Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (5) : 1095-1104    https://doi.org/10.1007/s11709-019-0538-2
RESEARCH ARTICLE
Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated concrete frame
Yunlin LIU, Shitao ZHU()
School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
 Download: PDF(2198 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Prefabricated Cage System (PCS) has the advantages of high bearing capacity and good ductility. Meanwhile, it is convenient for factory production and it is beneficial to the cost savings, construction period shortening. Side joint is the weak region of PCS concrete frame and has great influence on seismic behavior of the whole structure. Thus systematically study on the seismic behavior of PCS concrete side joint is necessary. This paper presents a finite element study on behavior of the side joint under seismic loading. In the finite element model, PCS concrete and the reinforced concrete (RC) is modeled by the solid element and fiber-beam element, respectively. The numerical results is compared with the experimental results and it is found that the results of model based on fiber-beam element is in better agreement with the experimental results than solid element model. In addition, the overall seismic behavior of the side joints in PCS concrete is better than that of the RC with the same strength.

Keywords PCS concrete side joint      numerical simulation      fiber-beam element joint model      solid element joint model      seismic behavior     
Corresponding Author(s): Shitao ZHU   
Just Accepted Date: 29 April 2019   Online First Date: 06 June 2019    Issue Date: 11 September 2019
 Cite this article:   
Yunlin LIU,Shitao ZHU. Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated concrete frame[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1095-1104.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-019-0538-2
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I5/1095
item C-2-RC C-2-PCS
shape and size of column cross section rectangle 152.4 × 152.4 × 762 rectangle 152.4 × 152.4 × 762
shape and size of beam cross section rectangle 152.4 × 203.2 × 508 rectangle 152.4 × 203.2 × 508
longitudinal reinforcement of column section 8ϕ12.7 ???the size of PCS is shown in Fig. 1
longitudinal reinforcement of beam section (top+ bottom) 3ϕ9.5+ 3ϕ9.5 3ϕ9.5+ 3ϕ9.5
stirrup ϕ6.35@38.1 φ6.35@38.1
axial pressure 142.4 142.4
load point at the end of beam distance cylinder edge 457.2 distance cylinder edge 457.2
Tab.1  Joint size and related parameters
steel type ϕ9.5 ϕ12.7 ϕ6.35 steel plate
thickness 6.35
yield strength fy 504.947 429.238 340.220 390.776
tensile strength fu 900.321 773.094 503.788 472.482
elastic modulus E 231608.301 155813.312 137958.982 69814.447
Tab.2  Properties of steel
compressive strength (MPa) inelastic strain (10−3) compression damage factor dc tensile strength (MPa) cracking strain (10−3) tensile damage factor dt
15.358 0.000 0.000 1.872 0.000 0.000
17.195 0.164 0.072 1.323 0.100 0.134
18.005 0.410 0.158 1.116 0.146 0.212
17.726 0.852 0.283 0.754 0.282 0.435
14.849 1.849 0.506 0.549 0.447 0.626
11.653 3.003 0.679 0.396 0.710 0.787
8.636 4.575 0.813 0.286 1.125 0.890
5.563 7.568 0.918 0.291 1.098 0.886
4.078 10.476 0.955 0.253 1.336 0.948
3.596 11.914 0.965 0.205 1.812 0.948
3.117 13.774 0.973 0.127 3.635 0.983
Tab.3  Calculation parameters of concrete material
diameter elastic modulus E0 yield strength fy hardening stiffness coefficient α ultimate plastic deformation rate β
9.5 231608.3 504.95 0.01 99
12.7 155813.3 429.24 0.01 79
6.35 137959 340.22 0.01 88
Tab.4  USteel02 constitutive of different reinforcements
Fig.1  PCS processing
Fig.2  Hinge joints of the upper and lower end of the column
Fig.3  (a) C-2-RC and (b) C-2-PCS finite element models
Fig.4  Numerical simulation of joints and comparison of experimental values. (a) Comparison between C-2-RC simulation and experimental values; (b) comparison between C-2-PCS simulation and experimental values
Fig.5  Comparison of C-2-RC and C-2-PCS experimental results
Fig.6  C-2-RC stress nephogram. (a) C-2-RC final deformation stress nephogram; (b) C-2-RC reinforced cage skeleton final deformation stress nephogram
Fig.7  C-2-PCS stress nephogram. (a) C-2-PCS final deformation stress nephogram; (b) C-2-PCS reinforced cage skeleton final deformation stress nephogram
Fig.8  Test failure diagram. (a) C-2-RC test failure phenomena; (b) C-2-PCS test failure phenomena
Fig.9  Comparison of C-2-RC simulation value and experimental value skeleton line
Fig.10  Comparison of C-2-PCS simulation value and experimental value skeleton line
K mL fc fpc Zm cu
1.49 0.00298 26.95 18.06 13.20 0.03067
Tab.5  Kent-Scott-Park constrained concrete constitutive
fc0 c0 fu cu dcu ft rsE0 εt
26.95 0.00298 17.102 0.03067 0.18 1.872 2529.51 0.00218
Tab.6  Fiber element concrete constitutive model beyond the core area of joints
E0 fy1 αa β
1330.167 15.124 0.001 19.55
Tab.7  Constitutive model of C-2-RC RC side joint diagonal bar
fc0 c0 fu cu dcu ft rsE0 εt
33.682 0.00373 17.102 0.05087 0.18 1.872 2529.51 0.00218
Tab.8  Fiber element concrete constitutive model beyond the core region of joints
E0 fy1 αa β
1185.059 18.905 0.001 19.55
Tab.9  Constitutive model of C-2-PCS exterior joint diagonal bar
Fig.11  Fiber model of the side joint (C-2-RC and C-2-PCS)
Fig.12  Comparison between C-2-RC simulation and experimental values
Fig.13  Comparison between C-2-PCS simulation and experimental values
Fig.14  Comparison of C-2-RC and C-2-PCS simulation value skeleton line
Fig.15  Comparison of C-2-RC and C-2-PCS simulation value stiffness degradation curve
1 Y Li, M Li, H Su. Experimental analysis of seismic behavior of interior joints with high-strength reinforcement and high-toughness concrete. Journal of Civil Architectural & Environmental Engineering, 2017, 39(1): 86–92
2 H Sezen, M Shamsai. Behavior of normal strength concrete columns reinforced with prefabricated cage system. American Society of Civil Engineers, 2006, 44(201): 89–100
3 M J Fisher. Experimental evaluation of reinforcement methods for concrete beam-column Joints. Thesis for the Master’s Degree. Ohio: Ohio state University, 2009
4 Z Zeng, L Fei, Y Liang. Experimenta research on concrete columns reinforced with prefabricated cage system under axial compression. Industrial Construction, 2014, 44(9): 51–55
5 Y Liang. Experimental Study on Flexural Performance of Prefabricated Cage System Reinforced Concrete Beam. Quanzhou: HuaQiao University, 2014
6 American Concrete Institute. Building Code Requirements for Structural Concrete and Commentary (ACI 318RM-05). American Concrete Institute, 2005
7 T Rabczuk, J Akkermann, J Eibl. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354
https://doi.org/10.1016/j.ijsolstr.2004.07.019
8 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
9 T Rabczuk, T Belytschko. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49
https://doi.org/10.1007/s10704-005-3075-z
10 B D Scott. Stress-strain behavior of concrete by overlapping hoops at low and high strain rates. ACI Journal, 1982, 79(1): 13–27
11 S Song, L Ye. A Comparison of design methods for flexure strength of RC beams between Chinese and American design codes for RC structures. Building Science, 2007, 23(7): 28–33
12 Standards Press of China. Code for Design of Concrete Structures (GB 50010-2010). China Architecture & Building Press, 2010
13 Song M C. Study on Modeling Method of Reinforced Concrete Beam-Column Joint Core. Chongqing: Chongqing University, 2009
14 J A B, Mander M J N Priestley. Theoretical stress-strain model for confined concrete. Journal of the Structural Division, 1988, 114(8): 1804–1826
[1] Qian-Qing ZHANG, Shan-Wei LIU, Ruo-Feng FENG, Jian-Gu QIAN, Chun-Yu CUI. Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system[J]. Front. Struct. Civ. Eng., 2020, 14(4): 961-982.
[2] Mahrad FAHIMINIA, Aydin SHISHEGARAN. Evaluation of a developed bypass viscous damper performance[J]. Front. Struct. Civ. Eng., 2020, 14(3): 773-791.
[3] Wentao WANG, Chongzhi TU, Rong LUO. Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling technique in Jianghan Plain district[J]. Front. Struct. Civ. Eng., 2018, 12(4): 568-576.
[4] Yan XU, Shijie ZENG, Xinzhi DUAN, Dongbing JI. Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge[J]. Front. Struct. Civ. Eng., 2018, 12(3): 401-411.
[5] A. ARAB, Ma. R. BANAN, Mo. R. BANAN, S. FARHADI. Estimation of relations among hysteretic response measures and design parameters for RC rectangular shear walls[J]. Front. Struct. Civ. Eng., 2018, 12(1): 3-15.
[6] Abbas PARSAIE,Sadegh DEHDAR-BEHBAHANI,Amir Hamzeh HAGHIABI. Numerical modeling of cavitation on spillway’s flip bucket[J]. Front. Struct. Civ. Eng., 2016, 10(4): 438-444.
[7] Mostafa Shahrabi, Khosrow Bargi. Numerical simulation of multi-body floating piers to investigate pontoon stability[J]. Front Struc Civil Eng, 2013, 7(3): 325-331.
[8] Jian WU, Guangqi CHEN, Lu ZHENG, Yingbin ZHANG. GIS-based numerical simulation of Amamioshima debris flow in Japan[J]. Front Struc Civil Eng, 2013, 7(2): 206-214.
[9] Weixiao YANG, Jincheng XING, Jianxing LI, Jihong LING, Haixian HAO, Zhiqiang YAN. Impacts of opening baffle of city road tunnels on natural ventilation performance[J]. Front Struc Civil Eng, 2013, 7(1): 55-61.
[10] Junjie ZHENG, Zongzhe LI, Dongan ZHAO, Qiang MA, Rongjun ZHANG, . Resistance of large caisson in floating transport considering the influence of air[J]. Front. Struct. Civ. Eng., 2010, 4(3): 331-338.
[11] Shuchun LI, Bo DIAO, Youpo SU, . Seismic behavior experimental study of frame joints with special-shaped column and dispersed steel bar beam[J]. Front. Struct. Civ. Eng., 2009, 3(4): 378-383.
[12] Wanlin CAO, Jianwei ZHANG, Jingna ZHANG, Min WANG, . Experimental study on seismic behavior of mid-rise RC shear wall with concealed truss[J]. Front. Struct. Civ. Eng., 2009, 3(4): 370-377.
[13] Wenli CHEN, Hui LI, . Vortex-induced vibration of stay cable under profile velocity using CFD numerical simulation method[J]. Front. Struct. Civ. Eng., 2009, 3(4): 357-363.
[14] Xueyi YOU , Wei LIU , Houpeng XIAO , . Dynamics simulation of bottom high-sediment sea water movement under waves[J]. Front. Struct. Civ. Eng., 2009, 3(3): 312-315.
[15] Baoguo CHEN, Junjie ZHENG, Jie HAN. Experimental study on concrete box culverts in trenches[J]. Front Arch Civil Eng Chin, 2009, 3(1): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed