Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (2) : 173-180    https://doi.org/10.1007/s11703-011-1092-4
RESEARCH ARTICLE
Comparative karyotypic analysis of A and C genomes in the genus Oryza with C0t-1 DNA and RFLP
Junbo ZHOU1, Weizhen LAN2(), Rui QIN3()
1. College of Life Sciences, Huzhou Teachers College, Huzhou 313000, China; 2. The Third Middle School of Wuyi, Jinhua 321200, China; 3. Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fluorescence in situ hybridization (FISH) was applied to somatic chromosomes preparations of Oryza sativa L. (AA), O. glaberrima (AA), and O. officinalis Wall. (CC) with a labeled probe of C0t-1 DNA. Genomic in situ hybridization to its own chromosomes (self-GISH) was conducted in a control experiment. The homologous chromosomes showed similar signal bands probed by C0t-1 DNA, while karyotypic analysis of chromosomes between A genome in the two cultivated species and C genome in O. officinalis were conducted based on the band patterns. The ideograms with C0t-1 DNA signal bands were also built. The nonuniform distribution of hybridization signals of C0t-1 DNA from O. sativa and that on its own chromosome of O. officinalis were observed. However, the similarity and correspondence between C0t-1 DNA signal patterns and genomic DNA signal patterns indicated that the self-GISH signals actually resulted from the hybridization of genomic repetitive sequences to the chromosomes. The restriction fragment length polymorphism (RFLP) marker, R2676, from the chromosome 8 of O. sativa and O. officinalis, was used as a probe to somatic hybrid on chromosomes for comparative karyotypic analysis between O. glaberrima and O. officinalis. The results showed that R2676 was located on the short arm of chromosome 7 in O. officinalis and chromosome 4 in O. glaberrima. The percentage distances from the centromere to hybridization sites were 91.56±5.62 and 86.20±3.17. Our results revealed that the relative length of O. officinalis chromosome 8 does not follow conventional chromosome length in descending order of number. C0t-1 DNA of A genome signals were detected in the end of the short arm of O. officinalis chromosome 8, indicating that the highly and moderately repetitive DNA sequences in this region were considerably similar between C and A genomes. However, the fluorescence intensity on the chromosomes of C0t-1 DNA of A genome was less than that of its own C genome from O. officinalis, which would be one of the causes for the fact that highly and moderately repetitive DNA sequences were amplified in O. officinalis. No homology signal of C0t-1 DNA from O. sativa was detected in the end of the long arm of O. glaberrima, indicating that repetitive DNA sequences of A genome in two cultivated rice were lost in the evolutional history. In this paper, using comparative karyotypic analysis of RFLP combined C0t-1 DNA signal bands, the evolutionary mechanism of genome in genus Oryza was also discussed.

Keywords C0t-1 DNA      RFLP      karyotype      in situ hybridization      Oryza     
Corresponding Author(s): LAN Weizhen,Email:lanwz@hotmail.com; QIN Rui,Email:qinrui@hotmail.com   
Issue Date: 05 June 2011
 Cite this article:   
Junbo ZHOU,Weizhen LAN,Rui QIN. Comparative karyotypic analysis of A and C genomes in the genus Oryza with C0t-1 DNA and RFLP[J]. Front Agric Chin, 2011, 5(2): 173-180.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1092-4
https://academic.hep.com.cn/fag/EN/Y2011/V5/I2/173
Fig.1  FISH images of prometaphase or metaphase chromosomes probed with C0t–1 DNA and their own total genomic DNA. Chromosomes stained with DAPI. Bars, 10 μm. FISH images A, C, and E show that the chromosomes are probed with DNA of , , and , respectively. FISH images B, D, and F show that the chromosomes are probed with their own genomic DNA of , , and , respectively. G and H show that the chromosomes are probed with its own DNA of .
Fig.2  Karyotype reconstruction base on DNA banding and idiogram of chromosomal locations of DNA in , , and . Bars, 10μm. Karyotype idiograms A–C show that the chromosomes are probed with DNA of , , and , respectively. D shows that the chromosomes are probed with its own DNA of . E, F, and G depict the distribution of the DNA of , , and , respectively. H depicts the distribution of its own DNA of . I is DNA banding corresponding to the rearranged chromosome. J is the distribution of DNA of chromosome 8 of , , and and its own DNA of chromosome 8 of , respectively.
No.Relative arm ratio pattern length±SD
O. sativaO. glaberrimaO. officinalis
112.94±0.411.25±0.12m12.26±0.191.21±0.32m12.42±0.401.35±0.22m
212.14±0.191.23±0.45m11.15±0.221.12±0.48m10.64±0.141.50±0.36m
310.02±0.321.85±0.42sm9.48±0.411.90±0.33sm10.66±0.332.25±0.47sm
48.82±0.501.12±0.27m9.25±0.191.49±0.11m8.86±0.171.13±0.24m
58.80±0.481.35±0.17m8.59±0.651.37±0.37m8.80±0.452.04±0.37sm
67.89±0.211.13±0.44m8.37±0.441.20±0.30m7.64±0.211.34±0.45m
77.61±0.372.61±0.45sm7.98±0.102.53±0.49sm7.43±0.501.21±0.49m
86.92±0.611.71±0.34sm7.36±0.521.77±0.28sm7.38±0.611.31±0.49m
96.73±0.181.36±0.22m6.91±0.241.40±0.46m7.34±0.271.26±0.25m
106.44±0.471.42±0.39m6.53±0.391.39±0.17m6.23±0.241.27±0.46m
116.26±0.471.83±0.18sm6.30±0.432.21±0.39sm6.12±0.341.23±0.39m
126.04±0.241.18±0.33m5.97±0.111.24±0.25m6.03±0.382.25±0.21sm
Tab.1  Karyotypic comparison of , , and based on the analysis of 10 metaphases
Fig.3  FISH images of physical location of an RFLP marker (R2676, 1.8 kb) on chromosomes of and . Chromosomes are stained with PI. Bars, 10 μm. A and B show that the R2676 marker signals are detected in metaphase and interphase chromosomes of , respectively. C and G are the enlarged idiograms of the signal-tagged chromosomes for R2676 marker of and , respectively. D and H show that the signal locations are mapped on the chromosome 8 maps of and by green dots. E and F show that the metaphase and prophase chromosomes are probed with R2676 marker of , respectively.
SpeciesChromosome No.Relative length±SDArm ratioSection lengthsPattern
O. glaberrima49.21±0.181.46±2.334.71±1.19 (86.20±3.17%)sm
O. officinalis77.45±0.221.19±4.293.71±2.51 (91.56±5.62%)m
Tab.2  Karyotype comparison of chromosome 8 of and based on 5 metaphase spreads possessing a similar degree of condensation
1 Bennetzen J L, Ma J, Devos K M (2005). Mechanisms of recent genome size variation in flowering plants. Ann Bot , 95(1): 127-132
doi: 10.1093/aob/mci008 pmid:15596462
2 Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D (1994). Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics , 138(4): 1251-1274
pmid:7896104
3 Cheng Z K, Dong F G, Langdon T, Ouyang S, Buell C R, Gu M H, Blattner F R, Jiang J M (2002). Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell , 14(8): 1691-1704
doi: 10.1105/tpc.003079 pmid:12172016
4 Cheng Z K, Buell C R, Wing R A, Gu M H, Jiang J M (2001a). Toward a cytological characterization of the rice genome. Genome Res , 11(12): 2133-2141
doi: 10.1101/gr.194601 pmid:11731505
5 Cheng Z K, Presting G G, Buell C R, Wing R A, Jiang J M (2001b). High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics , 157(4): 1749-1757
pmid:11290728
6 Cheng Z K, Stupar R M, Gu M H, Jiang J M (2001c). A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma , 110(1): 24-31
doi: 10.1007/s004120000126 pmid:11398973
7 Cheng Z K, Yan H H, Yu H X, Tang S C, Jiang J M, Gu M H, Zhu L H (2001d). Development and applications of a complete set of rice telotrisomics. Genetics , 157(1): 361-368
pmid:11139516
8 Doyle J J, (1990). Isolation of plant DNA from fresh tissue. Focus , 12: 13-15
9 Flavell R B (1986). Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci , 312(1154): 227-242
doi: 10.1098/rstb.1986.0004 pmid:2870519
10 Flavell R B, Bennett M D, Smith J B, Smith D B (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet , 12(4): 257-269
doi: 10.1007/BF00485947 pmid:4441361
11 Hall A E, Keith K C, Hall S E, Copenhaver G P, Preuss D (2004). The rapidly evolving field of plant centromeres. Curr Opin Plant Biol , 7(2): 108-114
doi: 10.1016/j.pbi.2004.01.008 pmid:15003208
12 Harrison G E, Heslop-Harrison J S (1995). Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet , 90(2): 157-165
doi: 10.1007/BF00222197
13 Harushima Y, Yano M, Shomura A, Sato M, Shimano T (1998). A high-density rice gentic linkage map with 2275 markers using a single F2 population. Genetics , 144: 1883-1891
14 Jackson S A, Cheng Z K, Wang M L, Goodman H M, Jiang J M (2000). Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics , 156(2): 833-838
pmid:11014828
15 Jiang J M, Nasuda S, Dong F G, Scherrer C W, Woo S S, Wing R A, Gill B S, Ward D C (1996). A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci U S A , 93(24): 14210-14213
doi: 10.1073/pnas.93.24.14210 pmid:8943086
16 Jiang N, Feschotte C, Zhang X Y, Wessler S R (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol , 7(2): 115-119
doi: 10.1016/j.pbi.2004.01.004 pmid:15003209
17 Jin W W, Lamb J C, Vega J M, Dawe R K, Birchler J A, Jiang J M (2005). Molecular and functional dissection of the maize B chromosome centromere. Plant Cell , 17(5): 1412-1423
doi: 10.1105/tpc.104.030643 pmid:15805482
18 Jin W W, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, Jiang J M (2004). Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell , 16(3): 571-581
doi: 10.1105/tpc.018937 pmid:14973167
19 Kumar A, Bennetzen J L (1999). Plant retrotransposons. Anne Rev Genet , 33(1): 479-532
doi: 10.1146/annurev.genet.33.1.479 pmid:10690416
20 Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara Y, Hayasaka K, Miyao A, Monna L, Zhong H S, Tamura Y, Wang Z X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994). A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet , 8(4): 365-372
doi: 10.1038/ng1294-365 pmid:7894488
21 Lan W Z, He G C, Wang C Y, Wu S J, Qin R (2007). Comparative analysis of genomes in Oryza sativa, O. officinalis, and O. meyeriana with C0t-1 DNA and genomic DNA of cultivated rice. Agric Sci China , 6(9): 1027-1034
doi: 10.1016/S1671-2927(07)60143-6
22 Lan W Z, Qin R, Li G, He G C (2006). Comparative analysis of A, B, C and D genomes in the genus Oryza with C0t-1 DNA of C genome. Chinese Sci Bull , 51(14): 1710-1720
doi: 10.1007/s11434-006-2049-5
23 Li C B, Zhang D M, Ge S, Lu B R, Hong D Y (2001). Differentiation and inter-genomic relationships among C, E and D genomes in the Oryza officinalis complex (Poaceae) as revealed by multicolor genomic in situ hybridization. Theor Appl Genet , 103(2-3): 197-203
doi: 10.1007/s001220100562
24 Lu B R (1999). Taxonomy of the genus Oryza (Poaceae): historical perspective and current status. Int Rice Res Newslett , 243: 4-8
25 Matyásek R, Gazdová B, Fajkus J, Bezdek M (1997). NTRS, a new family of highly repetitive DNAs specific for the T1 chromosome of tobacco. Chromosoma , 106(6): 369-379
doi: 10.1007/s004120050258 pmid:9362545
26 Mishima M, Ohmido N, Fukui K, Yahara T (2002). Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma , 110(8): 550-558
doi: 10.1007/s00412-001-0175-z pmid:12068972
27 Ohmido N, Akiyama Y, Fukui K (1998). Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol Biol , 38(6): 1043-1052
doi: 10.1023/A:1006062905742 pmid:9869410
28 Ohmido N, Kijima K, Akiyama Y, de Jong J H, Fukui K (2000). Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet , 263(3): 388-394
doi: 10.1007/s004380051182 pmid:10821172
29 Qin R, Wei W H, Jin W W, He G C, Song Y C (2001). Physical location of rice Gm–6, Pi–5(t) genes in O. officinallis with BAC– FISH. Chinese Sci Bull , 46(8): 2427-2430
doi: 10.1007/BF03182829
30 Ren N, Song Y C, Bi X Z, Ding Y, Liu L H, (1997). The physical location of genes cdc2 and prh1 in maize (Zea mays L.). Hereditas , 126(3): 211-217
doi: 10.1111/j.1601-5223.1997.00211.x pmid:9350135
31 Riera-Lizarazu O, Vales M I, Ananiev E V, Rines H W, Phillips R L (2000). Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics , 156(1): 327-339
pmid:10978296
32 Shishido R, Ohmido N, Fukui K (2001). Chromosome painting as a tool for rice genetics and breeding. Methods Cell Sci , 23(1-3): 125-133
doi: 10.1023/A:1013130707341 pmid:11741149
33 Song Y C, Gustafson J P (1995). The physical location of fourteen RFLP markers in rice (Oryza sativa L.). Theor Appl Genet , 90(1): 113-119
doi: 10.1007/BF00221003
34 Tan G X, Jin H J, Li G, He R F, Zhu L L, He G C (2005). Production and characterization of a complete set of individual chromosome additions from Oryza officinalis to Oryza sativa using RFLP and GISH analyses. Theor Appl Genet , 111(8): 1585-1595
doi: 10.1007/ s00122 –005– 0090– 4
35 Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, Fukui K (1997). Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol , 35(6): 791-799
doi: 10.1023/A:1005823124989 pmid:9426599
36 Vaughan D A (1994). The Wild Relatives of Rice. A Genetic Resources Hand book . Manila: IRRI
37 Vaughan D A, Morishima H, Kadowaki K (2003). Diversity in the Oryza genus. Curr Opin Plant Biol , 6(2): 139-146
doi: 10.1016/S1369-5266(03)00009-8 pmid:12667870
38 Wang Z X, Kurata N, Saji S, Katayose Y, Minobe Y (1995). A chromosome 5-specific repetitive DNA sequence in rice (Oryza sativa L.). Theor Appl Genet , 90(7-8): 907-913
doi: 10.1007/BF00222902
39 Werner J E, Endo T R, Gill B S (1992). Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U S A , 89(23): 11307-11311
doi: 10.1073/pnas.89.23.11307 pmid:1360666
40 Yan H H, Jin W W, Nagaki K, Tian S L, Ouyang S, Buell C R, Talbert P B, Henikoff S, Jiang J M (2005). Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell , 17(12): 3227-3238
doi: 10.1105/tpc.105.037945 pmid:16272428
41 Yan H H, Liu G Q, Cheng Z K, Li X B, Liu G Z, Min S K, Zhu L H (2002). A genome-specific repetitive DNA sequence from Oryza eichingeri: characterization, localization, and introgression to O. sativa.Theor Appl Genet , 104(2-3): 177-183
doi: 10.1007/s001220100766 pmid:12582684
42 Zhao Q, Zhang Y, Cheng Z K, Chen M S, Wang S Y, Feng Q, Huang Y C, Li Y, Tang Y S, Zhou B, Chen Z, Yu S, Zhu J, Hu X, Mu J, Ying K, Hao P, Zhang L, Lu Y, Zhang L S, Liu Y, Yu Z, Fan D, Weng Q, Chen L, Lu T, Liu X, Jia P, Sun T, Wu Y, Zhang Y, Lu Y, Li C, Wang R, Lei H, Li T, Hu H, Wu M, Zhang R, Guan J, Zhu J, Fu G, Gu M, Hong G, Xue Y, Wing R, Jiang J, Han B (2002). A fine physical map of the rice chromosome 4. Genome Res , 12(5): 817-823
doi: 10.1101/gr.48902 pmid:11997348
43 Zwick M S, Hanson R E, Islam-Faridi M N, Stelly D M, Wing R A, Price H J, McKnight T D (1997). A rapid procedure for the isolation of C0t-1 DNA from plants. Genome , 40(1): 138-142
doi: 10.1139/g97-020 pmid:18464813
44 Zwick M S, Islam-Faridi M N, Zhang H B, Hodnett G L, Gomez M I, Kim J S, Price H J, Stelly D M (2000). Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of sorghum bicolor (Poaceae). Am J Bot , 87(12): 1757-1764
doi: 10.2307/2656825 pmid:11118410
[1] Tinghui LIU, Wei GUO, Weiming SUN, Yongxiang SUN. Biological characteristics of Bacillus thuringiensis strain Bt11 and identification of its cry-type genes[J]. Front Agric Chin, 2009, 3(2): 159-163.
[2] ZHANG Xiaohui, XU Shangzhong, GAO Xue, ZHANG Lupei, REN Hongyan, CHEN Jinbao. The application of asymmetric PCR-SSCP in gene mutation detecting[J]. Front. Agric. China, 2008, 2(3): 361-364.
[3] LAN Weizhen, HE Guangcun, WANG Chenyi, WU Shijun, QIN Rui. Comparative analysis of genomes in Oryza sativa, O. officinalis and O. meyeriana with C0t-1 DNA and genomic DNA of cultivated rice[J]. Front. Agric. China, 2007, 1(3): 237-242.
[4] LI Xianglong, ZHANG Zengli, JIA Qing, WANG Lize, GONG Yuanfang, LIU Zhengzhu. mtDNA D-loop of Chinese main indigenous sheep breeds using PCR-RFLP[J]. Front. Agric. China, 2007, 1(3): 352-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed