Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (4) : 463-472    https://doi.org/10.1007/s11703-011-1148-5
REVIEW
Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants
Jincai LI1, Yongsheng ZHANG2, Juntao GU3, Chengjin GUO2, Shumin WEN3, Guiru LIU2(), Kai XIAO2()
1. Science and Technology Management Office, Agricultural University of Hebei, Baoding 071001, China; 2. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 3. College of Life Science, Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(192 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The APETALA2 (AP2) domain defines a large family of DNA binding proteins. It has been demonstrated that the AP2 proteins have important functions in the transcriptional regulation of a variety of biologic processes related to growth and development in various responses to drought and other abiotic stresses. In this essay, recent researches on the AP2 transcription factors, such as the molecular characterization, expression patterns in responses to drought and other abiotic stresses, the roles of ABA on drought responding which were mediated by AP2 transcription factors, transcription regulation mechanisms, and the roles of overexpression of AP2 transcription factor on plant drought tolerance, etc. have been overviewed. Deepening the understanding of signaling and the corresponding transduction pathways that are initiated via drought stress stimuli will play crucial roles for providing the theoretical basis for variety breeding with promising drought tolerance in the future.

Keywords transcription factor      AP2 domain      molecular characterization      transcriptional activation      drought tolerance     
Corresponding Author(s): LIU Guiru,Email:nxlgr@hebau.edu.cn; XIAO Kai,Email:xiaokai@hebau.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Jincai LI,Yongsheng ZHANG,Juntao GU, et al. Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants[J]. Front Agric Chin, 2011, 5(4): 463-472.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1148-5
https://academic.hep.com.cn/fag/EN/Y2011/V5/I4/463
1 Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell , 16(9): 2463–2480
doi: 10.1105/tpc.104.022897 pmid:15319479
2 Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell , 119(1): 109–120
doi: 10.1016/j.cell.2004.09.018 pmid:15454085
3 Allen G J, Kuchitsu K, Chu S P, Murata Y, Schroeder J I (1999). Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell , 11(9): 1785–1798
pmid:10488243
4 Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J , 17(18): 5484–5496
doi: 10.1093/emboj/17.18.5484 pmid:9736626
5 Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science , 301(5633): 653–657
doi: 10.1126/science.1086391 pmid:12893945
6 Assmann S M (2003). OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci , 8(4): 151–153
doi: 10.1016/S1360-1385(03)00052-9 pmid:12711225
7 Assmann S M, Wang X Q (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol , 4(5): 421–428
doi: 10.1016/S1369-5266(00)00195-3 pmid:11597500
8 Baker S S, Wilhelm K S, Thomashow M F (1994). The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol , 24(5): 701–713
doi: 10.1007/BF00029852 pmid:8193295
9 Banno H, Ikeda Y, Niu Q W, Chua N H (2001). Overexpression of ArabidopsisESR1 induces initiation of shoot regeneration. Plant Cell , 13(12): 2609–2618
pmid:11752375
10 Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A, Miki B L, Custers J B, van Lookeren Campagne M M (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell , 14(8): 1737–1749
doi: 10.1105/tpc.001941 pmid:12172019
11 Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development , 119: 721–743
12 Choi D W, Rodriguez E M, Close T J (2002). Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol , 129(4): 1781–1787
doi: 10.1104/pp.003046 pmid:12177491
13 Chuck G, Meeley R B, Hake S (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev , 12(8): 1145–1154
doi: 10.1101/gad.12.8.1145 pmid:9553044
14 Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J (2002). The control of spikelet meristem identity by the branched silkless1 gene in maize. Science , 298(5596): 1238–1241
doi: 10.1126/science.1076920 pmid:12424380
15 Connolly K M, Wojciak J M, Clubb R T (1998). Site-specific DNA binding using a variation of the double stranded RNA binding motif. Nat Struct Biol , 5(7): 546–550
doi: 10.1038/799 pmid:9665166
16 Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science , 273(5279): 1239–1241
doi: 10.1126/science.273.5279.1239 pmid:8703061
17 Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J , 33(4): 751–763
doi: 10.1046/j.1365-313X.2003.01661.x pmid:12609047
18 Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q, Gerentes D, Perez P, Smyth D R (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell , 8(2): 155–168
pmid:8742707
19 Finkelstein R R, Gampala S S, Rock C D (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell , 14(Suppl): S15–S45
pmid:12045268
20 Finkelstein R R, Lynch T J (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell , 12(4): 599–609
pmid:10760247
21 Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell , 10(6): 1043–1054
pmid:9634591
22 Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell , 12(3): 393–404
pmid:10715325
23 Garg A K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu R J (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA , 99(25): 15898–15903
doi: 10.1073/pnas.252637799 pmid:12456878
24 Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J , 16(4): 433–442
doi: 10.1046/j.1365-313x.1998.00310.x pmid:9881163
25 Gu Y Q, Yang C, Thara V K, Zhou J, Martin G B (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell , 12(5): 771–786
pmid:10810149
26 Guo Y, Xiong L, Song C P, Gong D, Halfter U, Zhu J K (2002). A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell , 3(2): 233–244
doi: 10.1016/S1534-5807(02)00229-0 pmid:12194854
27 Gutterson N, Reuber T L (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol , 7(4): 465–471
doi: 10.1016/j.pbi.2004.04.007 pmid:15231271
28 Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol , 130(2): 639–648
doi: 10.1104/pp.006478 pmid:12376631
29 Hao D, Yamasaki K, Sarai A, Ohme-Takagi M (2002). Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry , 41(13): 4202–4208
doi: 10.1021/bi015979v pmid:11914065
30 Hao D Y, Ohme-Takagi M, Sarai A (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem , 273(41): 26857–26861
doi: 10.1074/jbc.273.41.26857 pmid:9756931
31 Himmelbach A, Yang Y, Grill E (2003). Relay and control of abscisic acid signaling. Curr Opin Plant Biol , 6(5): 470–479
doi: 10.1016/S1369-5266(03)00090-6 pmid:12972048
32 Hoth S, Morgante M, Sanchez J P, Hanafey M K, Tingey S V, Chua N H (2002). Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci , 115(24): 4891–4900
doi: 10.1242/jcs.00175 pmid:12432076
33 Hsieh T H, Lee J T, Charng Y Y, Chan M T (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol , 130(2): 618–626
doi: 10.1104/pp.006783 pmid:12376629
34 Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA , 103(35): 12987–12992
doi: 10.1073/pnas.0604882103 pmid:16924117
35 Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008). Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol , 67(1-2): 169–181
doi: 10.1007/s11103-008-9309-5 pmid:18273684
36 Hu Y X, Wang Y X, Liu X F, Li J Y (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res , 14(1): 8–15
doi: 10.1038/sj.cr.7290197 pmid:15040885
37 Hugouvieux V, Kwak J M, Schroeder J I (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell , 106(4): 477–487
doi: 10.1016/S0092-8674(01)00460-3 pmid:11525733
38 Ingram J, Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol , 47(1): 377–403
doi: 10.1146/annurev.arplant.47.1.377 pmid:15012294
39 Irish V F, Sussex I M (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell , 2(8): 741–753
pmid:1983792
40 Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol , 47(1): 141–153
doi: 10.1093/pcp/pci230 pmid:16284406
41 Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol , 127(3): 910–917
doi: 10.1104/pp.010548 pmid:11706173
42 Jang I C, Oh S J, Seo J S, Choi W B, Song S I, Kim C H, Kim Y S, Seo H S, Choi Y D, Nahm B H, Kim J K (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol , 131(2): 516–524
doi: 10.1104/pp.007237 pmid:12586876
43 Jiang C, Iu B, Singh J (1996). Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol , 30(3): 679–684
doi: 10.1007/BF00049344 pmid:8605318
44 Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell , 6(9): 1211–1225
pmid:7919989
45 Jung J, Won S Y, Suh S C, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2006). The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta , 225(3): 575–588
doi: 10.1007/s00425-006-0373-2 pmid:16937017
46 Kagaya Y, Ohmiya K, Hattori T (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res , 27(2): 470–478
doi: 10.1093/nar/27.2.470 pmid:9862967
47 Karin M (1990). Too many transcription factors: positive and negative interactions. New Biol , 2(2): 126–131
pmid:2128034
48 Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004). A combination of the ArabidopsisDREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol , 45(3): 346–350
doi: 10.1093/pcp/pch037 pmid:15047884
49 Khandelwal A, Elvitigala T, Ghosh B, Quatrano R S (2008). Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiol , 148(4): 2050–2058
doi: 10.1104/pp.108.128488 pmid:18829981
50 Rice Full-Length cDNA Consortium; National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team, Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T; Foundation of Advancement of International Science Genome Sequencing & Analysis Group, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K; RIKEN, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science , 301(5631): 376–379
doi: 10.1126/science.1081288 pmid:12869764
51 Kizis D, Pagès M (2002). Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J , 30(6): 679–689
doi: 10.1046/j.1365-313X.2002.01325.x pmid:12061899
52 Klucher K M, Chow H, Reiser L, Fischer R L (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell , 8(2): 137–153
pmid:8742706
53 Koornneef M, Reuling G, Karssen C M (1984). The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant , 61(3): 377–383
doi: 10.1111/j.1399-3054.1984.tb06343.x
54 Krizek B A (2003). AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res , 31(7): 1859–1868
doi: 10.1093/nar/gkg292 pmid:12655002
55 Latchman D S (1997). Transcription factors: an overview. Int J Biochem Cell Biol , 29(12): 1305–1312
doi: 10.1016/S1357-2725(97)00085-X pmid:9570129
56 Lee J H, Hong J P, Oh S K, Lee S, Choi D, Kim W T (2004). The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol , 55(1): 61–81
doi: 10.1007/s11103-004-0417-6 pmid:15604665
57 Lee T I, Young R A (2000). Transcription of eukaryotic protein-coding genes. Annu Rev Genet , 34(1): 77–137
doi: 10.1146/annurev.genet.34.1.77 pmid:11092823
58 Leung J, Giraudat J (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol , 49(1): 199–222
doi: 10.1146/annurev.arplant.49.1.199 pmid:15012233
59 Leung J, Merlot S, Giraudat J (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell , 9(5): 759–771
pmid:9165752
60 Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell , 10(8): 1391–1406
pmid:9707537
61 Lu C, Fedoroff N (2000). A mutation in the ArabidopsisHYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell , 12(12): 2351–2366
pmid:11148283
62 Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004). dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J , 37(5): 720–729
doi: 10.1111/j.1365-313X.2003.01998.x pmid:14871311
63 Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J , 25(3): 295–303
doi: 10.1046/j.1365-313x.2001.00965.x pmid:11208021
64 Meyerowitz E M (1994). Flower development and evolution: new answers and new questions. Proc Natl Acad Sci USA , 91(13): 5735–5737
doi: 10.1073/pnas.91.13.5735 pmid:7912433
65 Moose S P, Sisco P H (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev , 10(23): 3018–3027
doi: 10.1101/gad.10.23.3018 pmid:8957002
66 Murzin A G, Brenner S E, Hubbard T, Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol , 247(4): 536–540
doi: 10.1016/S0022-2836(05)80134-2 pmid:7723011
67 Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell , 14(12): 3089–3099
doi: 10.1105/tpc.007906 pmid:12468729
68 Nakano T, Suzuki K, Fujimura T, Shinshi H (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol , 140(2): 411–432
doi: 10.1104/pp.105.073783 pmid:16407444
69 Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J , 51(4): 617–630
doi: 10.1111/j.1365-313X.2007.03168.x pmid:17587305
70 Nikolov D B, Burley S K (1997). RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci USA , 94(1): 15–22
doi: 10.1073/pnas.94.1.15 pmid:8990153
71 Nole-Wilson S, Krizek B A (2000). DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res , 28(21): 4076–4082
doi: 10.1093/nar/28.21.4076 pmid:11058102
72 Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K (2009). Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol , 150(3): 1368–1379
doi: 10.1104/pp.109.137554 pmid:19429605
73 Oh S J, Kwon C W, Choi D W, Song S I, Kim J K (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J , 5(5): 646–656
doi: 10.1111/j.1467-7652.2007.00272.x pmid:17614953
74 Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol , 138(1): 341–351
doi: 10.1104/pp.104.059147 pmid:15834008
75 Ohki I, Shimotake N, Fujita N, Nakao M, Shirakawa M (1999). Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1. EMBO J , 18(23): 6653–6661
doi: 10.1093/emboj/18.23.6653 pmid:10581239
76 Ohme-Takagi M, Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell , 7(2): 173–182
pmid:7756828
77 Ohto M A, Fischer R L, Goldberg R B, Nakamura K, Harada J J (2005). Control of seed mass by APETALA2. Proc Natl Acad Sci USA , 102(8): 3123–3128
doi: 10.1073/pnas.0409858102 pmid:15708976
78 Okamuro J K, Caster B, Villarroel R, Van Montagu M, Jofuku K D (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA , 94(13): 7076–7081
doi: 10.1073/pnas.94.13.7076 pmid:9192694
79 Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H (2001). Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell , 13(5): 1035–1046
pmid:11340180
80 Pawson T (1993). Signal transduction—a conserved pathway from the membrane to the nucleus. Dev Genet , 14(5): 333–338
doi: 10.1002/dvg.1020140502 pmid:8293575
81 Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science , 290(5499): 2105–2110
doi: 10.1126/science.290.5499.2105 pmid:11118137
82 Riechmann J L, Meyerowitz E M (1998). The AP2/EREBP family of plant transcription factors. Biol Chem , 379(6): 633–646
pmid:9687012
83 Roeder R G (1996). The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci , 21(9): 327–335
pmid:8870495
84 Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun , 290(3): 998–1009
doi: 10.1006/bbrc.2001.6299 pmid:11798174
85 Schroeder J I, Kwak J M, Allen G J (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature , 410(6826): 327–330
doi: 10.1038/35066500 pmid:11268200
86 Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics , 2(6): 282–291
doi: 10.1007/s10142-002-0070-6 pmid:12444421
87 Shen Y G, Zhang W K, Yan D Q, Du B X, Zhang J S, Liu Q, Chen S Y (2003). Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet , 107(1): 155–161
pmid:12677404
88 Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol , 115(2): 327–334
doi: 10.1104/pp.115.2.327 pmid:12223810
89 Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol , 6(5): 410–417
doi: 10.1016/S1369-5266(03)00092-X pmid:12972040
90 Shukla R K, Raha S, Tripathi V, Chattopadhyay D (2006). Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol , 142(1): 113–123
doi: 10.1104/pp.106.081752 pmid:16844836
91 Skinner J S, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger E J, Thomashow M F, Chen T H, Hayes P M (2005). Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol , 59(4): 533–551
doi: 10.1007/s11103-005-2498-2 pmid:16244905
92 Sohn K H, Lee S C, Jung H W, Hong J K, Hwang B K (2006). Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol , 61(6): 897–915
doi: 10.1007/s11103-006-0057-0 pmid:16927203
93 Song C P, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu J K (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell , 17(8): 2384–2396
doi: 10.1105/tpc.105.033043 pmid:15994908
94 Stockinger E J, Gilmour S J, Thomashow M F (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA , 94(3): 1035–1040
doi: 10.1073/pnas.94.3.1035 pmid:9023378
95 Thomashow M F (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol , 50(1): 571–599
doi: 10.1146/annurev.arplant.50.1.571 pmid:15012220
96 Trujillo L E, Sotolongo M, Menéndez C, Ochogavía M E, Coll Y, Hernández I, Borrás-Hidalgo O, Thomma B P H J, Vera P, Hernández L (2008). SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol , 49(4): 512–525
doi: 10.1093/pcp/pcn025 pmid:18281696
97 van der Fits L, Memelink J (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science , 289(5477): 295–297
doi: 10.1126/science.289.5477.295 pmid:10894776
98 Wang X Q, Ullah H, Jones A M, Assmann S M (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science , 292(5524): 2070–2072
doi: 10.1126/science.1059046 pmid:11408655
99 Wojciak J M, Sarkar D, Landy A, Clubb R T (2002). Arm-site binding by lambda-integrase: solution structure and functional characterization of its amino-terminal domain. Proc Natl Acad Sci USA , 99(6): 3434–3439
doi: 10.1073/pnas.052017999 pmid:11904406
100 Xiao B, Huang Y, Tang N, Xiong L (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet , 115(1): 35–46
doi: 10.1007/s00122-007-0538-9 pmid:17426956
101 Xiong L, Gong Z, Rock C D, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu J K (2001b). Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell , 1(6): 771–781
doi: 10.1016/S1534-5807(01)00087-9 pmid:11740939
102 Xiong L, Lee Bh, Ishitani M, Lee H, Zhang C, Zhu J K (2001a). FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev , 15(15): 1971–1984
doi: 10.1101/gad.891901 pmid:11485991
103 Xiong L, Schumaker K S, Zhu J K (2002). Cell signaling during cold, drought, and salt stress. Plant Cell , 14(Suppl): S165–S183
pmid:12045276
104 Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol , 110(1): 249–257
pmid:12226181
105 Xu Z S, Xia L Q, Chen M, Cheng X G, Zhang R Y, Li L C, Zhao Y X, Lu Y, Ni Z Y, Liu L, Qiu Z G, Ma Y Z (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol , 65(6): 719–732
doi: 10.1007/s11103-007-9237-9 pmid:17874224
106 Xue G P (2003). The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J , 33(2): 373–383
doi: 10.1046/j.1365-313X.2003.01630.x pmid:12535350
107 Yamaguchi-Shinozaki K, Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell , 6(2): 251–264
pmid:8148648
108 Yamaguchi-Shinozaki K, Shinozaki K (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol , 57(1): 781–803
doi: 10.1146/annurev.arplant.57.032905.105444 pmid:16669782
109 Yamamoto S, Suzuki K, Shinshi H (1999). Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J , 20(5): 571–579
doi: 10.1046/j.1365-313X.1999.00634.x pmid:10652129
110 Yi S Y, Kim J H, Joung Y H, Lee S, Kim W T, Yu S H, Choi D (2004). The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol , 136(1): 2862–2874
doi: 10.1104/pp.104.042903 pmid:15347795
111 Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y (2005). Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J , 42(5): 689–707
doi: 10.1111/j.1365-313X.2005.02405.x pmid:15918883
112 Zhou J, Tang X, Martin G B (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J , 16(11): 3207–3218
doi: 10.1093/emboj/16.11.3207 pmid:9214637
113 Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol , 53(1): 247–273
doi: 10.1146/annurev.arplant.53.091401.143329 pmid:12221975
[1] Chengjin GUO, Wensuo CHANG, Juntao GU, Xiaojuan LI, Wenjing LU, Kai XIAO. Molecular characterization, transcriptional regulation and function analysis of nitrate transporters in plants[J]. Front Agric Chin, 2011, 5(3): 291-298.
[2] Chengjin GUO, Juntao GU, Xiaojuan LI, Wenjing LU, Chunying MA, Kai XIAO. The molecular characterization and function of miRNAs on mediation of target gene silencing in plants[J]. Front Agric Chin, 2011, 5(2): 162-172.
[3] Ruijuan LI, Wenjing LU, Jinfeng ZHAO, Chengjin GUO, Kai XIAO, Chuanfan SUN, . Biochemical properties, molecular characterizations, functions, and application perspectives of phytases[J]. Front. Agric. China, 2010, 4(2): 195-209.
[4] GAI Junyi, LIU Ying, LV Huineng, XING Han, ZHAO Tuanjie, YU Deyue, CHEN Shouyi. Identification, inheritance and QTL mapping of root traits related to tolerance to rhizo-spheric stresses in soybean (G. max (L.) Merr.)[J]. Front. Agric. China, 2007, 1(2): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed