Extracts from cotton over the whole growing season induce Orobanche cumana (sunflower broomrape) germination with significant cultivar interactions
Ming LANG1,2, Rui YU3, Yongqing MA1(), Wei ZHANG3, Christopher S. P. McErlean4
1. The State Key Laboratory of Soil Erosion and Dryland Farming, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China 2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China 3. College of Forestry, Northwest A&F University, Yangling 712100, China 4. School of Chemistry, University of Sydney, Sydney 2006, Australia
Five cotton cultivars and their parents were tested for induction of germination of Orobanche cumana Wallr. (sunflower broomrape) seeds in pot and field experiments. Germination rates induced by cotton root extracts were the highest followed by stem extracts then leaf extracts. Cotton seedlings at the six-leaf stage induced higher germination than seedling at the two- and four-leaf stage, in all five cotton cultivars and their parents. In the field, the highest concentration of cotton root extracts gave the highest germination rate of O. cumana, and the lowest concentration of cotton root extracts gave the lowest germination rate. Methanol extracts of cotton rhizosphere soil gave the highest germination of O. cumana. In general, the root, stem and leaf extracts were more active at the six-leaf stage than other seedling stages. In conclusion, extracts of cotton rhizosphere soil and tissues have high activity in the seedling stage. Extracts of cotton across the whole growing season were able to induce O. cumana germination but displayed significant cultivar interactions.
. [J]. Frontiers of Agricultural Science and Engineering, 2017, 4(2): 228-236.
Ming LANG, Rui YU, Yongqing MA, Wei ZHANG, Christopher S. P. McErlean. Extracts from cotton over the whole growing season induce Orobanche cumana (sunflower broomrape) germination with significant cultivar interactions. Front. Agr. Sci. Eng. , 2017, 4(2): 228-236.
Young N D, Steiner K E, Pamphilis C. The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Annals of the Missouri Botanical Garden, 1999, 86(4): 876–893 https://doi.org/10.2307/2666173
2
Parker C, Riches C R. Parasitic weeds of the world biology and control. In: Gutteridge R C, Skelton H M, eds. In Orobanche species. Cambridge: Cambridge University Press, 1993, 111–164
3
Sauerborn J. The economic importance of the phytoparasites Orobanche and Striga. In: Ransom J K, Musselman L J, Worsham A D, Parker C, eds. Proceedings of the 5th International Symposium on Parasitic Weeds. Kenya: Nairobi, 1991, 137–143
4
Zhang J L, Jiang Q. The host and distribution of some important species of Orobanche and Cuscuta. Plant Quarantine, 1994, 8(2): 69–73 (in Chinese)
5
Carson A G. Studies on Striga in Gambia. In: Robson T O, Broad H R, eds. Consultation on Striga Control. Protection of the FAO/OAU All-African Government, Cameroon: FAO, 1988, 37–43
6
Botanga C J, Alabi S O, Echekwu C A. Genetics of suicidal germination of Striga hermonthica (Del.) Benth by cotton. Crop Science, 2003, 43(2): 483–488 https://doi.org/10.2135/cropsci2003.0483
7
Lins R D, Colquhoun J B, Cole C M, Mallory-Smith C A. Investigation of wheat as a trap crop for control of Orobanche minor.Weed Research, 2006, 46(4): 313–318 https://doi.org/10.1111/j.1365-3180.2006.00515.x
8
Yoneyama K, Takeuchi Y, Yokota T. Natural germination stimulants for Orobanche minor Sm. In: Fer A, Thalouarn P, Joel D M, Musselman L J, Parker C, Verkleij J A C, eds. Proceedings of the 7th International Symposium on Parasitic Weed. Nantes, France: University of Nantes, 2001, 123
9
Dong S Q, Ma Y Q, Wu H W, Shui J F, Ye X X, An Y. Allelopathic stimulatory effects of wheat differing in ploidy levels on Orobanche minor germination. Allelopathy Journal, 2013, 31(2): 355–366
10
Aalders A, Pieters G R. Resistance in Vicia faba to Orobanche crenata: true resistance versus hidden susceptibility. Euphytica, 1987, 36(1): 227–236 https://doi.org/10.1007/BF00730669
11
Dong S Q, Ma Y Q, Wu H W, Shui J F, Hao Z Q. Stimulatory effects of wheat (Triticum aestivum L.) on seed germination of Orobanche minor Sm. Allelopathy Journal, 2012, 30(2): 247–258
12
Ma Y Q, Jia J N, Wang Z, An Y, Shui J F, Mao J C. Potential of some hybrid maize lines to induce germination of sunflower broomrape. Crop Science, 2013, 53(1): 260–270 https://doi.org/10.2135/cropsci2012.03.0197
13
Ma Y Q, Lang M, Dong S Q, Shui J F, Zhao J X. Screening of some cotton varieties for allelopathic potential on clover broomrape germination. Agronomy Journal, 2012, 104(3): 569–574 https://doi.org/10.2134/agronj2011.0372
Ma Y Q, Zhang M, Li Y L, Shui J F, Zhou Y J. Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. germination. Journal of Plant Interactions, 2014, 9(1): 722–730 https://doi.org/10.1080/17429145.2014.912358
16
An Y, Ma Y Q, Shui J F, Zhong W J. Switchgrass (Panicum virgatum L.) has ability to induce germination of Orobanche cumana. Journal of Plant Interactions, 2015, 10(1): 142–151 https://doi.org/10.1080/17429145.2015.1039614
17
Parker C, Hitchcock A M, Ramaiah K V. The germination of Striga species by crop root exudates: techniques for selecting resistant crop cultivars. In: Proceedings of the 6th Conference on Asian-Pacific Weed Science Society 1977, Jakarta: Weed Science Society of Asian-Pacific, 1977, 67–74
18
Mangnus E M, Stommen P L A, Zwanenburg B. A standardized bioassay for evaluation of potential germination stimulants for seeds of parasitic weeds. Journal of Plant Growth Regulation, 1992, 11(2): 91–98 https://doi.org/10.1007/BF00198020
19
Riley D, Barber S A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface. Soil Science Society of America Journal, 1969, 33(6): 905–908 https://doi.org/10.2136/sssaj1969.03615995003300060031x
Joel D M, Steffens J C, Matthews D E. Germination of weedy root parasites. In: Kigel J, Galili G, eds. Seed development and germination. New York: Marcel Dekker, 1995, 567–597
22
Sato D, Awad A A, Takeuchi Y, Yoneyama K. Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Bioscience, Biotechnology, and Biochemistry, 2005, 69(1): 98–102 https://doi.org/10.1271/bbb.69.98
pmid: 15665473
23
Cook C E, Whichard L P, Wall M E, Egley G H, Coggon P, Luhan P A, McPhail A T. Germination stimulants II. The structure of strigol-a potent seed germination stimulant for witchweed (Striga lutea Lour.). Journal of the American Chemical Society, 1972, 94(17): 6198–6199 https://doi.org/10.1021/ja00772a048
24
Cook C E, Whichard L P, Turner B, Wall M E, Egley G H. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 1966, 154(3753): 1189–1190 https://doi.org/10.1126/science.154.3753.1189
pmid: 17780042
25
Siame B P, Weerasuriya Y, Wood K, Ejeta G, Butler L G. Isolation of strigol, a germination stimulant for Striga asiatica from host plants. Journal of Agricultural and Food Chemistry, 1993, 41(9): 1486–1491 https://doi.org/10.1021/jf00033a025
26
Dor E, Yoneyama K, Wininger S, Kapulnik Y, Yoneyama K, Koltai H, Xie X, Hershenhorn J. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology, 2011, 101(2): 213–222 https://doi.org/10.1094/PHYTO-07-10-0184
pmid: 20942651
27
Yang C, Hu L Y, Ali B, Islam F, Bai Q J, Xun X P, Yoneyama K, Zhou W J. Seed treatment with salicylic acid invokes defense mechanism of Helianthus annuus against Orobanche cumana. Annals of Applied Biology, 2016, 169(3): 408–422 https://doi.org/10.1111/aab.12311
Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, B°Card G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210): 189–194 https://doi.org/10.1038/nature07271
pmid: 18690209
30
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195–200 https://doi.org/10.1038/nature07272
pmid: 18690207