Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (2) : 104-113    https://doi.org/10.15302/J-FASE-2014003
REVIEW
Oocyte-associated transcription factors in reprogramming after somatic cell nuclear transfer: a review
Fengxia YIN,Hui LIU,Shorgan BOU,Guangpeng LI()
The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010070, China
 Download: PDF(376 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oocytes are unique cells with the inherent capability to reprogram nuclei. The reprogramming of the somatic nucleus from its original cellular state to a totipotent state is essential for term development after somatic cell nuclear transfer. The nuclear-associated factors contained within oocytes are critical for normal fertilization by sperm or for somatic cell nuclear reprogramming. The chromatin of somatic nuclei can be reprogrammed by factors in the egg cytoplasm whose natural function is to reprogram sperm chromatin. The oocyte first obtains its reprogramming capability in the early fetal follicle, and then its capacity is enriched in the late growth phase and reaches its highest capability for reprogramming as fully-grown germinal vesicle oocytes. The cytoplasmic milieu most likely contains all of the specific transcription and/or reprogramming factors necessary for cellular reprogramming. Certain transcription factors in the cytoplast may be critical as has been demonstrated for induced pluripotent stem cells. The maternal pronucleus exerts a predominant, transcription-dependent effect on embryo cytofragmentation, with a lesser effect imposed by the ooplasm and the paternal pronucleus. With deep analysis of transcriptomics in oocytes and early developmental stage embryos more maternal transcription factors inducing cellular reprogramming will be identified.

Keywords nuclear reprogramming      somatic cell      transcription factors      transcriptomics     
Corresponding Author(s): Guangpeng LI   
Online First Date: 11 July 2014    Issue Date: 10 October 2014
 Cite this article:   
Fengxia YIN,Hui LIU,Shorgan BOU, et al. Oocyte-associated transcription factors in reprogramming after somatic cell nuclear transfer: a review[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 104-113.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014003
https://academic.hep.com.cn/fase/EN/Y2014/V1/I2/104
Fig.1  The possible roles of transcription factors in oocyte maturation, fertilization, nuclear transfer and embryo development
1 Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development, 2009, 136(4): 509-523
https://doi.org/10.1242/dev.020867 pmid: 19168672
2 Gurdon J B, Melton D A. Nuclear reprogramming in cells. Science, 2008, 322(5909): 1811-1815
https://doi.org/10.1126/science.1160810 pmid: 19095934
3 Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 2008, 132(4): 567-582
https://doi.org/10.1016/j.cell.2008.01.015 pmid: 18295576
4 Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089-1093
https://doi.org/10.1126/science.1063443 pmid: 11498579
5 Rideout W M 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science, 2001, 293(5532): 1093-1098
https://doi.org/10.1126/science.1063206 pmid: 11498580
6 Briggs R, King T J. The transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proceedings of the National Academy of Sciences of the United States of America, 1952.38(5): 455-463
7 Gurdon J B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, 1962, 10: 622-640
pmid: 13951335
8 Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810-813
https://doi.org/10.1038/385810a0 pmid: 9039911
9 Hanna J, Markoulaki S, Schorderet P, Carey B W, Beard C, Wernig M, Creyghton M P, Steine E J, Cassady J P, Foreman R, Lengner C J, Dausman J A, Jaenisch R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 2008, 133(2): 250-264
https://doi.org/10.1016/j.cell.2008.03.028 pmid: 18423197
10 Hill J R. Abnormal in utero development of cloned animals: implications for human cloning. Differentiation, 2002, 69(4-5): 174-178
https://doi.org/10.1046/j.1432-0436.2002.690408.x pmid: 11841473
11 Wilmut I, Beaujean N, de Sousa P A, Dinnyes A, King T J, Paterson L A, Wells D N, Young L E. Somatic cell nuclear transfer. Nature, 2002, 419(6909): 583-587
https://doi.org/10.1038/nature01079 pmid: 12374931
12 Pangas S A, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters. Human Reproduction Update, 2006, 12(1): 65-76
https://doi.org/10.1093/humupd/dmi033 pmid: 16143663
13 McLaughlin E A, McIver S C. Awakening the oocyte: controlling primordial follicle development. Reproduction, 2009, 137(1): 1-11
https://doi.org/10.1530/REP-08-0118 pmid: 18827065
14 Nandedkar T, Dharma S, Modi D, Dsouza S. Differential gene expression in transition of primordial to preantral follicles in mouse ovary.Society of Reproduction and Fertility Supplement, 2007, 63: 57-67
pmid: 17566261
15 Bao S, Obata Y, Ono Y, Futatsumata N, Niimura S, Kono T. Nuclear competence for maturation and pronuclear formation in mouse oocytes.Human Reproduction, 2002, 17(5): 1311-1316
https://doi.org/10.1093/humrep/17.5.1311 pmid: 11980757
16 Eppig J J, Schultz R M, O’Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Developmental Biology, 1994, 164(1): 1-9
https://doi.org/10.1006/dbio.1994.1175 pmid: 8026614
17 Motlík J. Cytoplasmic aspects of oocyte growth and maturation in mammals. Journal of Reproduction and Fertility. Supplement, 1989, 38: 17-25
pmid: 2677346
18 Bao S, Obata Y, Carroll J, Domeki I, Kono T. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biology of Reproduction, 2000, 62(3): 616-621
https://doi.org/10.1095/biolreprod62.3.616 pmid: 10684802
19 Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F, Kono T. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development, 1998, 125(8): 1553-1560
pmid: 9502736
20 Tomizawa S, Nowacka-Woszuk J, Kelsey G. DNA methylation establishment during oocyte growth: mechanisms and significance. International Journal of Developmental Biology, 2012, 56(10-12): 867-875
https://doi.org/10.1387/ijdb.120152gk pmid: 23417409
21 Obata Y, Kono T, Hatada I. Oogenesis: maturation of mouse fetal germ cells in vitro. Nature, 2002, 418(6897): 497
https://doi.org/10.1038/418497a pmid: 12152066
22 Byrne J A, Simonsson S, Western P S, Gurdon J B. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Current Biology, 2003, 13(14): 1206-1213
https://doi.org/10.1016/S0960-9822(03)00462-7 pmid: 12867031
23 Ba?akier H, Tarkowski A K. The role of germinal vesicle karyoplasm in the development of male pronucleus in the mouse. Experimental Cell Research, 1980, 128(1): 79-85
https://doi.org/10.1016/0014-4827(80)90389-4 pmid: 7190927
24 Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature, 2013, 501(7466): 222-226
https://doi.org/10.1038/nature12417 pmid: 23913270
25 Laskey R A, Mills A D, Philpott A, Leno G H, Dilworth S M, Dingwall C, Lindquist S, Horwich A, Green N M, Gething M J, Neupert W, Ellis R J. The role of nucleoplasmin in chromatin assembly and disassembly. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1993, 339(1289): 263-269, discussion 268-269
https://doi.org/10.1098/rstb.1993.0024 pmid: 8098530
26 Iwashita J, Hayano Y, Sagata N. Essential role of germinal vesicle material in the meiotic cell cycle of Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8): 4392-4397
https://doi.org/10.1073/pnas.95.8.4392
27 Choi T, Rulong S, Resau J, Fukasawa K, Matten W, Kuriyama R, Mansour S, Ahn N, Vande Woude C F. Mos/mitogen-activated protein kinase can induce early meiotic phenotypes in the absence of maturation-promoting factor: a novel system for analysing spindle formation during meiosis I. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(10): 4730-4735
https://doi.org/10.1073/pnas.93.10.4730
28 Inoue M, Naito K, Nakayama T, Sato E. Mitogen-activated protein kinase translocates into the germinal vesicle and induces germinal vesicle breakdown in porcine oocytes. Biology of Reproduction, 1998, 58(1): 130-136
https://doi.org/10.1095/biolreprod58.1.130 pmid: 9472933
29 Gurdon J B, Laskey R A, De Robertis E M, Partington G A. Reprogramming of transplanted nuclei in amphibia. International Review of Cytology. Supplement, 1979, 9(9): 161-178
https://doi.org/10.1016/S0074-7696(08)60902-X pmid: 385535
30 Mohammed A A, Karasiewicz J, Kubacka J, Greda P, Modliński J A. Enucleated GV oocytes as recipients of embryonic nuclei in the G1, S, or G2 stages of the cell cycle. Cell Reprogram, 2010, 12(4): 427-435
https://doi.org/10.1089/cell.2009.0107 pmid: 20698781
31 Bui H T, Kwon D N, Kang M H, Oh M H, Park M R, Park W J, Paik S S, Van Thuan N, Kim J H. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development, 2012, 139(23): 4330-4340
https://doi.org/10.1242/dev.086116 pmid: 23132243
32 Polanski Z, Hoffmann S, Tsurumi C. Oocyte nucleus controls progression through meiotic maturation. Developmental Biology, 2005, 281(2): 184-195
https://doi.org/10.1016/j.ydbio.2005.02.024 pmid: 15893972
33 Greda P, Karasiewicz J, Modliński J A. Mouse zygotes as recipients in embryo cloning. Reproduction, 2006, 132(5): 741-748
https://doi.org/10.1530/rep.1.01204 pmid: 17071775
34 Egli D, Rosains J, Birkhoff G, Eggan K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature, 2007, 447(7145): 679-685
https://doi.org/10.1038/nature05879 pmid: 17554301
35 Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 2001, 11(19): 1553-1558
https://doi.org/10.1016/S0960-9822(01)00459-6 pmid: 11591326
36 Cowan C A, Atienza J, Melton D A, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005, 309(5739): 1369-1373
https://doi.org/10.1126/science.1116447 pmid: 16123299
37 Bui H T, Wakayama S, Kishigami S, Kim J H, Van Thuan N, Wakayama T. The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming. Development, 2008, 135(23): 3935-3945
https://doi.org/10.1242/dev.023747 pmid: 18997114
38 Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S. Proteome of mouse oocytes at different developmental stages. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17639-17644
https://doi.org/10.1073/pnas.1013185107
39 Modliński J A. Transfer of embryonic nuclei to fertilised mouse eggs and development of tetraploid blastocysts. Nature, 1978, 273(5662): 466-467 PMID:566383
https://doi.org/10.1038/273466a0
40 McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37(1): 179-183
https://doi.org/10.1016/0092-8674(84)90313-1 pmid: 6722870
41 Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J Jr. The maternal nucleolus is essential for early embryonic development in mammals. Science, 2008, 319(5863): 613-616
https://doi.org/10.1126/science.1151276 pmid: 18239124
42 Campbell K H S, Fisher P, Chen W C, Choi I, Kelly R D W, Lee J H, Xhu J. Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology, 2007, 68(Suppl 1): S214-S231
https://doi.org/10.1016/j.theriogenology.2007.05.059 pmid: 17610946
43 Li G P, White K L, Bunch T D. Review of enucleation methods and procedures used in animal cloning: state of the art. Cloning and Stem Cells, 2004, 6(1): 5-13
https://doi.org/10.1089/15362300460743781 pmid: 15107241
44 Collas P, Pinto-Correia C, Ponce de Leon F A, Robl J M. Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biology of Reproduction, 1992, 46(3): 501-511
https://doi.org/10.1095/biolreprod46.3.501 pmid: 1617022
45 Lee J H, Campbell K H. Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biology of Reproduction, 2006, 74(4): 691-698
https://doi.org/10.1095/biolreprod.105.043885 pmid: 16371593
46 Czo?owska R, Modliński J A, Tarkowski A K. Behaviour of thymocyte nuclei in non-activated and activated mouse oocytes. Journal of Cell Science, 1984, 69: 19-34
pmid: 6386837
47 Tani T, Kato Y, Tsunoda Y. Reprogramming of bovine somatic cell nuclei is not directly regulated by maturation promoting factor or mitogen-activated protein kinase activity. Biology of Reproduction, 2003, 69(6): 1890-1894
https://doi.org/10.1095/biolreprod.103.018945 pmid: 12904315
48 Chung Y G, Ratnam S, Chaillet J R, Latham K E. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biology of Reproduction, 2003, 69(1): 146-153
https://doi.org/10.1095/biolreprod.102.014076 pmid: 12606374
49 Mann M R, Chung Y G, Nolen L D, Verona R I, Latham K E, Bartolomei M S. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biology of Reproduction, 2003, 69(3): 902-914
https://doi.org/10.1095/biolreprod.103.017293 pmid: 12748125
50 Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Molecular Reproduction and Development, 2002, 63(3): 329-334
https://doi.org/10.1002/mrd.90016 pmid: 12237948
51 Bordignon V, Clarke H J, Smith L C. Factors controlling the loss of immunoreactive somatic histone H1 from blastomere nuclei in oocyte cytoplasm: a potential marker of nuclear reprogramming. Developmental Biology, 2001, 233(1): 192-203
https://doi.org/10.1006/dbio.2001.0215 pmid: 11319868
52 Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 13734-13738
https://doi.org/10.1073/pnas.241522698
53 Kang Y K, Park J S, Koo D B, Choi Y H, Kim S U, Lee K K, Han Y M. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. The EMBO Journal, 2002, 21(5): 1092-1100
https://doi.org/10.1093/emboj/21.5.1092 pmid: 11867537
54 Wu X. li Y, Li G P, Yang D S, Yue Y L, Wang L L, Li K H, Xin P H, Bou S, Yu H Q. Trichostatin A reduced genome DNA methylation of transgenic cells but not improved subsequent cloned embryo development. Animal Biotechnology, 2008, 19(4): 211-224
https://doi.org/10.1080/10495390802271482 pmid: 18855246
55 Wu X, Li Y, Wang L, Yue Y, Li K, Bao S, Li G P, Yu H. Multiple sites modifications of histone in somatic cell nuclear transfer and in vitro fertilized embryos in bovine. Zygote, 2010, 8: 1-15
56 Enright B P, Kubota C, Yang X, Tian X C. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biology of Reproduction, 2003, 69(3): 896-901
https://doi.org/10.1095/biolreprod.103.017954 pmid: 12748129
57 Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Current Biology, 2003, 13(13): 1116-1121
https://doi.org/10.1016/S0960-9822(03)00419-6 pmid: 12842010
58 Aston K I, Li G P, Hicks B A, Sessions B R, Pate B J, Hammon D, Bunch T D, White K L. Effect of the time interval between fusion and activation on nuclear state and development in vitro and in vivo of bovine somatic cell nuclear transfer embryos. Reproduction, 2006, 131(1): 45-51
https://doi.org/10.1530/rep.1.00714 pmid: 16388008
59 Shi W, Hoeflich A, Flaswinkel H, Stojkovic M, Wolf E, Zakhartchenko V. Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biology of Reproduction, 2003, 69(1): 301-309
https://doi.org/10.1095/biolreprod.102.012112 pmid: 12646489
60 Bilodeau-Goeseels S, Panich P. Effects of oocyte quality on development and transcriptional activity in early bovine embryos. Animal Reproduction Science, 2002, 71(3-4): 143-155
https://doi.org/10.1016/S0378-4320(01)00188-9 pmid: 12047924
61 Dominko T, Chan A, Simerly C, Luetjens C M, Hewitson L, Martinovich C, Schatten G. Dynamic imaging of the metaphase II spindle and maternal chromosomesin bovine oocytes: implications for enucleation efficiency verification, avoidanceof parthenogenesis, and successful embryogenesis. Biology of Reproduction, 2000, 62(1): 150-154
https://doi.org/10.1095/biolreprod62.1.150 pmid: 10611079
62 Meng Q, Bai C, Liu Y, Wu X, Bunch T D, Li G P. In vitro development and chromosomal configuration of bovine somatic cloned embryos with nonenucleated metaphase II oocytes. Cellular Reprogramming, 2010, 12(4): 481-490
https://doi.org/10.1089/cell.2009.0114 pmid: 20698786
63 Yang H, Shi L, Zhang S, Ling J, Jiang J, Li J. High-efficiency somatic reprogramming induced by intact MII oocytes. Cell Research, 2010, 20(9): 1034-1042
https://doi.org/10.1038/cr.2010.97 pmid: 20603641
64 Fulka J Jr, First N L, Moor R M. Nuclear transplantation in mammals: remodelling of transplanted nuclei under the influence of maturation promoting factor. BioEssays, 1996, 18(10): 835-840
https://doi.org/10.1002/bies.950181010 pmid: 8885721
65 Sung L Y, Shen P C, Jeong B S, Xu J, Chang C C, Cheng W T, Wu J S, Lee S N, Broek D, Faber D, Tian X C, Yang X, Du F. Premature chromosome condensation is not essential for nuclear reprogramming in bovine somatic cell nuclear transfer.Biology of Reproduction,2007, 76(2): 232-240
https://doi.org/10.1095/biolreprod.106.053561 pmid: 17108336
66 Bian Y, Alberio R, Allegrucci C, Campbell K H, Johnson A D. Epigenetic marks in somatic chromatin are remodelled to resemble pluripotent nuclei by amphibian oocyte extracts. Epigenetics, 2009, 4(3): 194-202
https://doi.org/10.4161/epi.4.3.8787 pmid: 19440040
67 Ji G, Ruan W, Liu K, Wang F, Sakellariou D, Chen J, Yang Y, Okuka M, Han J, Liu Z, Lai L, Gagos S, Xiao L, Deng H, Li N, Liu L. Telomere reprogramming and maintenance in porcine iPS cells. PLoS ONE, 2013, 8(9): e74202
https://doi.org/10.1371/journal.pone.0074202 pmid: 24098638
68 Ruan W, Han J, Li P, Cao S, An Y, Lim B, Li N. A novel strategy to derive iPS cells from porcine fibroblasts. Science China Life Sciences, 2011, 54(6): 553-559
https://doi.org/10.1007/s11427-011-4179-5 pmid: 21706416
69 Miyamoto K, Tsukiyama T, Yang Y, Li N, Minami N, Yamada M, Imai H. Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biology of Reproduction, 2009, 80(5): 935-943
https://doi.org/10.1095/biolreprod.108.073676 pmid: 19164171
70 Kanka J, Nemcova L, Toralova T, Vodickova-Kepkova K, Vodicka P, Jeseta M, Machatkova M. Association of the transcription profile of bovine oocytes and embryos with developmental potential.Animal Reproduction Science, 2012(1-2): 29-35http://dx.doi.org/10.1016/j.anireprosci.2012.08.008
71 Labrecque R, Sirard M A. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Molucular Human Reproduction, 2014, 20(2): 103-116
https://doi.org/10.1093/molehr/gat082
72 Jiao Z X, Woodruff T K. Detection and quantification of maternal-effect gene transcripts in mouse second polar bodies: potential markers of embryo developmental competence.Fertility and Sterility, 2013, 99(7): 2055-2061
73 Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Human Reproduction, 1999, 14(2): 429-447
https://doi.org/10.1093/humrep/14.2.429 pmid: 10099991
74 Hardy K, Spanos S, Becker D, Iannelli P, Winston R M, Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1655-1660
https://doi.org/10.1073/pnas.98.4.1655
75 Hawes S M, Gie Chung Y, Latham K E. Genetic and epigenetic factors affecting blastomere fragmentation in two-cell stage mouse embryos. Biology of Reproduction, 2001, 65(4): 1050-1056
https://doi.org/10.1095/biolreprod65.4.1050 pmid: 11566725
76 Jurisicova A, Latham K E, Casper R F, Varmuza S L. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Molecular Reproduction and Development, 1998, 51(3): 243-253
https://doi.org/10.1002/(SICI)1098-2795(199811)51:3<243::AID-MRD3>3.0.CO;2-P pmid: 9771644
77 Han Z, Chung Y G, Gao S, Latham K E. Maternal factors controlling blastomere fragmentation in early mouse embryos. Biology of Reproduction, 2005, 72(3): 612-618
https://doi.org/10.1095/biolreprod.104.035444 pmid: 15537860
78 Han Z, Mtango N R, Zhong Z, Vassena R, Latham K E. Early transcription from the maternal genome controlling blastomere integrity in mouse two-cell-stage embryos. American Journal of Physiology. Cell Physiology, 2010, 298(5): C1235-C1244
https://doi.org/10.1152/ajpcell.00393.2009 pmid: 20107036
79 Aoki F, Worrad D M, Schultz R M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Developmental Biology, 1997, 181(2): 296-307
https://doi.org/10.1006/dbio.1996.8466 pmid: 9013938
80 Bouniol C, Nguyen E, Debey P. Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Experimental Cell Research, 1995, 218(1): 57-62
https://doi.org/10.1006/excr.1995.1130 pmid: 7537698
81 Schultz R M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update, 2002, 8(4): 323-331
https://doi.org/10.1093/humupd/8.4.323 pmid: 12206467
82 Sun F, Fang H, Li R, Gao T, Zheng J, Chen X, Ying W, Sheng H Z. Nuclear reprogramming: the zygotic transcription program is established through an “erase-and-rebuild” strategy. Cell Research, 2007, 17(2): 117-134
https://doi.org/10.1038/cr.2007.1 pmid: 17287829
83 Gao T, Zheng J, Xing F, Fang H, Sun F, Yan A, Gong X, Ding H, Tang F, Sheng H Z. Nuclear reprogramming: the strategy used in normal development is also used in somatic cell nuclear transfer and parthenogenesis. Cell Research, 2007, 17(2): 135-150
https://doi.org/10.1038/cr.2007.2 pmid: 17287828
84 Surani M A. Nuclear reprogramming by human embryonic stem cells. Cell, 2005, 122(5): 653-654
https://doi.org/10.1016/j.cell.2005.08.023 pmid: 16143098
85 Gurdon J B, Byrne J A. The first half-century of nuclear transplantation. Bioscience Reports, 2004, 24(4-5): 545-557
https://doi.org/10.1007/s10540-005-2744-5 pmid: 16134025
86 Mattson B A, Albertini D F. Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Molecular Reproduction and Development, 1990, 25(4): 374-383
https://doi.org/10.1002/mrd.1080250411 pmid: 1691651
87 Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi C A. Chromatin organization during mouse oocyte growth. Molecular Reproduction and Development, 1995, 41(4): 479-485
https://doi.org/10.1002/mrd.1080410410 pmid: 7576615
88 Torres-Padilla M E, Zernicka-Goetz M. Role of TIF1α as a modulator of embryonic transcription in the mouse zygote. TheJournal of Cell Biology, 2006, 174(3): 329-338
https://doi.org/10.1083/jcb.200603146 pmid: 16880268
89 Gurdon J B. Nuclear transplantation in eggs and oocytes. Journal of Cell Science. Supplement, 1986, 4: 287-318
https://doi.org/10.1242/jcs.1986.Supplement_4.17 pmid: 3528196
90 Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells.Science, 2008, 321(5889): 699-702
https://doi.org/10.1126/science.1154884 pmid: 18276851
91 Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte A P, Tian X C, Yang X, Ishino F, Abe K, Ogura A. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 2010, 330(6003): 496-499
https://doi.org/10.1126/science.1194174 pmid: 20847234
92 Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun Y E. Liu J, Horvath S, Fan G. hereditary programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature, 2013, 500(7464): 593-597 PMID:23892778
https://doi.org/10.1038/nature12364
93 Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 4139-4144
https://doi.org/10.1073/pnas.1321569111
94 Pikulkaew S, Benato F, Celeghin A, Zucal C, Skobo T, Colombo L, Dalla Valle L. The knockdown of maternal glucocorticoid receptor mRNA alters embryo development in zebrafish. Developmental Dynamics, 2011, 240(4): 874-889
https://doi.org/10.1002/dvdy.22586 pmid: 21360790
95 Tashiro F, Kanai-Azuma M, Miyazaki S, Kato M, Tanaka T, Toyoda S, Yamato E, Kawakami H, Miyazaki T, Miyazaki J. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes to Cells, 2010, 15(8): 813-828
https://doi.org/10.1111/j.1365-2443.2010.01420.x pmid: 20590823
96 Tesfaye D, Regassa A, Rings F, Ghanem N, Phatsara C, Tholen E, Herwig R, Un C, Schellander K, Hoelker M. Suppression of the transcription factor MSX1 gene delays bovine preimplantation embryo development in vitro. Reproduction, 2010, 139(5): 857-870
https://doi.org/10.1530/REP-09-0312 pmid: 20176746
97 Paranjpe S S, Jacobi U G, van Heeringen S J, C Veenstra G J. A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development. BMC Genomics, 2013, 14(1): 762
https://doi.org/10.1186/1471-2164-14-762 pmid: 24195446
98 Mondou E, Dufort I, Gohin M, Fournier E, Sirard M A. Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human Reproduction, 2012, 18(9): 425-434
https://doi.org/10.1093/molehr/gas015 pmid: 22491901
99 Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 2011, 474(7350): 225-229
https://doi.org/10.1038/nature10106 pmid: 21654807
100 Meissner A, Jaenisch R. Mammalian nuclear transfer. Developmental Dynamics, 2006, 235(9): 2460-2469
https://doi.org/10.1002/dvdy.20915 pmid: 16881069
[1] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[2] Yanna DANG, Kun ZHANG. Factors affecting early embryonic development in cattle: relevance for bovine cloning[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 33-41.
[3] Zhiqiang XIA,Xin CHEN,Cheng LU,Meiling ZOU,Shujuan WANG,Yang ZHANG,Kun PAN,Xincheng ZHOU,Haiyan WANG,Wenquan WANG. Comparative transcriptomics revealed enhanced light responses, energy transport and storage in domestication of cassava (Manihot esculenta)[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 295-307.
[4] Xinxin LI,Huijuan WANG,Guanghua SU,Zhuying WEI,Chunling BAI,Wuni-MENGHE,Yanhui HOU,Changqing YU,Shorgan BOU,Guangpeng LI. The ecological adaptability of cloned sheep to free-grazing in the Tengger Desert of Inner Mongolia, China[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 191-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed