Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Struc Civil Eng    2012, Vol. 6 Issue (4) : 335-347    https://doi.org/10.1007/s11709-012-0179-1
REVIEW
An overview of vortex-induced vibration (VIV) of bridge decks
Teng WU(), Ahsan KAREEM
NatHaz Modeling Laboratory, Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
 Download: PDF(462 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A brief overview of vortex-induced vibration (VIV) of circular cylinders is first given as most of VIV studies have been focused on this particular bluff cross-section. A critical literature review of VIV of bridge decks that highlights physical mechanisms central to VIV from a renewed perspective is provided. The discussion focuses on VIV of bridge decks from wind-tunnel experiments, full-scale observations, semi-empirical models and computational fluids dynamics (CFD) perspectives. Finally, a recently developed reduced order model (ROM) based on truncated Volterra series is introduced to model VIV of long-span bridges. This model captures successfully salient features of VIV at “lock-in” and unlike most phenomenological models offers physical significance of the model kernels.

Keywords vortex-induced vibration (VIV)      Volterra series      bridge     
Corresponding Author(s): WU Teng,Email:twu@nd.edu   
Issue Date: 05 December 2012
 Cite this article:   
Teng WU,Ahsan KAREEM. An overview of vortex-induced vibration (VIV) of bridge decks[J]. Front Struc Civil Eng, 2012, 6(4): 335-347.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-012-0179-1
https://academic.hep.com.cn/fsce/EN/Y2012/V6/I4/335
Fig.1  Kármán “vortex street” behind the circular cylinder
Fig.2  Filament-line sketch of the formation region (after Gerrard []). Arrows showing reverse flow c and entrainment a and b
Fig.3  Various vortex formation modes (after Williamson and Govardhan [])
Fig.4  Relation among empirical parameters and and the mass-damping ratio (after Skop and Griffin []).
Fig.5  VIV response versus reduced wind velocity for a typical bridge deck (after Zhang et al. []).
Fig.6  Turbulence effects on VIV (Solide line: direct effect; dash line: indirect effect)
Fig.7  Non-dimentional cross-flow amplitude versus reduced velocity for a circular cylinder (after Griffin and Ramberg []). Solid line: water, 2/ = 0.39 (where / = 3.8, = 5.1 × 10); dash line: air, 2/ = 0.29 (where / = 34, = 4.3 × 10).
Fig.8  Variation of empirical parameters (after Ehsan and Scanlan []). Solid line: ; dash line:
Fig.9  The linear and nonlinear kernels of the VIV system
Fig.10  “lock-in” response of the VIV system
1 Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing fluid. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences , 1964a, 277(1368): 32–50
doi: 10.1098/rspa.1964.0004
2 Naudascher E, Wang Y. Flow-induced vibrations of prismatic bodies and grids of prisms. Journal of Fluids and Structures , 1993, 7(4): 341–373
doi: 10.1006/jfls.1993.1021
3 Strouhal V. Ueber eine besondere Art der Tonerregung. Annalen der Physik , 1878, 5: 216–251
4 Rayleigh L. Theory of Sound. 2nd ed. London: Macmillan, 1896
5 Sarpkaya T. Vortex-induced oscillations. Journal of Applied Mechanics , 1979, 46(2): 241–258
doi: 10.1115/1.3424537
6 Bearman P W. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics , 1984, 16(1): 195–222
doi: 10.1146/annurev.fl.16.010184.001211
7 Williamson C H K. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics , 1996, 28(1): 477–539
doi: 10.1146/annurev.fl.28.010196.002401
8 Billah K Y R. A study of vortex-induced vibration. Dissertation for the Doctoral Degree , Princeton: Princeton University, 1989
9 Sarpkaya T. A critical review of the intrinsic nature of VIV. Fluid Mechanics and Its Applications , 2004, 75: 159–161
doi: 10.1016/j.jfluidstructs.2004.02.005
10 Williamson C H K, Govardhan R. Vortex-induced vibrations. Annual Review of Fluid Mechanics , 2004, 36(1): 413–455
doi: 10.1146/annurev.fluid.36.050802.122128
11 von Kármán Th, Rubach H. Ueber den mechanismus des flussigkeits-und luftwiderstandes. Physikalische Zeitschrift , 1912, 13: 49–59
12 Birkhoff G. Formation of vortex streets. Journal of Applied Physics , 1953, 24(1): 98–103
doi: 10.1063/1.1721143
13 Abernathy F H, Kronauer R E. The formation of vortex streets. Journal of Fluid Mechanics , 1962, 13(01): 1–20
doi: 10.1017/S0022112062000452
14 Gerrard J H. The mechanics of the formation region of vortices behind bluff bodies. Journal of Fluid Mechanics , 1966, 25(02): 401–413
doi: 10.1017/S0022112066001721
15 Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences , 1964, 277(1368): 51–75
doi: 10.1098/rspa.1964.0005
16 Hartlen R T, Currie I G. Lift-oscillator model of vortex-induced vibration. Journal of the Engineering Mechanics Division , 1970, 96(5): 577–591
17 Skop R A, Griffin O M. A model for the vortex-excited resonant response of bluff cylinders. Journal of Sound and Vibration , 1973, 27(2): 225–233
doi: 10.1016/0022-460X(73)90063-1
18 Landl R. A mathematical model for vortex-excited vibrations of bluff bodies. Journal of Sound and Vibration , 1975, 42(2): 219–234
doi: 10.1016/0022-460X(75)90217-5
19 Iwan W D, Blevins R D. A model for vortex induced oscillation of structures. Journal of Applied Mechanics , 1974, 41(3): 581–586
doi: 10.1115/1.3423352
20 Dowell E H. Nonlinear oscillator models in bluff body aeroelasticity. Journal of Sound and Vibration , 1981, 75(2): 251–264
doi: 10.1016/0022-460X(81)90343-6
21 Jones G W Jr, Cincotta, J. J., Walker R W.. Aerodynamic Forces on a Stationary and Oscillating Circular Cylinder at High Reynolds Numbers. NASA TR R-300 , 1969
22 Nakamura Y. Vortex excitation of a circular cylinder treated as binary flutter. Rep Res Inst App Mech , 1969, 13: 217–234
23 Tamura Y, Matsui G. 1979. Wake-oscillator model of vortex-induced oscillation of circular cylinder. In: Proceedings of the Fifth International Conference on Wind Engineering. Fort Collins, Colorado, USA, 1085–1094
24 Basu R I, Vickery B J. Across-wind vibrations of structures of circular cross-section—Part 2: development of a mathematical model for full-scale application. Journal of Wind Engineering and Industrial Aerodynamics , 1983, 12(1): 75–97
doi: 10.1016/0167-6105(83)90081-8
25 d’Asdia P, Materazzi A L, Radogna E F. Nonlinear model of wind-induced vibrations of slender structures with circular cross-sections. Journal of Wind Engineering and Industrial Aerodynamics , 1993, 48(2-3): 189–203
doi: 10.1016/0167-6105(93)90136-C
26 Nakamura Y, Mizota T. Unsteady lifts and wakes of oscillating rectangular prisms. Journal of the Engineering Mechanics Division , 1975, 101: 855–871
27 Fail R, Lawford J A,Eyre R C W. Low Speed Experiments on the Wake Characteristics of Flat Plates Normal to an Air Stream. British ARC R&M 3120 , 1959
28 Wootton L R. The oscillations of large circular stacks in wind. Proceedings- Institution of Civil Engineers , 1969, 43(4): 573–598
doi: 10.1680/iicep.1969.7314
29 Komatsu S, Kobayashi H. Vortex-induced oscillation of bluff cylinders. Journal of Wind Engineering and Industrial Aerodynamics , 1980, 6(3-4): 335–362
doi: 10.1016/0167-6105(80)90010-0
30 Shiraishi N, Matsumoto M. On classification of vortex-induced oscillation and its application for bridge structures. Journal of Wind Engineering and Industrial Aerodynamics , 1983, 14(1-3): 419–430
doi: 10.1016/0167-6105(83)90043-0
31 Van der Pol B, Van Der Mark J. Frequency demultiplication. Nature , 1927, 120(3019): 363–364
doi: 10.1038/120363a0
32 Zhang W, Wei Z, Yang Y, Ge Y. Comparison and analysis of Vortex induced vibration for twin-box bridge sections based on experiments in different Reynolds numbers. Journal of Tongji University(Natural Sicience) , 2008, 36(1): 6–11
33 Nakamura Y, Nakashima M. Vortex excitation of prisms with elongated rectangular, H and h cross-sections. Journal of Fluid Mechanics , 1986, 163: 149–169
doi: 10.1017/S0022112086002252
34 Koopman G H. The vortex wakes of vibrating cylinders at low Reynolds numbers. Journal of Fluid Mechanics , 1967, 28(03): 501–512
doi: 10.1017/S0022112067002253
35 Matsumoto M, Shiraishi N, Shirato H, Stoyanoff S, Yagi T. Mechanism of, and turbulence effect on vortex-induced oscillations for bridge box girders. Journal of Wind Engineering and Industrial Aerodynamics , 1993, 49(1-3): 467–476
doi: 10.1016/0167-6105(93)90041-L
36 Sarpkaya T, Schoaff R L. A Discrete Vortex Analysis of Flow about Stationary and Transversely Oscillating Circular Cylinders. Tech. Rep. NPS-69sl79011, Naval Postgrad Sch, Monterey, Calif , 1979
37 Scanlan R H. Amplitude and turbulence effects on bridge flutter derivatives. Journal of Structural Engineering , 1997, 123(2): 232–236
doi: 10.1061/(ASCE)0733-9445(1997)123:2(232)
38 Haan F L Jr, Kareem A. Anatomy of turbulence effects on the aerodynamics of an oscillating prism. Journal of Engineering Mechanics , 2009, 135(9): 987–999
doi: 10.1061/(ASCE)EM.1943-7889.0000012
39 Kareem A, Wu T. Wind induced effects on bluff bodies in turbulent flows: nonstationary, non-gaussian and nonlinear features. In: Porceedings of the 7th International Colloquium on Bluff-Body Aerodynamics and its Application (BBAAVII). September 2012, Shanghai, China , 2012
40 Larose G L, Larsen S V, Larsen A, Hui M, Jensen A G. Sectional model experiments at high Reynolds number for the deck of a 1018 m span cable-stayed bridge. In: Proceedings of 11th International Conference on Wind Engineering. Lubbock , 2003, 373–380
41 Larsen S V, Smitt L W, Gjelstrup H,Larsen A. Investigation of vortex-induced motion at high Reynolds numbers using large scale section model. 2004
42 Sarpkaya T. Fluid forces on oscillating cylinders. Journal of the Waterway Port Coastal and Ocean Division , 1978, 104(3): 275–290
43 Griffin O M, Koopmann G H. The vortex-excited lift and reaction forces on resonantly vibrating cylinders. Journal of Sound and Vibration , 1977, 54(3): 435–448
doi: 10.1016/0022-460X(77)90451-5
44 Diana G, Resta F, Belloli M, Rocchi D. On the vortex shedding forcing on suspension bridge deck. Journal of Wind Engineering and Industrial Aerodynamics , 2006, 94(5): 341–363
doi: 10.1016/j.jweia.2006.01.017
45 Schewe G, Larsen A. Reynolds number effects in the flow around a bluff bridge deck cross section. Journal of Wind Engineering and Industrial Aerodynamics , 1998, 74-76: 829–838
doi: 10.1016/S0167-6105(98)00075-0
46 Smith I J. Wind induced dynamic response of the Wye bridge. Engineering Structures , 1980, 2(4): 202–208
doi: 10.1016/0141-0296(80)90001-2
47 Kumarasena T, Scanlan R H, Morris G R. Deer Isle Bridge: field and computed vibrations. Journal of Structural Engineering , 1989, 115(9): 2313–2327
doi: 10.1061/(ASCE)0733-9445(1989)115:9(2313)
48 Kumarasena T, Scanlan R H, Ehsan F. Wind-induced motions of Deer Isle Bridge. Journal of Structural Engineering , 1991, 117(11): 3356–3374
doi: 10.1061/(ASCE)0733-9445(1991)117:11(3356)
49 Owen J S, Vann A M, Davies J P, Blakeborough A. The prototype testing of Kessock Bridge: response to vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics , 1996, 60: 91–108
doi: 10.1016/0167-6105(96)00026-8
50 Ronaldo C B, Michèle S P. Reduction of vortex-induced oscillations of Rio-Niterói bridge by dynamic control devices. Journal of Wind Engineering and Industrial Aerodynamics , 2000, 84(3): 273–288
doi: 10.1016/S0167-6105(99)00108-7
51 Larsen A, Esdahl S, Andersen J E, Vejrum T. Storeb?l suspension bridge-vortex shedding excitation and mitigation by guide vanes. Journal of Wind Engineering and Industrial Aerodynamics , 2000, 88(2-3): 283–296
doi: 10.1016/S0167-6105(00)00054-4
52 Frandsen J B. Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics , 2001, 89(1): 95–129
doi: 10.1016/S0167-6105(00)00059-3
53 Fujino Y, Yoshida Y. Wind-induced vibration and control of Trans-Tokyo Bay Crossing Bridge. Journal of Structural Engineering , 2002, 128(8): 1012–1025
doi: 10.1061/(ASCE)0733-9445(2002)128:8(1012)
54 Li H, Laima S, Ou J, Zhao X, Zhou W, Yu Y, Li N, Liu Z. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements. Engineering Structures , 2011, 33(6): 1894–1907
doi: 10.1016/j.engstruct.2011.02.017
55 Wilkinson R H. Fluctuating pressures on an oscillating square prism. Part II. Spanwise correlation and loading. Aero Quarterly , 1981, 32(2): 111–125
56 Scanlan R H. State-of-the-art Methods for Calculating Flutter, Vortex-induced, and Buffeting Response of Bridge Structures. Federal Highway Administration Report No. FHWA/RD-80/50 . 1981
57 Zdravkovich M. Scruton number: A proposal. Journal of Wind Engineering and Industrial Aerodynamics , 1982, 10(3): 263–265
doi: 10.1016/0167-6105(82)90001-0
58 Griffin O M, Ramberg S E. Some recent studies of vortex shedding with application to marine tubulars and risers. Journal of Energy Resources Technology , 1982, 104(1): 2–13
doi: 10.1115/1.3230377
59 Ehsan F, Scanlan R H. Vortex-induced vibrations of flexible bridges. Journal of Engineering Mechanics , 1990, 116(6): 1392–1411
doi: 10.1061/(ASCE)0733-9399(1990)116:6(1392)
60 Goswami I, Scanlan R H, Jones N P. Vortex-induced vibration of circular cylinders-Part2: new model. Journal of Engineering Mechanics , 1993, 119(11): 2288–2302
doi: 10.1061/(ASCE)0733-9399(1993)119:11(2288)
61 Larsen A. A generalized model for assessment of vortex-induced vibrations of flexible structures. Journal of Wind Engineering and Industrial Aerodynamics , 1995, 57(2-3): 281–294
doi: 10.1016/0167-6105(95)00008-F
62 Fujiwara A, Kataoka H,Ito M.Numerical simulation of flow field around an oscillating bridge using finite difference method. Journal of Wind Engineering and Industrial Aerodynamics , 1993, 46-47: 567-575
63 Nomura T. Finite element analysis of vortex-induced vibrations of bluff cylinders. Journal of Wind Engineering and Industrial Aerodynamics , 1993, 46-47: 587–594
doi: 10.1016/0167-6105(93)90326-J
64 Lee S, Lee J S, Kim J D. Prediction of vortex-induced wind loading on long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics , 1997, 67-68: 267–278
65 Sarwar M W, Ishihara T. Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures. Journal of Wind Engineering and Industrial Aerodynamics , 2010, 98(12): 701–711
doi: 10.1016/j.jweia.2010.06.001
66 Sarpkaya T, Schoaff R L. Inviscid model of two-dimensional vortex shedding by a circular cylinder. AIAA Journal , 1979, 17(11): 1193–1200
doi: 10.2514/3.61300
67 Larsen A, Walther J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations. Journal of Wind Engineering and Industrial Aerodynamics , 1997, 67-68: 253–265
68 Walther J H, Larsen A. Two dimensional discrete vortex method for application to bluff body aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics , 1997, 67-68: 183–193
69 Larsen A, Walther J H. Discrete vortex simulation of flow around five generic bridge deck sections. Journal of Wind Engineering and Industrial Aerodynamics , 1998, 77-78: 591–602
doi: 10.1016/S0167-6105(98)00175-5
70 Frandsen J B. Computational fluid-structure interaction applied to long-span bridge design. Dissertation for the Doctoral Degree . Cambridge: University of Cambridge, 1999
71 Morgenthal G. Comparison of numeridal methods for bridge-deck aerodynamics. Master Thesis, Cambridge: University of Cambridge, 2000
72 Raveh D E. Reduced-order models for nonlinear unsteady aerodynamics. AIAA Journal , 2001, 39(8): 1417–1429
doi: 10.2514/2.1473
73 Lucia D J, Beran P S, Silva W A. Reduced-order modeling: new approaches for computational physics. Progress in Aerospace Sciences , 2004, 40(1-2): 51–117
doi: 10.1016/j.paerosci.2003.12.001
74 Wu T, Kareem A. Volterra series based nonlinear oscillator for vortex-induced vibration modeling. In: Proceedings of 2012 Joint Conference of the Engineering Mechanics Institute and the 11th ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability. June, University of Notre Dame, IN, USA , 2012
75 Rugh W J. Nonlinear System Theory, Baltimore: the John Hopkins University Press, 1981
76 Wu T, Kareem A. Nonlinear aerodynamic and aeroelastic analysis framework for cable-supported bridges. In: Proceedings of the 3rd American Association for Wind Engineering Workshop. August, Hyannis, Massachusetts, USA , 2012
[1] Sang I. PARK, Sang-Ho LEE. Heuristic solution using decision tree model for enhanced XML schema matching of bridge structural calculation documents[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1403-1417.
[2] Hanli WU, Hua ZHAO, Jenny LIU, Zhentao HU. A filtering-based bridge weigh-in-motion system on a continuous multi-girder bridge considering the influence lines of different lanes[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1232-1246.
[3] Jianling HOU, Weibing XU, Yanjiang CHEN, Kaida ZHANG, Hang SUN, Yan LI. Typical diseases of a long-span concrete-filled steel tubular arch bridge and their effects on vehicle-induced dynamic response[J]. Front. Struct. Civ. Eng., 2020, 14(4): 867-887.
[4] Shahaboddin SHAMSHIRBAND, Amir MOSAVI, Timon RABCZUK. Particle swarm optimization model to predict scour depth around a bridge pier[J]. Front. Struct. Civ. Eng., 2020, 14(4): 855-866.
[5] Wei HUANG, Minshan PEI, Xiaodong LIU, Ya WEI. Design and construction of super-long span bridges in China: Review and future perspectives[J]. Front. Struct. Civ. Eng., 2020, 14(4): 803-838.
[6] Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI. Multiple damage detection in complex bridges based on strain energy extracted from single point measurement[J]. Front. Struct. Civ. Eng., 2020, 14(3): 722-730.
[7] Sajad JAVADINASAB HORMOZABAD, Amir K. GHORBANI-TANHA. Semi-active fuzzy control of Lali Cable-Stayed Bridge using MR dampers under seismic excitation[J]. Front. Struct. Civ. Eng., 2020, 14(3): 706-721.
[8] Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA. Pretest analysis of shake table response of a two-span steel girder bridge incorporating accelerated bridge construction connections[J]. Front. Struct. Civ. Eng., 2020, 14(1): 169-184.
[9] Hai-Bin MA, Wei-Dong ZHUO, Davide LAVORATO, Camillo NUTI, Gabriele FIORENTINO, Giuseppe Carlo MARANO, Rita GRECO, Bruno BRISEGHELLA. Probabilistic seismic response and uncertainty analysis of continuous bridges under near-fault ground motions[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1510-1519.
[10] Qingtian SU, Changyuan DAI, Xu JIANG. Bending performance of composite bridge deck with T-shaped ribs[J]. Front. Struct. Civ. Eng., 2019, 13(4): 990-997.
[11] Xudong SHAO, Lu DENG, Junhui CAO. Innovative steel-UHPC composite bridge girders for long-span bridges[J]. Front. Struct. Civ. Eng., 2019, 13(4): 981-989.
[12] Zhenyuan LUO, Weiming YAN, Weibing XU, Qinfei ZHENG, Baoshun WANG. Experimental research on the multilayer compartmental particle damper and its application methods on long-period bridge structures[J]. Front. Struct. Civ. Eng., 2019, 13(4): 751-766.
[13] Zhitian ZHANG. Mean wind load induced incompatibility in nonlinear aeroelastic simulations of bridge spans[J]. Front. Struct. Civ. Eng., 2019, 13(3): 605-617.
[14] Ayaho MIYAMOTO, Risto KIVILUOMA, Akito YABE. Frontier of continuous structural health monitoring system for short & medium span bridges and condition assessment[J]. Front. Struct. Civ. Eng., 2019, 13(3): 569-604.
[15] Qiwei ZHANG, Rongya XIN. The defect-length effect in corrosion detection with magnetic method for bridge cables[J]. Front. Struct. Civ. Eng., 2018, 12(4): 662-671.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed