Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2009, Vol. 3 Issue (4) : 357-363    https://doi.org/10.1007/s11709-009-0060-z
Research articles
Vortex-induced vibration of stay cable under profile velocity using CFD numerical simulation method
Wenli CHEN,Hui LI,
School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;
 Download: PDF(638 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Vortex-induced vibration (VIV) of a stay cable subjected to a wind profile is numerically simulated through combining computational fluid dynamics (CFD) code CFX 10.0 and computational structural dynamics (CSD) code ANSYS 10.0. A stay cable with the inclined angle of 30° is used as the numerical model. Under a profile of mean wind speed, unsteady aerodynamic lift coefficients of the cable have been analyzed in both time domain and frequency domain when VIV occurs. The results indicate that the lift coefficient wave response of the stay cable under a wind profile is different from that of an infinitely long cable under a uniform flow in water (i.e., without consideration of profile) obtained by direct numerical simulation. Cable oscillations can severely affect the unsteady aerodynamic frequencies, change flow field distribution near the cable and affect the vortex shedding in the wake.
Keywords stay cable      fluid-structure interaction      numerical simulation      vortex-induced vibration      
Issue Date: 05 December 2009
 Cite this article:   
Wenli CHEN,Hui LI. Vortex-induced vibration of stay cable under profile velocity using CFD numerical simulation method[J]. Front. Struct. Civ. Eng., 2009, 3(4): 357-363.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-009-0060-z
https://academic.hep.com.cn/fsce/EN/Y2009/V3/I4/357
Neshinwman D J, Karniadakis G E. A direct numerical simulationstudy of flow past a freely vibrating cable. Journal of Fluid of Mechanics, 1997, 344: 95–136

doi: 10.1017/S002211209700582X
Evangelinos C, Karniadakis G E. Dynamics and flow structuresin the turbulent wake of rigid and flexible cylinders subject to vortex-inducedvibrations. Journal of Fluid of Mechanics, 1999, 400: 91–124

doi: 10.1017/S0022112099006606
Dong S J, Karniadakis G E. DNS of flow past a stationaryand oscillating cylinder at Re=10000. Journal of Fluids and Structures, 2005, 20(4): 519–531

doi: 10.1016/j.jfluidstructs.2005.02.004
Al-Jamal H, Dalton C. Vortex induced vibrationsusing large eddy simulation at a moderate Reynolds number. Journal of Fluids and Structures, 2004, 19(1): 73–92

doi: 10.1016/j.jfluidstructs.2003.10.005
Tutar M, Holdo A E. Large eddy simulation ofa smooth circular cylinder oscillating normal to a uniform flow. ASME, Journal of Fluids Engineering, 2000, 122(4): 694–702

doi: 10.1115/1.1287270
Zhou C Y, So R M C, Lam K. Vortex induced vibrations of an elastic circular cylinder. Journal of Fluids and Structures, 1999, 13(2): 165–189

doi: 10.1006/jfls.1998.0195
Meneghini J R, Bearman P W. Numerical simulation of highamplitude oscillatory flow about a circular cylinder. Journal of Fluids and Structures, 1995, 9(4): 435–455

doi: 10.1006/jfls.1995.1025
Guilmineau E, Queutey P. Numerical simulations invortex-induced vibrations at low mass-damping. AIAA Paper 2001-2852, AIAA Fluid Dunamics Conference and Exhibit,31st, Anaheim, CA, 2001
Khalak A, Williamson C H K. Motions, forces, and modetransitions in VIV at low mass damping. Journal of Fluids and Strutures, 1999, 13(7―8): 813–851

doi: 10.1006/jfls.1999.0236
Menter F R. Zonal two-equation k−ω turbulence models for aerodynamicflows. AIAA 24th Fluid Dynamics Conference,AIAA Paper 93―2906, Orlando, USA, 1993
[1] Qian-Qing ZHANG, Shan-Wei LIU, Ruo-Feng FENG, Jian-Gu QIAN, Chun-Yu CUI. Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system[J]. Front. Struct. Civ. Eng., 2020, 14(4): 961-982.
[2] Yunlin LIU, Shitao ZHU. Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated concrete frame[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1095-1104.
[3] Wentao WANG, Chongzhi TU, Rong LUO. Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling technique in Jianghan Plain district[J]. Front. Struct. Civ. Eng., 2018, 12(4): 568-576.
[4] A. ARAB, Ma. R. BANAN, Mo. R. BANAN, S. FARHADI. Estimation of relations among hysteretic response measures and design parameters for RC rectangular shear walls[J]. Front. Struct. Civ. Eng., 2018, 12(1): 3-15.
[5] Abbas PARSAIE,Sadegh DEHDAR-BEHBAHANI,Amir Hamzeh HAGHIABI. Numerical modeling of cavitation on spillway’s flip bucket[J]. Front. Struct. Civ. Eng., 2016, 10(4): 438-444.
[6] Nazim Abdul NARIMAN. Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span bridges[J]. Front. Struct. Civ. Eng., 2016, 10(4): 363-384.
[7] Mostafa Shahrabi, Khosrow Bargi. Numerical simulation of multi-body floating piers to investigate pontoon stability[J]. Front Struc Civil Eng, 2013, 7(3): 325-331.
[8] Jian WU, Guangqi CHEN, Lu ZHENG, Yingbin ZHANG. GIS-based numerical simulation of Amamioshima debris flow in Japan[J]. Front Struc Civil Eng, 2013, 7(2): 206-214.
[9] Weixiao YANG, Jincheng XING, Jianxing LI, Jihong LING, Haixian HAO, Zhiqiang YAN. Impacts of opening baffle of city road tunnels on natural ventilation performance[J]. Front Struc Civil Eng, 2013, 7(1): 55-61.
[10] Teng WU, Ahsan KAREEM. An overview of vortex-induced vibration (VIV) of bridge decks[J]. Front Struc Civil Eng, 2012, 6(4): 335-347.
[11] Xiaoliang MENG, Ledong ZHU, Zhenshan GUO. Aerodynamic interference effects and mitigation measures on vortex-induced vibrations of two adjacent cable-stayed bridges[J]. Front Arch Civil Eng Chin, 2011, 5(4): 510-517.
[12] Junjie ZHENG, Zongzhe LI, Dongan ZHAO, Qiang MA, Rongjun ZHANG, . Resistance of large caisson in floating transport considering the influence of air[J]. Front. Struct. Civ. Eng., 2010, 4(3): 331-338.
[13] Xueyi YOU , Wei LIU , Houpeng XIAO , . Dynamics simulation of bottom high-sediment sea water movement under waves[J]. Front. Struct. Civ. Eng., 2009, 3(3): 312-315.
[14] Baoguo CHEN, Junjie ZHENG, Jie HAN. Experimental study on concrete box culverts in trenches[J]. Front Arch Civil Eng Chin, 2009, 3(1): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed