Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (4) : 423-429    https://doi.org/10.1007/s11703-011-1117-z
RESEARCH ARTICLE
Identification of a novel enhancin-like gene from Bacillus thuringiensis
Dan ZHAO1, Wei GUO1,2,3(), Weiming SUN2, Daqing XU1, Daqun LIU2
1. College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China; 2. College of Plant Protection, Agricultural University of Hebei, Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, China; 3. National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, China
 Download: PDF(185 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An enhancin-like gene was cloned from Bacillus thuringiensis (Bt) strain GS8 isolated from soil samples in china. The sequence analysis revealed that an open reading frame (ORF) of 2202 nucleotides encoding a protein containing 733 amino acids with a molecular mass of 84 kDa. The enhancin-like protein showed 100% identity to Bel protein (FJ644935) and 23%–41% identity to viral enhancin proteins; in the 252 to 261 amino-acid sequence of enhancin-like protein, a conserved metal binding motif (HEIAH) similar to that in the reported bacterial enhancin-like proteins was found (HEXXH in viral enhancin protein), which indicated that the enhancin-like protein belongs to metalloprotease. The purified enhancin-like protein was fed together with Cry9Ea to Spodopera exigua and Trichoplusia ni larvae, but no significant increase in toxicity was observed.

Keywords Bacillus thuringiensis      enhancin-like gene      Cry9Ea protein      synergism     
Corresponding Author(s): GUO Wei,Email:guowei@hebau.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Dan ZHAO,Wei GUO,Weiming SUN, et al. Identification of a novel enhancin-like gene from Bacillus thuringiensis[J]. Front Agric Chin, 2011, 5(4): 423-429.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1117-z
https://academic.hep.com.cn/fag/EN/Y2011/V5/I4/423
Strains and plasmidsCharacteristicsOrigin
Strains
E. coli TG1supE hsd⊿5 thi(lAc-proAB) F’ [traD36 proAB+ lAcIqlAcZM15]stored in this laboratory
SCS110Rpsl thr leu endA dcm supE44 proABby Dr. Zhang Jie
E. coli BL21F- ompT hsdSB(rB- mB-) gal dcm λ(DE3),stored in this laboratory
HD73-Bt acrystalliferous mutant strainby Dr. Zhang Jie
GS8Wild strainstored in this laboratory
HD9EABt strain, HD73-with pSXY-9EAstored in this laboratory
Plasmids
pET30aKnaRE. coli expression vector, 5.4 kbstored in this laboratory
pSXY422bAmpR ErRBt-E. coli shuttle expression vectorby Dr. Zhang Jie
Tab.1  Strains and plasmids used in this study
Fig.1  PCR amplification of gene of strain GS8. M: marker; 1: PCR product of gene.
Fig.2  Amino acid sequence alignment of enhancing. The highly conserved metalloprotease zinc binding domain (HEXXH) in the region of positions 252 to 261 is shown in the box.
Fig.3  SDS-PAGE showing the induced expression of protein in . M is protein marker; 1-6 are the soluble fraction of ; 7 and 8 are the supernatant and pellet the ultrasonic broken cells, respectively, and 9 is the purification of the protein.
Fig.4  Analysis of enhancin-like protein from HD73-(pSXY422b-) by western blotting. M is protein marker; 1 is HD73-(pSXY422b-), and 2 is HD73–(–).
Fig.5  A and B are the synergistic effects between the enhancin-like protein and Cry9Ea toward to and .
1 Bischoff D S, Slavicek J M (1997). Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus. J Virol , 71(11): 8133-8140
pmid:9343163
2 Fang S L, Wang L, Guo W, Zhang X, Peng D H, Luo C, Yu Z, Sun M (2009). Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Appl Environ Microbiol , 75(16): 5237-5243
doi: 10.1128/AEM.00532-09 pmid:19542344
3 Galloway C S, Wang P, Winstanley D, Jones I M (2005). Comparison of the bacterial enhancin-like proteins from Yersinia and Bacillus spp. with a baculovirus Enhancin. J Invertebr Pathol , 90(2): 134-137
doi: 10.1016/j.jip.2005.06.008 pmid:16081094
4 Gill S S, Cowles E A, Pietrantonio P V (1992). The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol , 37(1): 615-634
doi: 10.1146/annurev.en.37.010192.003151 pmid:1311541
5 Granados R R, Fu Y, Corsaro B, Hughes P R (2001). Enhancement of Bacillus thuringiensis toxicity to lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biol Control , 20(2): 153-159
doi: 10.1006/bcon.2000.0891
6 Gunning R V, Dang H T, Kemp F C, Nicholson I C, Moores G D (2005). New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol , 71(5): 2558-2563
doi: 10.1128/AEM.71.5.2558-2563.2005 pmid:15870346
7 Hajaij-Ellouze M, Fedhila S, Lereclus D, Nielsen-LeRoux C (2006). The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PlcR but is not essential for larvicidal activity. FEMS Microbiol Lett , 260(1): 9-16
doi: 10.1111/j.1574-6968.2006.00289.x pmid:16790012
8 Hayakawa T, Ko R, Okano K, Seong S I, Goto C, Maeda S (1999). Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology , 262(2): 277-297
doi: 10.1006/viro.1999.9894 pmid:10502508
9 H?fte H, Whiteley H R (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev , 53(2): 242-255
pmid:2666844
10 Huang D F, Lin M (2001). Gene Bioengineering of Agricultural Microbe. Beijing: Science Press (in Chinese)
11 Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature , 423(6935): 87-91
doi: 10.1038/nature01582 pmid:12721630
12 Lepore L S, Roelvink P R, Granados R R (1996). Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease. J Invertebr Pathol , 68(2): 131-140
doi: 10.1006/jipa.1996.0070 pmid:8858909
13 Li Q, Li L, Moore K, Donly C, Theilmann DA, Erlandson M (2003). Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. J Gen Virol , 84(1): 123-132
doi: 10.1099/vir.0.18679-0 pmid:12533708
14 Liu T H, Guo W, Sun W M, Sun Y X (2009). Biological characteristics of Bacillus thuringiensis strain Bt11 and identification of its cry-type genes. Front Agric China , 3(2): 159-163
doi: 10.1007/s11703-009-0040-z
15 Macaluso A, Mettus A M (1991). Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J Bacteriol , 173(3): 1353-1356
pmid:1991728
16 Peng J X, Zhong J, Granados R R(1999). A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. J Insect Physiol , 45(2): 159-166
doi: 10.1016/S0022-1910(98)00110-3 pmid:12770384
17 Roelvink P W, Corsaro B G, Granados R R (1995). Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin genes. J Gen Virol , 76(11): 2693-2705
doi: 10.1099/0022-1317-76-11-2693 pmid:7595376
18 Sambrook J, Fritsch E F, Manny Attice T (1992). Molecular Cloning Guide. (in Chinese, trans. Jin D Y, Li M F, Lin F). 2nd ed. Beijing: Science Press, 1999
19 Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D R, Dean D H (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev , 62(3): 775-806
pmid:9729609
20 Slavicek J M, Popham H J R (2005). The Lymantria dispar nucleopolyhedrovirus enhancins are components of occlusion-derived virus. J Virol , 79(16): 10578-10588
doi: 10.1128/JVI.79.16.10578-10588.2005 pmid:16051850
21 Song F P (2001). Studies on the specific cry genes from Bacillus thuringiensis strains. Dissertation for the Doctoral Degree . Harbin: Northeast Agricultural University (in Chinese)
22 Tanada Y, Inoue H, Hess R T, Omi E M (1980). Site of action of a synergistic factor of agranulosis virus of the armyworm, Pseudaletia unipuncta. J Invertebr Pathol , 35: 249-255
doi: 10.1016/0022-2011(80)90158-5
23 Wang P, Granados R R (1997). An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci USA , 94(13): 6977-6982
doi: 10.1073/pnas.94.13.6977 pmid:9192677
24 Wang P, Hammer D A, Granados R R (1994). Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. J Gen Virol , 75(8): 1961-1967 8046398
doi: 10.1099/0022-1317-75-8-1961
25 Xu J, Yin X D, Zhu J L, Qi J H, Qin Q L (2003). Preliminary Study of the enhancement of Pseudaletia unipuncta granulovirus to Bacillus thuringiensis. Jiangsu Agricultural Sciences , 1: 30-31 (in Chinese)
26 Yin J, Dan L, Song D X, Zhong J (2007). Site-directed mutagenesis of the zinc-binding domain of Trichoplusia ni granulovirus enhancin. Acta Entomologica Sinica , 50(11): 1111-1115 (in Chinese)
[1] Tinghui LIU, Wei GUO, Weiming SUN, Yongxiang SUN. Biological characteristics of Bacillus thuringiensis strain Bt11 and identification of its cry-type genes[J]. Front Agric Chin, 2009, 3(2): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed