Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2017, Vol. 4 Issue (2): 228-236   https://doi.org/10.15302/J-FASE-2017150
  本期目录
Extracts from cotton over the whole growing season induce Orobanche cumana (sunflower broomrape) germination with significant cultivar interactions
Ming LANG1,2, Rui YU3, Yongqing MA1(), Wei ZHANG3, Christopher S. P. McErlean4
1. The State Key Laboratory of Soil Erosion and Dryland Farming, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
3. College of Forestry, Northwest A&F University, Yangling 712100, China
4. School of Chemistry, University of Sydney, Sydney 2006, Australia
 全文: PDF(146 KB)   HTML
Abstract

Five cotton cultivars and their parents were tested for induction of germination of Orobanche cumana Wallr. (sunflower broomrape) seeds in pot and field experiments. Germination rates induced by cotton root extracts were the highest followed by stem extracts then leaf extracts. Cotton seedlings at the six-leaf stage induced higher germination than seedling at the two- and four-leaf stage, in all five cotton cultivars and their parents. In the field, the highest concentration of cotton root extracts gave the highest germination rate of O. cumana, and the lowest concentration of cotton root extracts gave the lowest germination rate. Methanol extracts of cotton rhizosphere soil gave the highest germination of O. cumana. In general, the root, stem and leaf extracts were more active at the six-leaf stage than other seedling stages. In conclusion, extracts of cotton rhizosphere soil and tissues have high activity in the seedling stage. Extracts of cotton across the whole growing season were able to induce O. cumana germination but displayed significant cultivar interactions.

Key wordsagricultural systems    cotton    crop ecology    crop rotation systems    weed management
收稿日期: 2016-12-24      出版日期: 2017-06-07
Corresponding Author(s): Yongqing MA   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2017, 4(2): 228-236.
Ming LANG, Rui YU, Yongqing MA, Wei ZHANG, Christopher S. P. McErlean. Extracts from cotton over the whole growing season induce Orobanche cumana (sunflower broomrape) germination with significant cultivar interactions. Front. Agr. Sci. Eng. , 2017, 4(2): 228-236.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2017150
https://academic.hep.com.cn/fase/CN/Y2017/V4/I2/228
Cotton numberCotton cultivar
Male 1Zhongmiansuo 48 male parent
Female 1Zhongmiansuo 48 female parent
Hybrid 1Zhongmiansuo 48F1
Male 2Zhongmiansuo 51 male parent
Female 2Zhongmiansuo 51 female parent
Hybrid 2Zhongmiansuo 51F1
Male 3Zhongmiansuo 101 male parent
Female 3Zhongmiansuo 101 female parent
Hybrid 3Zhongmiansuo 101F1
Male 4Batiao-083001
Female 4Batiao-083001
Hybrid 4Batiao-083001
Male 5Qitiao-083001
Female 5Qitiao-083001
Hybrid 5Qitiao-083001
Tab.1  
Cotton cultivarTwo-leafFour-leafSix-leaf
10-fold100-fold10-fold100-fold10-fold100-fold
Male 126.9 abcd38.2 ab15.7 f1.0 cd32.7 de0.0 b
Female 15.0 g19.6 ef60.3 abc16.3 bcd54.9 abcd20.0 a
Hybrid 132.8 ab30.9 abcde27.6 def12.5 bcd57.5 abc24.8 a
Male 234.9 a33.1 abcd54.2 abc10.8 bcd39 cde0.0 b
Female 226.2 abcde40.9 a61.3 abc16.0 bcd70.7 a0.0 b
Hybrid 231.0 abc36.2 abc38.8 cdef8.9 bcd62.2 ab0.8 b
Male 314.7 defg16.2 f20.1 ef10.1 bcd4.2 f0.0 b
Female 321.5 bcde25.8 bcdef60.6 abc41.9 a59.9 abc0.0 b
Hybrid 334.6 a35.8 abc49.3 abcd25.6 ab27.2 ef0.0 b
Male 426.3 abcde39.7 a18.7 ef0.5 d61.8 abc2.1 b
Female 437.7 a30.0 abcde68.8 a21.4 b44.8 bcde11.8 ab
Hybrid 413.9 efg39.1 a42.3 bcde12.4 bcd71.3 a0.6 b
Male 536.9 a38.1 ab52.7 abc1.7 cd76.5 a0.4 b
Female 518.9 cdef23.9 cdef62.9 ab4.1 cd41.6 bcde22.6 a
Hybrid 57.7 fg22.4 def38.5 cdef17.7 bc40.9 bcde0.5 b
Tab.2  
Cotton cultivarTwo-leafFour-leafSix-leaf
10-fold100-fold10-fold100-fold10-fold100-fold
Male 138.2 ab26.9 abcd1.0 cd15.7 f0.0 b32.7 de
Female 119.6 ef5.0 g16.3 bcd60.3 abc20.0 a54.9 abcd
Hybrid 130.9 abcde32.8 ab12.5 bcd27.6 def24.8 a57.5 abc
Male 233.1 abcd34.9 a10.8 bcd54.2 abc0.0 b39 cde
Female 240.9 a26.2 abcde16.0 bcd61.3 abc0.0 b70.7 a
Hybrid 236.2 abc31.0 abc8.9 bcd38.8 cdef0.8 b62.2 ab
Male 316.2 f14.7 defg10.1 bcd20.1 ef0.0 b4.2 f
Female 325.8 bcdef21.5 bcde41.9 a60.6 abc0.0 b59.9 abc
Hybrid 335.8 abc34.6 a25.6 ab49.3 abcd0.0 b27.2 ef
Male 439.7 a26.3 abcde0.5 d18.7 ef2.1 b61.8 abc
Female 430.0 abcde37.7 a21.4 b68.8 a11.8 ab44.8 bcde
Hybrid 439.1a13.9 efg12.4 bcd42.3 bcde0.6 b71.3 a
Male 538.1 ab36.9 a1.7 cd52.7 abc0.4 b76.5 a
Female 523.9 cdef18.9 cdef4.1 cd62.9 ab22.6 a41.6 bcde
Hybrid 522.4 def7.7 fg17.7 bc38.5 cdef0.5 b40.9 bcde
Tab.3  
Cotton cultivarTwo-leafFour-leafSix-leaf
Male 138.2 ab1.0 cd0.0 b
Female 119.6 ef16.3 bcd20.0 a
Hybrid 130.9 abcde12.5 bcd24.8 a
Male 233.1 abcd10.8 bcd0.0 b
Female 240.9 a16.0 bcd0.0 b
Hybrid 236.2 abc8.9 bcd0.8 b
Male 316.2 f10.1 bcd0.0 b
Female 325.8 bcdef41.9 a0.0 b
Hybrid 335.8 abc25.6 ab0.0 b
Male 439.7 a0.5 d2.1 b
Female 430.0 abcde21.4 b11.8 ab
Hybrid 439.1 a12.4 bcd0.6 b
Male 538.1 ab1.7 cd0.4 b
Female 523.9 cdef4.1 cd22.6 a
Hybrid 522.4 def17.7 bc0.5 b
Tab.4  
Cotton cultivarsTwo-leafFour-leafSix-leafSquaringFlowering-boll
Male 136.0 a0.0 h26.9 bcd39.3 ab0.0 b
Female 132.1 ab10.1 fgh4.8 e31.8 abc4.6 b
Hybrid 14.7 de16.1 efg0.0 e28.1 abc16.9 a
Male 213.6 cde38.8 ab15.9 de36.1 abc15.6 a
Female 226.9 abc8.7 fgh46.7 a24.7 bc9.5 ab
Hybrid 25.9 de20.4 cdef0.0 e27.3 abc8.3 ab
Male 34.3 de31.3 abc33.9 abc34.1 abc0.0 b
Female 36.1 de10.7 fgh9.3 e35.6 abc0.0 b
Hybrid 334.2 ab6.3 gh16.6 cde24.3 bc0.0 b
Male 421.8 abcd29.5 bcd1.9 e28.7 abc14.5 a
Female 41.9 e18.2 defg0.0 e22.1 bc0.0 b
Hybrid 417.6 bcde37.3 ab0.0 e27.7 abc0.0 b
Male 528.9 abc33.9 ab37.7 ab34.9 abc0.0 b
Female 513.2 cde42.7 a4.2 e16.8 c0.0 b
Hybrid 50.0 e27.1 bcde2.3 e46.0 a0.0 b
Tab.5  
Cotton cultivarsTwo-leafFour-leafSix-leafSquaringFlowering-boll
Male 13.1 d0.0 f31.6 abcde6.7 gh0.0 e
Female 138.7 abc61.1 a26.7 bcde27.1 def21.1 c
Hybrid 122.2 bcd7.6 ef47.8 ab26.8 def36.5 b
Male 238.3 abc0.0 f43.9 abc42.7 bcd81.0 a
Female 242.9 abc0.0 f21.6 de9.0 gh7.4 de
Hybrid 242.4 abc43.1 bc41.9 abcd0.0 h22.5 c
Male 331.4 bc4.5 f19.2 e0.0 h0.0 e
Female 330.7 bc12.1 ef50.0 a68.3 a0.0 e
Hybrid 319.4 cd31.3 bcd52.6 a20.4 efg0.0 e
Male 432.5 bc38.5 bcd41.2 abcd45.9 bc2.2 e
Female 429.8 bc45.8 ab11.0 e15.1 fgh12.8 cde
Hybrid 444.3 ab23.3 de46.5 ab26.1 ef45.2 b
Male 546.2 ab0.0 f50.2 a31.3 cde12.3 cde
Female 538.9 abc33.7 bcd10.2 e45.4 bc0.0 e
Hybrid 560.8 a28.5 cd22.9 cde49.6 b19.4 cd
Tab.6  
Cotton cultivarsTwo-leafFour-leafSix-leafSquaringFlowering-boll
Male 131.1 cdef52.8 a35.1 bcde30.2 ab0.0 e
Female 18.2 hi0.0 d49.7 abcd22.4 bc21.1 c
Hybrid 127.5 efg13.3 bc20.5 de0.9 e36.5 b
Male 222.6 fgh0.0 d62.5 ab0.0 e81.0 a
Female 20.0 i0.0 d55.9 abc38.6 a7.4 de
Hybrid 268.4 a0.0 d32.3 bcde1.7 e22.5 c
Male 36.4 i22.1 b19.2 de2.1 e0.0 e
Female 328.7 defg0.0 d28.9 cde14.1 cde0.0 e
Hybrid 322.5 fgh0.0 d27.1 cde5.8 de0.0 e
Male 426.5 fg4.4 cd56.7 abc19.2 bcd2.2 e
Female 414.6 ghi10.5 bcd32.2 bcde32.3 ab12.8 cde
Hybrid 444.1 bcd0.0 d40.1 abcd11.7 cde45.2 b
Male 542.8 bcde0.0 d22.3 de0.0 e12.3 cde
Female 553.1 ab9.0 bcd7.7 e0.0 e0.0 e
Hybrid 546.9 bc21.7 b67.7 a0.0 e19.4 cd
Tab.7  
Cotton cultivarsRootUp stemLow stemUp phloemLow phloemUp leavesLow leavesFlowering-boll
Male 10 d44.2 a0 e18.8 b0 e0 e0 d0 c
Female 156.2 b53.5 a44.1 ab7.9 cd21.1 c21.1 c6.0 c18.8 a
Hybrid 132.4 c0 b41.4 abc0 d36.5 b36.5 b19.1 b18.9 a
Male 277.2 a53.7 a23.7 cd31.4 a81.0 a81.0 a81.0 a3.7 bc
Female 20 d6.4 b60.6 a10.2 c7.4 de7.4 de6.5 c9.2 b
Hybrid 256.2 b55.2 a50.8 a21.5 b22.5 c22.5 c0 d0.8 c
Male 30 d0 b0 e0 d0 e0 e0 d0 c
Female 30 d0 b0 e0 d0 e0 e0 d0 c
Hybrid 30 d0 b0 e0 d0 e0 e0 d0 c
Male 40 d1.8 b30.0 bc0 d2.2 e2.2 e0 d0 c
Female 40 d0.5 b0 e0 d12.8 cde12.8 cde0 d0 c
Hybrid 40 d4.9 b6 de20.1 b45.2 b45.2 b0 d7.9 bc
Male 540.7 bc0 b7.2 de7.2 cd12.3 cde12.3 cde0 d0 c
Female 549.6 b11.4 b0 e1.4 d0 e0 e1.8 d0.9 c
Hybrid 53.3 d48.9 a3.2 e0 d19.4 cd19.4 cd0 d0 c
Tab.8  
1 Young N D, Steiner K E, Pamphilis C. The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Annals of the Missouri Botanical Garden, 1999, 86(4): 876–893
https://doi.org/10.2307/2666173
2 Parker C, Riches C R. Parasitic weeds of the world biology and control. In: Gutteridge R C, Skelton H M, eds. In Orobanche species. Cambridge: Cambridge University Press, 1993, 111–164
3 Sauerborn J. The economic importance of the phytoparasites Orobanche and Striga. In: Ransom J K, Musselman L J, Worsham A D, Parker C, eds. Proceedings of the 5th International Symposium on Parasitic Weeds. Kenya: Nairobi, 1991, 137–143
4 Zhang J L, Jiang Q. The host and distribution of some important species of Orobanche and Cuscuta. Plant Quarantine, 1994, 8(2): 69–73 (in Chinese)
5 Carson A G. Studies on Striga in Gambia. In: Robson T O, Broad H R, eds. Consultation on Striga Control. Protection of the FAO/OAU All-African Government, Cameroon: FAO, 1988, 37–43
6 Botanga C J, Alabi S O, Echekwu C A. Genetics of suicidal germination of Striga hermonthica (Del.) Benth by cotton. Crop Science, 2003, 43(2): 483–488
https://doi.org/10.2135/cropsci2003.0483
7 Lins R D, Colquhoun J B, Cole C M, Mallory-Smith C A. Investigation of wheat as a trap crop for control of Orobanche minor. Weed Research, 2006, 46(4): 313–318
https://doi.org/10.1111/j.1365-3180.2006.00515.x
8 Yoneyama K, Takeuchi Y, Yokota T. Natural germination stimulants for Orobanche minor Sm. In: Fer A, Thalouarn P, Joel D M, Musselman L J, Parker C, Verkleij J A C, eds. Proceedings of the 7th International Symposium on Parasitic Weed. Nantes, France: University of Nantes, 2001, 123
9 Dong S Q, Ma Y Q, Wu H W, Shui J F, Ye X X, An Y. Allelopathic stimulatory effects of wheat differing in ploidy levels on Orobanche minor germination. Allelopathy Journal, 2013, 31(2): 355–366
10 Aalders A, Pieters G R. Resistance in Vicia faba to Orobanche crenata: true resistance versus hidden susceptibility. Euphytica, 1987, 36(1): 227–236
https://doi.org/10.1007/BF00730669
11 Dong S Q, Ma Y Q, Wu H W, Shui J F, Hao Z Q. Stimulatory effects of wheat (Triticum aestivum L.) on seed germination of Orobanche minor Sm. Allelopathy Journal, 2012, 30(2): 247–258
12 Ma Y Q, Jia J N, Wang Z, An Y, Shui J F, Mao J C. Potential of some hybrid maize lines to induce germination of sunflower broomrape. Crop Science, 2013, 53(1): 260–270
https://doi.org/10.2135/cropsci2012.03.0197
13 Ma Y Q, Lang M, Dong S Q, Shui J F, Zhao J X. Screening of some cotton varieties for allelopathic potential on clover broomrape germination. Agronomy Journal, 2012, 104(3): 569–574
https://doi.org/10.2134/agronj2011.0372
14 Zhang W, Ma Y, Wang Z, Ye X, Shui J. Some soybean cultivars have ability to induce germination of sunflower broomrape. PLoS One, 2013, 8(3): e59715
https://doi.org/10.1371/journal.pone.0059715 pmid: 23544089
15 Ma Y Q, Zhang M, Li Y L, Shui J F, Zhou Y J. Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. germination. Journal of Plant Interactions, 2014, 9(1): 722–730
https://doi.org/10.1080/17429145.2014.912358
16 An Y, Ma Y Q, Shui J F, Zhong W J. Switchgrass (Panicum virgatum L.) has ability to induce germination of Orobanche cumana. Journal of Plant Interactions, 2015, 10(1): 142–151
https://doi.org/10.1080/17429145.2015.1039614
17 Parker C, Hitchcock A M, Ramaiah K V. The germination of Striga species by crop root exudates: techniques for selecting resistant crop cultivars. In: Proceedings of the 6th Conference on Asian-Pacific Weed Science Society 1977, Jakarta: Weed Science Society of Asian-Pacific, 1977, 67–74
18 Mangnus E M, Stommen P L A, Zwanenburg B. A standardized bioassay for evaluation of potential germination stimulants for seeds of parasitic weeds. Journal of Plant Growth Regulation, 1992, 11(2): 91–98
https://doi.org/10.1007/BF00198020
19 Riley D, Barber S A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface. Soil Science Society of America Journal, 1969, 33(6): 905–908
https://doi.org/10.2136/sssaj1969.03615995003300060031x
20 Riley D, Barber S A. Salt accumulation at the soybean (Glycine max (L.) Merr.) root-soil interface. Soil Science Society of America Journal, 1970, 34(1): 154–155
https://doi.org/10.2136/sssaj1970.03615995003400010042x
21 Joel D M, Steffens J C, Matthews D E. Germination of weedy root parasites. In: Kigel J, Galili G, eds. Seed development and germination. New York: Marcel Dekker, 1995, 567–597
22 Sato D, Awad A A, Takeuchi Y, Yoneyama K. Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Bioscience, Biotechnology, and Biochemistry, 2005, 69(1): 98–102
https://doi.org/10.1271/bbb.69.98 pmid: 15665473
23 Cook C E, Whichard L P, Wall M E, Egley G H, Coggon P, Luhan P A, McPhail A T. Germination stimulants II. The structure of strigol-a potent seed germination stimulant for witchweed (Striga lutea Lour.). Journal of the American Chemical Society, 1972, 94(17): 6198–6199
https://doi.org/10.1021/ja00772a048
24 Cook C E, Whichard L P, Turner B, Wall M E, Egley G H. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 1966, 154(3753): 1189–1190
https://doi.org/10.1126/science.154.3753.1189 pmid: 17780042
25 Siame B P, Weerasuriya Y, Wood K, Ejeta G, Butler L G. Isolation of strigol, a germination stimulant for Striga asiatica from host plants. Journal of Agricultural and Food Chemistry, 1993, 41(9): 1486–1491
https://doi.org/10.1021/jf00033a025
26 Dor E, Yoneyama K, Wininger S, Kapulnik Y, Yoneyama K, Koltai H, Xie X, Hershenhorn J. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology, 2011, 101(2): 213–222
https://doi.org/10.1094/PHYTO-07-10-0184 pmid: 20942651
27 Yang C, Hu L Y, Ali B, Islam F, Bai Q J, Xun X P, Yoneyama K, Zhou W J. Seed treatment with salicylic acid invokes defense mechanism of Helianthus annuus against Orobanche cumana. Annals of Applied Biology, 2016, 169(3): 408–422
https://doi.org/10.1111/aab.12311
28 Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435(7043): 824–827
https://doi.org/10.1038/nature03608 pmid: 15944706
29 Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, B°Card G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210): 189–194
https://doi.org/10.1038/nature07271 pmid: 18690209
30 Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195–200
https://doi.org/10.1038/nature07272 pmid: 18690207
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed