owen, P Song, G Hernandez, Y Zhang, Y Zhou, WT Scott, B Paratala, T Turner, A Smith, B Bernardo, CP Müller, H Tang, DJ Mangelsdorf, B Goodwin, SA Kliewer. FGF21 regulates sweet and alcohol preference. Cell Metab 2016; 23(2): 344–349
https://doi.org/10.1016/j.cmet.2015.12.008 pmid: 26724861
99 FM Fisher, PC Chui, IA Nasser, Y Popov, JC Cunniff, T Lundasen, A Kharitonenkov, D Schuppan, JS Flier and E Maratos-Flier. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 2014; 147(5): 1073–1083.e6
https://doi.org/10.1053/j.gastro.2014.07.044 pmid: 25083607
100 X Huang, C Yu, C Jin, C Yang, R Xie, D Cao, F Wang, WL McKeehan. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog 2006; 45(12): 934–942
https://doi.org/10.1002/mc.20241 pmid: 16929488
101 N Tanaka, S Takahashi, Y Zhang, KW Krausz, PB Smith, AD Patterson, FJ Gonzalez. Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and choline-deficient diet. Biochim Biophys Acta 2015; 1852(7): 1242–1252
https://doi.org/10.1016/j.bbadis.2015.02.012 pmid: 25736301
102 BN Desai, G Singhal, M Watanabe, D Stevanovic, T Lundasen, FM Fisher, ML Mather, HG Vardeh, N Douris, AC Adams, IA Nasser, GA FitzGerald, JS Flier, C Skarke, E Maratos-Flier. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol Metab 2017; 6(11): 1395–1406
https://doi.org/10.1016/j.molmet.2017.08.004 pmid: 29107287
103 D Ye, Y Wang, H Li, W Jia, K Man, CM Lo, Y Wang, KS Lam, A Xu. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1a-mediated antioxidant capacity in mice. Hepatology 2014; 60(3): 977–989
https://doi.org/10.1002/hep.27060 pmid: 24590984
104 G Singhal, G Kumar, S Chan, FM Fisher, Y Ma, HG Vardeh, IA Nasser, JS Flier, E Maratos-Flier. Deficiency of fibroblast growth factor 21 (FGF21) promotes hepatocellular carcinoma (HCC) in mice on a long term obesogenic diet. Mol Metab 2018; 13: 56–66
https://doi.org/10.1016/j.molmet.2018.03.002 pmid: 29753678
105 M Ye, W Lu, X Wang, C Wang, JL Abbruzzese, G Liang, X Li, Y Luo. FGF21-FGFR1 coordinates phospholipid homeostasis, lipid droplet function, and ER stress in obesity. Endocrinology 2016; 157(12): 4754–4769
https://doi.org/10.1210/en.2016-1710 pmid: 27690692
106 IN Foltz, S Hu, C King, X Wu, C Yang, W Wang, J Weiszmann, J Stevens, JS Chen, N Nuanmanee, J Gupte, R Komorowski, L Sekirov, T Hager, T Arora, H Ge, H Baribault, F Wang, J Sheng, M Karow, M Wang, Y Luo, W McKeehan, Z Wang, MM Véniant, Y Li. Treating diabetes and obesity with an FGF21-mimetic antibody activating the bKlotho/FGFR1c receptor complex. Sci Transl Med 2012; 4(162): 162ra153
https://doi.org/10.1126/scitranslmed.3004690 pmid: 23197570
107 G Gaich, JY Chien, H Fu, LC Glass, MA Deeg, WL Holland, A Kharitonenkov, T Bumol, HK Schilske, DE Moller. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18(3): 333–340
https://doi.org/10.1016/j.cmet.2013.08.005 pmid: 24011069
108 Z Lin, H Tian, KS Lam, S Lin, RC Hoo, M Konishi, N Itoh, Y Wang, SR Bornstein, A Xu, X Li. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 2013; 17(5): 779–789
https://doi.org/10.1016/j.cmet.2013.04.005 pmid: 23663741
109 Z Huang, L Zhong, JTH Lee, J Zhang, D Wu, L Geng, Y Wang, CM Wong, A Xu. The FGF21–CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to type 2 immunity. Cell Metab 2017; 26(3): 493–508.e4
https://doi.org/10.1016/j.cmet.2017.08.003 pmid: 28844880
110 P Lee, JD Linderman, S Smith, RJ Brychta, J Wang, C Idelson, RM Perron, CD Werner, GQ Phan, US Kammula, E Kebebew, K Pacak, KY Chen, FS Celi. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014; 19(2): 302–309
https://doi.org/10.1016/j.cmet.2013.12.017 pmid: 24506871
111 E Hondares, R Iglesias, A Giralt, FJ Gonzalez, M Giralt, T Mampel, F Villarroya. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011; 286(15): 12983–12990
https://doi.org/10.1074/jbc.M110.215889 pmid: 21317437
112 M Ameka, KR Markan, DA Morgan, LD BonDurant, SO Idiga, MC Naber, Z Zhu, LV Zingman, JL Grobe, K Rahmouni, MJ Potthoff. Liver derived FGF21 maintains core body temperature during acute cold exposure. Sci Rep 2019; 9(1): 630
https://doi.org/10.1038/s41598-018-37198-y pmid: 30679672
113 Y Zhang, Y Xie, ED Berglund, KC Coate, TT He, T Katafuchi, G Xiao, MJ Potthoff, W Wei, Y Wan, RT Yu, RM Evans, SA Kliewer, DJ Mangelsdorf. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 2012; 1: e00065
https://doi.org/10.7554/eLife.00065 pmid: 23066506
114 YH Youm, TL Horvath, DJ Mangelsdorf, SA Kliewer, VD Dixit. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci USA 2016; 113(4): 1026–1031
https://doi.org/10.1073/pnas.1514511113 pmid: 26755598
115 AC Adams, T Coskun, CC Cheng, LS O′Farrell, SL Dubois, A Kharitonenkov. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab 2013; 2(3): 205–214
https://doi.org/10.1016/j.molmet.2013.05.005 pmid: 24049735
116 KC Coate, G Hernandez, CA Thorne, S Sun, TDV Le, K Vale, SA Kliewer, DJ Mangelsdorf. FGF21 is an exocrine pancreas secretagogue. Cell Metab 2017; 25(2): 472–480
https://doi.org/10.1016/j.cmet.2016.12.004 pmid: 28089565
117 G Singhal, FM Fisher, MJ Chee, TG Tan, A El Ouaamari, AC Adams, R Najarian, RN Kulkarni, C Benoist, JS Flier, E Maratos-Flier. Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS One 2016; 11(2): e0148252
https://doi.org/10.1371/journal.pone.0148252 pmid: 26872145
118 CL Johnson, R Mehmood, SW Laing, CV Stepniak, A Kharitonenkov, CL Pin. Silencing of the fibroblast growth factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1. Am J Physiol Endocrinol Metab 2014; 306(8): E916–E928
https://doi.org/10.1152/ajpendo.00559.2013 pmid: 24549397
119 CL Johnson, JY Weston, SA Chadi, EN Fazio, MW Huff, A Kharitonenkov, A Köester, CL Pin. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 2009; 137(5): 1795–1804
https://doi.org/10.1053/j.gastro.2009.07.064 pmid: 19664632
120 M Kuroda, R Muramatsu, N Maedera, Y Koyama, M Hamaguchi, H Fujimura, M Yoshida, M Konishi, N Itoh, H Mochizuki, T Yamashita. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest 2017; 127(9): 3496–3509
https://doi.org/10.1172/JCI94337 pmid: 28825598
121 S Soberg, CH Sandholt, NZ Jespersen, U Toft, AL Madsen, S von Holstein-Rathlou, TJ Grevengoed, KB Christensen, WLP Bredie, MJ Potthoff, TPJ Solomon, C Scheele, A Linneberg, T Jorgensen, O Pedersen, T Hansen, MP Gillum, N Grarup. FGF21 is a sugar-induced hormone associated with sweet intake and preference in humans. Cell Metab 2017; 25(5): 1045–1053.e6
https://doi.org/10.1016/j.cmet.2017.04.009 pmid: 28467924
122 P Song, C Zechner, G Hernandez, J Canovas, Y Xie, V Sondhi, M Wagner, V Stadlbauer, A Horvath, B Leber, MC Hu, OW Moe, DJ Mangelsdorf, SA Kliewer. The hormone FGF21 stimulates water drinking in response to ketogenic diet and alcohol. Cell Metab 2018; 27(6): 1338–1347.e4
https://doi.org/10.1016/j.cmet.2018.04.001 pmid: 29657029
123 TM Frayling, RN Beaumont, SE Jones, H Yaghootkar, MA Tuke, KS Ruth, F Casanova, B West, J Locke, S Sharp, Y Ji, W Thompson, J Harrison, AS Etheridge, PJ Gallins, D Jima, F Wright, Y Zhou, F Innocenti, CM Lindgren, N Grarup, A Murray, RM Freathy, MN Weedon, J Tyrrell, AR Wood. A common allele in FGF21 associated with sugar intake is associated with body shape, lower total body-fat percentage, and higher blood pressure. Cell Reports 2018; 23(2): 327–336
https://doi.org/10.1016/j.celrep.2018.03.070 pmid: 29641994
124 G Schumann, C Liu, P O’Reilly, H Gao, P Song, B Xu, B Ruggeri, N Amin, T Jia, S Preis, M Segura Lepe, S Akira, C Barbieri, S Baumeister, S Cauchi, TK Clarke, S Enroth, K Fischer, J Hällfors, SE Harris, S Hieber, E Hofer, JJ Hottenga, Å Johansson, PK Joshi, N Kaartinen, J Laitinen, R Lemaitre, A Loukola, J Luan, LP Lyytikäinen, M Mangino, A Manichaikul, H Mbarek, Y Milaneschi, A Moayyeri, K Mukamal, C Nelson, J Nettleton, E Partinen, R Rawal, A Robino, L Rose, C Sala, T Satoh, R Schmidt, K Schraut, R Scott, AV Smith, JM Starr, A Teumer, S Trompet, AG Uitterlinden, C Venturini, AC Vergnaud, N Verweij, V Vitart, D Vuckovic, J Wedenoja, L Yengo, B Yu, W Zhang, JH Zhao, DI Boomsma, J Chambers, DI Chasman, T Daniela, E de Geus, I Deary, JG Eriksson, T Esko, V Eulenburg, OH Franco, P Froguel, C Gieger, HJ Grabe, V Gudnason, U Gyllensten, TB Harris, AL Hartikainen, AC Heath, L Hocking, A Hofman, C Huth, MR Jarvelin, JW Jukema, J Kaprio, JS Kooner, Z Kutalik, J Lahti, C Langenberg, T Lehtimäki, Y Liu, PA Madden, N Martin, A Morrison, B Penninx, N Pirastu, B Psaty, O Raitakari, P Ridker, R Rose, JI Rotter, NJ Samani, H Schmidt, TD Spector, D Stott, D Strachan, I Tzoulaki, P van der Harst, CM van Duijn, P Marques-Vidal, P Vollenweider, NJ Wareham, JB Whitfield, J Wilson, B Wolffenbuttel, G Bakalkin, E Evangelou, Y Liu, KM Rice, S Desrivières, SA Kliewer, DJ Mangelsdorf, CP Müller, D Levy, P Elliott. KLB is associated with alcohol drinking, and its gene product b-Klotho is necessary for FGF21 regulation of alcohol preference. Proc Natl Acad Sci USA 2016; 113(50): 14372–14377
https://doi.org/10.1073/pnas.1611243113 pmid: 27911795
125 LM Restelli, B Oettinghaus, M Halliday, C Agca, M Licci, L Sironi, C Savoia, J Hench, M Tolnay, A Neutzner, A Schmidt, A Eckert, G Mallucci, L Scorrano, S Frank. Neuronal mitochondrial dysfunction activates the integrated stress response to induce fibroblast growth factor 21. Cell Reports 2018; 24(6): 1407–1414
https://doi.org/10.1016/j.celrep.2018.07.023 pmid: 30089252
126 A Planavila, I Redondo, E Hondares, M Vinciguerra, C Munts, R Iglesias, LA Gabrielli, M Sitges, M Giralt, M van Bilsen, F Villarroya. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 2013; 4(1): 2019
https://doi.org/10.1038/ncomms3019 pmid: 23771152
127 T Morville, RE Sahl, SA Trammell, JS Svenningsen, MP Gillum, JW Helge, C Clemmensen. Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI Insight 2018; 3(15): 122737
https://doi.org/10.1172/jci.insight.122737 pmid: 30089729
128 MK Brahma, RC Adam, NM Pollak, D Jaeger, KA Zierler, N Pöcher, R Schreiber, M Romauch, T Moustafa, S Eder, T Ruelicke, K Preiss-Landl, A Lass, R Zechner, G Haemmerle. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res 2014; 55(11): 2229–2241
https://doi.org/10.1194/jlr.M044784 pmid: 25176985
129 Z Lin, X Pan, F Wu, D Ye, Y Zhang, Y Wang, L Jin, Q Lian, Y Huang, H Ding, C Triggle, K Wang, X Li, A Xu. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 2015; 131(21): 1861–1871
https://doi.org/10.1161/CIRCULATIONAHA.115.015308 pmid: 25794851
130 SQ Liu, D Roberts, A Kharitonenkov, B Zhang, SM Hanson, YC Li, LQ Zhang, YH Wu. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci Rep 2013; 3(1): 2767
https://doi.org/10.1038/srep02767 pmid: 24067542
131 H Yang, A Feng, S Lin, L Yu, X Lin, X Yan, X Lu, C Zhang. Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis 2018; 9(2): 227
https://doi.org/10.1038/s41419-018-0307-5 pmid: 29445083
132 C Zhang, Z Huang, J Gu, X Yan, X Lu, S Zhou, S Wang, M Shao, F Zhang, P Cheng, W Feng, Y Tan, X Li. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia 2015; 58(8): 1937–1948
https://doi.org/10.1007/s00125-015-3630-8 pmid: 26040473
133 X Pan, Y Shao, F Wu, Y Wang, R Xiong, J Zheng, H Tian, B Wang, Y Wang, Y Zhang, Z Han, A Qu, H Xu, A Lu, T Yang, X Li, A Xu, J Du, Z. LinFGF21 prevents angiotensin II–induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) axis in mice. Cell Metab 2018; 27(6): 1323–1337.e5
https://doi.org/10.1016/j.cmet.2018.04.002 pmid: 29706566
134 KH Kim, YT Jeong, H Oh, SH Kim, JM Cho, YN Kim, SS Kim, DH Kim, KY Hur, HK Kim, T Ko, J Han, HL Kim, J Kim, SH Back, M Komatsu, H Chen, DC Chan, M Konishi, N Itoh, CS Choi, MS Lee. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 2013; 19(1): 83–92
https://doi.org/10.1038/nm.3014 pmid: 23202295
135 A Suomalainen, JM Elo, KH Pietiläinen, AH Hakonen, K Sevastianova, M Korpela, P Isohanni, SK Marjavaara, T Tyni, S Kiuru-Enari, H Pihko, N Darin, K Õunap, LA Kluijtmans, A Paetau, J Buzkova, LA Bindoff, J Annunen-Rasila, J Uusimaa, A Rissanen, H Yki-Järvinen, M Hirano, M Tulinius, J Smeitink, H Tyynismaa. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 2011; 10(9): 806–818
https://doi.org/10.1016/S1474-4422(11)70155-7 pmid: 21820356
136 L Geng, B Liao, L Jin, Z Huang, CR Triggle, H Ding, J Zhang, Y Huang, Z Lin, A Xu. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep 2019; 26(10): 2738–2752.e4
https://doi.org/10.1016/j.celrep.2019.02.014 pmid: 30840894
137 RO Pereira, SM Tadinada, FM Zasadny, KJ Oliveira, KMP Pires, A Olvera, J Jeffers, R Souvenir, R Mcglauflin, A Seei, T Funari, H Sesaki, MJ Potthoff, CM Adams, EJ Anderson, ED Abel. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J 2017; 36(14): 2126–2145
https://doi.org/10.15252/embj.201696179 pmid: 28607005
138 Y Tanimura, W Aoi, Y Takanami, Y Kawai, K Mizushima, Y Naito, T Yoshikawa. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation. Physiol Rep 2016; 4(12): e12828
https://doi.org/10.14814/phy2.12828 pmid: 27335433
139 MS Lee, SE Choi, ES Ha, SY An, TH Kim, SJ Han, HJ Kim, DJ Kim, Y Kang, KW Lee. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kB. Metabolism 2012; 61(8): 1142–1151
https://doi.org/10.1016/j.metabol.2012.01.012 pmid: 22398021
140 Y Izumiya, HA Bina, N Ouchi, Y Akasaki, A Kharitonenkov, K Walsh. FGF21 is an Akt-regulated myokine. FEBS Lett 2008; 582(27): 3805–3810
https://doi.org/10.1016/j.febslet.2008.10.021 pmid: 18948104
141 BM Owen, X Ding, DA Morgan, KC Coate, AL Bookout, K Rahmouni, SA Kliewer, DJ Mangelsdorf. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 2014; 20(4): 670–677
https://doi.org/10.1016/j.cmet.2014.07.012 pmid: 25130400
142 N Douris, DM Stevanovic, FM Fisher, TI Cisu, MJ Chee, NL Nguyen, E Zarebidaki, AC Adams, A Kharitonenkov, JS Flier, TJ Bartness, E Maratos-Flier. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 2015; 156(7): 2470–2481
https://doi.org/10.1210/en.2014-2001 pmid: 25924103
143 Q Liang, L Zhong, J Zhang, Y Wang, SR Bornstein, CR Triggle, H Ding, KS Lam, A Xu. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 2014; 63(12): 4064–4075
https://doi.org/10.2337/db14-0541 pmid: 25024372
144 BM Owen, AL Bookout, X Ding, VY Lin, SD Atkin, L Gautron, SA Kliewer, DJ Mangelsdorf. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 2013; 19(9): 1153–1156
https://doi.org/10.1038/nm.3250 pmid: 23933983
145 AL Bookout, MH de Groot, BM Owen, S Lee, L Gautron, HL Lawrence, X Ding, JK Elmquist, JS Takahashi, DJ Mangelsdorf, SA Kliewer. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 2013; 19(9): 1147–1152
https://doi.org/10.1038/nm.3249 pmid: 23933984
146 N Ishida. Role of PPARa in the control of torpor through FGF21-NPY pathway: from circadian clock to seasonal change in mammals. PPAR Res 2009; 2009: 412949
https://doi.org/10.1155/2009/412949 pmid: 19536348
147 Q Wang, J Yuan, Z Yu, L Lin, Y Jiang, Z Cao, P Zhuang, MJ Whalen, B Song, XJ Wang, X Li, EH Lo, Y Xu, X Wang. FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol 2018; 55(6): 4702–4717
https://doi.org/10.1007/s12035-017-0663-7 pmid: 28712011
148 Y Yu, F Bai, W Wang, Y Liu, Q Yuan, S Qu, T Zhang, G Tian, S Li, D Li, G Ren. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav 2015; 133: 122–131
https://doi.org/10.1016/j.pbb.2015.03.020 pmid: 25871519
149 DA Sarruf, JP Thaler, GJ Morton, J German, JD Fischer, K Ogimoto, MW Schwartz. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 2010; 59(7): 1817–1824
https://doi.org/10.2337/db09-1878 pmid: 20357365
150 MM Véniant, C Hale, J Helmering, MM Chen, S Stanislaus, J Busby, S Vonderfecht, J Xu, DJ Lloyd. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS One 2012; 7(7): e40164
https://doi.org/10.1371/journal.pone.0040164 pmid: 22792234
151 J Xu, DJ Lloyd, C Hale, S Stanislaus, M Chen, G Sivits, S Vonderfecht, R Hecht, YS Li, RA Lindberg, JL Chen, DY Jung, Z Zhang, HJ Ko, JK Kim, MM Véniant. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58(1): 250–259
https://doi.org/10.2337/db08-0392 pmid: 18840786
152 WY So, Q Cheng, A Xu, KS Lam, PS Leung. Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice. Cell Death Dis 2015; 6(3): e1707
https://doi.org/10.1038/cddis.2015.80 pmid: 25811804
153 C Zhang, M Shao, H Yang, L Chen, L Yu, W Cong, H Tian, F Zhang, P Cheng, L Jin, Y Tan, X Li, L Cai, X Lu. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One 2013; 8(12): e82275
https://doi.org/10.1371/journal.pone.0082275 pmid: 24349242
154 HW Kim, JE Lee, JJ Cha, YY Hyun, JE Kim, MH Lee, HK Song, DH Nam, JY Han, SY Han, KH Han, YS Kang, DR Cha. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 2013; 154(9): 3366–3376
https://doi.org/10.1210/en.2012-2276 pmid: 23825123
155 TT Tang, YY Li, JJ Li, K Wang, Y Han, WY Dong, ZF Zhu, N Xia, SF Nie, M Zhang, ZP Zeng, BJ Lv, J Jiao, H Liu, ZS Xian, XP Yang, Y Hu, YH Liao, Q Wang, X Tu, Z Mallat, Y Huang, GP Shi, X Cheng. Liver-heart crosstalk controls IL-22 activity in cardiac protection after myocardial infarction. Theranostics 20184552–4562
https://doi.org/10.7150/thno.24723 pmid: 30214638
156 N Wang, TT Zhao, SM Li, YH Li, YJ Wang, DS Li, WF Wang. Fibroblast growth factor 21 ameliorates pancreatic fibrogenesis via regulating polarization of macrophages. Exp Cell Res 2019; 382(1): 111457
https://doi.org/10.1016/j.yexcr.2019.06.002 [Epub ahead of print]doi:10.1016/j.yexcr.2019.06.002 pmid: 31175853
157 S Li, X Guo, T Zhang, N Wang, J Li, P Xu, S Zhang, G Ren, D Li. Fibroblast growth factor 21 ameliorates high glucose-induced fibrogenesis in mesangial cells through inhibiting STAT5 signaling pathway. Biomed Pharmacother 2017; 93: 695–704
https://doi.org/10.1016/j.biopha.2017.06.100 pmid: 28692941
158 S Li, N Wang, X Guo, J Li, T Zhang, G Ren, D Li. Fibroblast growth factor 21 regulates glucose metabolism in part by reducing renal glucose reabsorption. Biomed Pharmacother 2018; 108: 355–366
https://doi.org/10.1016/j.biopha.2018.09.078 pmid: 30227329
159 XL Lin, XL He, JF Zeng, H Zhang, Y Zhao, JK Tan, Z Wang. FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARg-LXRa pathway in THP1 macrophage-derived foam cells. DNA Cell Biol 2014; 33(8): 514–521
https://doi.org/10.1089/dna.2013.2290 pmid: 24735204
160 Y Yu, J He, S Li, L Song, X Guo, W Yao, D Zou, X Gao, Y Liu, F Bai, G Ren, D Li. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-kB signaling pathway. Int Immunopharmacol 2016; 38: 144–152
https://doi.org/10.1016/j.intimp.2016.05.026 pmid: 27276443
161 H Li, G Wu, Q Fang, M Zhang, X Hui, B Sheng, L Wu, Y Bao, P Li, A Xu, W Jia. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat Commun 2018; 9(1): 272
https://doi.org/10.1038/s41467-017-02677-9 pmid: 29348470
162 SM Li, WF Wang, LH Zhou, L Ma, Y An, WJ Xu, TH Li, YH Yu, DS Li, Y Liu. Fibroblast growth factor 21 expressions in white blood cells and sera of patients with gestational diabetes mellitus during gestation and postpartum. Endocrine 2015; 48(2): 519–527
https://doi.org/10.1007/s12020-014-0309-8 pmid: 24895044
163 JY Li, N Wang, MH Khoso, CB Shen, MZ Guo, XX Pang, DS Li, WF Wang. FGF-21 elevated IL-10 production to correct LPS-induced inflammation. Inflammation 2018; 41(3): 751–759
https://doi.org/10.1007/s10753-018-0729-3 pmid: 29427162
164 WF Wang, L Ma, MY Liu, TT Zhao, T Zhang, YB Yang, HX Cao, XH Han, DS Li. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation. Endocrine 2015; 49(2): 385–395
https://doi.org/10.1007/s12020-014-0502-9 pmid: 25542183
165 SM Li, YH Yu, L Li, WF Wang, DS Li. Treatment of CIA mice with FGF21 down-regulates TH17-IL-17 axis. Inflammation 2016; 39(1): 309–319
https://doi.org/10.1007/s10753-015-0251-9 pmid: 26424095
166 H Saito, K Kusano, M Kinosaki, H Ito, M Hirata, H Segawa, K Miyamoto, N Fukushima. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1α,25-dihydroxyvitamin D3 production. J Biol Chem 2003; 278(4): 2206–2211
https://doi.org/10.1074/jbc.M207872200 pmid: 12419819
167 T Shimada, M Kakitani, Y Yamazaki, H Hasegawa, Y Takeuchi, T Fujita, S Fukumoto, K Tomizuka, T Yamashita. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113(4): 561–568
https://doi.org/10.1172/JCI200419081 pmid: 14966565
168 T Shimada, S Mizutani, T Muto, T Yoneya, R Hino, S Takeda, Y Takeuchi, T Fujita, S Fukumoto, T Yamashita. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98(11): 6500–6505
https://doi.org/10.1073/pnas.101545198 pmid: 11344269
169 O Andrukhova, A Smorodchenko, M Egerbacher, C Streicher, U Zeitz, R Goetz, V Shalhoub, M Mohammadi, EE Pohl, B Lanske, RG Erben. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 2014; 33(3): 229–246
https://doi.org/10.1002/embj.201284188 pmid: 24434184
170 O Andrukhova, S Slavic, A Smorodchenko, U Zeitz, V Shalhoub, B Lanske, EE Pohl, RG Erben. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 2014; 6(6): 744–759
https://doi.org/10.1002/emmm.201303716 pmid: 24797667
171 IZ Ben-Dov, H Galitzer, V Lavi-Moshayoff, R Goetz, M Kuro-o, M Mohammadi, R Sirkis, T Naveh-Many, J Silver. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007; 117(12): 4003–4008
https://doi.org/10.1172/JCI32409 pmid: 17992255
172 L Toro, V Barrientos, P León, M Rojas, M Gonzalez, A González-Ibáñez, S Illanes, K Sugikawa, N Abarzúa, C Bascuñán, K Arcos, C Fuentealba, AM Tong, AA Elorza, ME Pinto, R Alzamora, C Romero, L Michea. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int 2018; 93(5): 1131–1141
https://doi.org/10.1016/j.kint.2017.11.018 pmid: 29395333
173 S Rabadi, I Udo, DE Leaf, SS Waikar, M Christov. Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Renal Physiol 2018; 314(1): F132–F139
https://doi.org/10.1152/ajprenal.00081.2017 pmid: 28877877
174 ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26(3): 345–348
https://doi.org/10.1038/81664 pmid: 11062477
175 AE Bowe, R Finnegan, SM Jan de Beur, J Cho, MA Levine, R Kumar, SC Schiavi. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284(4): 977–981
https://doi.org/10.1006/bbrc.2001.5084 pmid: 11409890
176 M Riminucci, MT Collins, NS Fedarko, N Cherman, A Corsi, KE White, S Waguespack, A Gupta, T Hannon, MJ Econs, P Bianco, P Gehron Robey. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003; 112(5): 683–692
https://doi.org/10.1172/JCI18399 pmid: 12952917
177 WH Hoffman, HW Jueppner, BR Deyoung, MS O’dorisio, KS Given. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. Am J Med Genet A 2005; 134(3): 233–236
https://doi.org/10.1002/ajmg.a.30599 pmid: 15742370
178 K Kato, C Jeanneau, MA Tarp, A Benet-Pagès, B Lorenz-Depiereux, EP Bennett, U Mandel, TM Strom, H Clausen. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006; 281(27): 18370–18377
https://doi.org/10.1074/jbc.M602469200 pmid: 16638743
179 S Ichikawa, EA Imel, AH Sorenson, R Severe, P Knudson, GJ Harris, JL Shaker, MJ Econs. Tumoral calcinosis presenting with eyelid calcifications due to novel missense mutations in the glycosyl transferase domain of the GALNT3 gene. J Clin Endocrinol Metab 2006; 91(11): 4472–4475
https://doi.org/10.1210/jc.2006-1247 pmid: 16940445
180 HJ Garringer, C Fisher, TE Larsson, SI Davis, DL Koller, MJ Cullen, MS Draman, N Conlon, A Jain, NS Fedarko, B Dasgupta, KE White. The role of mutant UDP-N-acetyl-α-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J Clin Endocrinol Metab 2006; 91(10): 4037–4042
https://doi.org/10.1210/jc.2006-0305 pmid: 16868048
181 A Benet-Pagès, P Orlik, TM Strom, B Lorenz-Depiereux. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14(3): 385–390
https://doi.org/10.1093/hmg/ddi034 pmid: 15590700
182 I Chefetz, R Heller, A Galli-Tsinopoulou, G Richard, B Wollnik, M Indelman, F Koerber, O Topaz, R Bergman, E Sprecher, E Schoenau. A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum Genet 2005; 118(2): 261–266
https://doi.org/10.1007/s00439-005-0026-8 pmid: 16151858
183 K Araya, S Fukumoto, R Backenroth, Y Takeuchi, K Nakayama, N Ito, N Yoshii, Y Yamazaki, T Yamashita, J Silver, T Igarashi, T Fujita. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005; 90(10): 5523–5527
https://doi.org/10.1210/jc.2005-0301 pmid: 16030159
184 F Abbasi, S Ghafouri-Fard, M Javaheri, A Dideban, A Ebrahimi, A Ebrahim-Habibi. A new missense mutation in FGF23 gene in a male with hyperostosis-hyperphosphatemia syndrome (HHS). Gene 2014; 542(2): 269–271
https://doi.org/10.1016/j.gene.2014.03.052 pmid: 24680727
185 C Faul, AP Amaral, B Oskouei, MC Hu, A Sloan, T Isakova, OM Gutiérrez, R Aguillon-Prada, J Lincoln, JM Hare, P Mundel, A Morales, J Scialla, M Fischer, EZ Soliman, J Chen, AS Go, SE Rosas, L Nessel, RR Townsend, HI Feldman, M St John Sutton, A Ojo, C Gadegbeku, GS Di Marco, S Reuter, D Kentrup, K Tiemann, M Brand, JA Hill, OW Moe, M Kuro-O, JW Kusek, MG Keane, M Wolf. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011; 121(11): 4393–4408
https://doi.org/10.1172/JCI46122 pmid: 21985788
186 OM Gutiérrez, JL Januzzi, T Isakova, K Laliberte, K Smith, G Collerone, A Sarwar, U Hoffmann, E Coglianese, R Christenson, TJ Wang, C deFilippi, M Wolf. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009; 119(19): 2545–2552
https://doi.org/10.1161/CIRCULATIONAHA.108.844506 pmid: 19414634
187 ER McGrath, JJ Himali, D Levy, SC Conner, MP Pase, CR Abraham, P Courchesne, CL Satizabal, RS Vasan, AS Beiser, S Seshadri. Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS One 2019; 14(3): e0213321
https://doi.org/10.1371/journal.pone.0213321 pmid: 30830941
188 P Liu, L Chen, X Bai, A Karaplis, D Miao, N Gu. Impairment of spatial learning and memory in transgenic mice overexpressing human fibroblast growth factor-23. Brain Res 2011; 1412: 9–17
https://doi.org/10.1016/j.brainres.2011.07.028 pmid: 21824606
[1] Wenwen Shang, Lei Wu, Rui Xu, Xian Chen, Shasha Yao, Peijun Huang, Fang Wang. Clinical laboratory features of Meigs’ syndrome: a retrospective study from 2009 to 2018[J]. Front. Med., 2021, 15(1): 116-124.
[2] Hudan Pan, Yanfang Zheng, Zhongqiu Liu, Zhongwen Yuan, Rutong Ren, Hua Zhou, Ying Xie, Liang Liu. Deciphering the pharmacological mechanism of Guan-Jie-Kang in treating rat adjuvant-induced arthritis using omics analysis[J]. Front. Med., 2019, 13(5): 564-574.
[3] Yugang Cheng,Hanxiang Zhan,Lei Wang,Jianwei Xu,Guangyong Zhang,Zongli Zhang,Sanyuan Hu. Analysis of 100 consecutive cases of resectable pancreatic neuroendocrine neoplasms: clinicopathological characteristics and long-term outcomes[J]. Front. Med., 2016, 10(4): 444-450.
[4] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[5] Xiaolong Wei,Chunfa Chen,Didi Xi,Jinwen Bai,Wenhe Huang,Luoxiang Rong,Mingyao Wu,Guojun Zhang. A case of primary neuroendocrine breast carcinoma that responded to neo-adjuvant chemotherapy[J]. Front. Med., 2015, 9(1): 112-116.
[6] Dahong Ju,Meijie Liu,Hongyan Zhao,Jun Wang. Mechanisms of “kidney governing bones” theory in traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 389-393.
[7] Jingyao Zhang, Dapeng Wu, Hong Ai, Jigang Bai, Shunbin Dong, Qinling Yang, Kai Qu, Lei Zhou, Xinsen Xu, Chang Liu. Epidemiological study of a von Hippel-Lindau family in northwest China[J]. Front Med, 2013, 7(3): 378-385.
[8] Huating Li, Jing Zhang, Weiping Jia. Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology[J]. Front Med, 2013, 7(1): 25-30.
[9] Eryuan Liao. FGF23 associated bone diseases[J]. Front Med, 2013, 7(1): 65-80.
[10] Xunli XIA PhD , Guangxiao YANG PhD , Guangyuan HE PhD , . Design of tandem genes cluster for isoflavone engineering[J]. Front. Med., 2009, 3(3): 292-296.
[11] YAO Dingkang, ZHU Liang, YU Renqian, MEI Changlin. Current progress on internal medicine in China—2006 Part II[J]. Front. Med., 2007, 1(4): 343-351.
[12] XU Leping, JI Juying, DUAN Yiyang, SHI Hui, ZHANG Bin, SHAO Yaqin, SUN Jian. Abnormal glycosylated hemoglobin as a predictive factor for glucose metabolism disorders in antipsychotic treatment[J]. Front. Med., 2007, 1(3): 316-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed