|
|
Oocyte-associated transcription factors in reprogramming after somatic cell nuclear transfer: a review |
Fengxia YIN,Hui LIU,Shorgan BOU,Guangpeng LI( ) |
The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010070, China |
|
|
Abstract Oocytes are unique cells with the inherent capability to reprogram nuclei. The reprogramming of the somatic nucleus from its original cellular state to a totipotent state is essential for term development after somatic cell nuclear transfer. The nuclear-associated factors contained within oocytes are critical for normal fertilization by sperm or for somatic cell nuclear reprogramming. The chromatin of somatic nuclei can be reprogrammed by factors in the egg cytoplasm whose natural function is to reprogram sperm chromatin. The oocyte first obtains its reprogramming capability in the early fetal follicle, and then its capacity is enriched in the late growth phase and reaches its highest capability for reprogramming as fully-grown germinal vesicle oocytes. The cytoplasmic milieu most likely contains all of the specific transcription and/or reprogramming factors necessary for cellular reprogramming. Certain transcription factors in the cytoplast may be critical as has been demonstrated for induced pluripotent stem cells. The maternal pronucleus exerts a predominant, transcription-dependent effect on embryo cytofragmentation, with a lesser effect imposed by the ooplasm and the paternal pronucleus. With deep analysis of transcriptomics in oocytes and early developmental stage embryos more maternal transcription factors inducing cellular reprogramming will be identified.
|
Keywords
nuclear reprogramming
somatic cell
transcription factors
transcriptomics
|
Corresponding Author(s):
Guangpeng LI
|
Online First Date: 11 July 2014
Issue Date: 10 October 2014
|
|
1 |
Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development, 2009, 136(4): 509-523
https://doi.org/10.1242/dev.020867
pmid: 19168672
|
2 |
Gurdon J B, Melton D A. Nuclear reprogramming in cells. Science, 2008, 322(5909): 1811-1815
https://doi.org/10.1126/science.1160810
pmid: 19095934
|
3 |
Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 2008, 132(4): 567-582
https://doi.org/10.1016/j.cell.2008.01.015
pmid: 18295576
|
4 |
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089-1093
https://doi.org/10.1126/science.1063443
pmid: 11498579
|
5 |
Rideout W M 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science, 2001, 293(5532): 1093-1098
https://doi.org/10.1126/science.1063206
pmid: 11498580
|
6 |
Briggs R, King T J. The transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proceedings of the National Academy of Sciences of the United States of America, 1952.38(5): 455-463
|
7 |
Gurdon J B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, 1962, 10: 622-640
pmid: 13951335
|
8 |
Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810-813
https://doi.org/10.1038/385810a0
pmid: 9039911
|
9 |
Hanna J, Markoulaki S, Schorderet P, Carey B W, Beard C, Wernig M, Creyghton M P, Steine E J, Cassady J P, Foreman R, Lengner C J, Dausman J A, Jaenisch R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 2008, 133(2): 250-264
https://doi.org/10.1016/j.cell.2008.03.028
pmid: 18423197
|
10 |
Hill J R. Abnormal in utero development of cloned animals: implications for human cloning. Differentiation, 2002, 69(4-5): 174-178
https://doi.org/10.1046/j.1432-0436.2002.690408.x
pmid: 11841473
|
11 |
Wilmut I, Beaujean N, de Sousa P A, Dinnyes A, King T J, Paterson L A, Wells D N, Young L E. Somatic cell nuclear transfer. Nature, 2002, 419(6909): 583-587
https://doi.org/10.1038/nature01079
pmid: 12374931
|
12 |
Pangas S A, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters. Human Reproduction Update, 2006, 12(1): 65-76
https://doi.org/10.1093/humupd/dmi033
pmid: 16143663
|
13 |
McLaughlin E A, McIver S C. Awakening the oocyte: controlling primordial follicle development. Reproduction, 2009, 137(1): 1-11
https://doi.org/10.1530/REP-08-0118
pmid: 18827065
|
14 |
Nandedkar T, Dharma S, Modi D, Dsouza S. Differential gene expression in transition of primordial to preantral follicles in mouse ovary.Society of Reproduction and Fertility Supplement, 2007, 63: 57-67
pmid: 17566261
|
15 |
Bao S, Obata Y, Ono Y, Futatsumata N, Niimura S, Kono T. Nuclear competence for maturation and pronuclear formation in mouse oocytes.Human Reproduction, 2002, 17(5): 1311-1316
https://doi.org/10.1093/humrep/17.5.1311
pmid: 11980757
|
16 |
Eppig J J, Schultz R M, O’Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Developmental Biology, 1994, 164(1): 1-9
https://doi.org/10.1006/dbio.1994.1175
pmid: 8026614
|
17 |
Motlík J. Cytoplasmic aspects of oocyte growth and maturation in mammals. Journal of Reproduction and Fertility. Supplement, 1989, 38: 17-25
pmid: 2677346
|
18 |
Bao S, Obata Y, Carroll J, Domeki I, Kono T. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biology of Reproduction, 2000, 62(3): 616-621
https://doi.org/10.1095/biolreprod62.3.616
pmid: 10684802
|
19 |
Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F, Kono T. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development, 1998, 125(8): 1553-1560
pmid: 9502736
|
20 |
Tomizawa S, Nowacka-Woszuk J, Kelsey G. DNA methylation establishment during oocyte growth: mechanisms and significance. International Journal of Developmental Biology, 2012, 56(10-12): 867-875
https://doi.org/10.1387/ijdb.120152gk
pmid: 23417409
|
21 |
Obata Y, Kono T, Hatada I. Oogenesis: maturation of mouse fetal germ cells in vitro. Nature, 2002, 418(6897): 497
https://doi.org/10.1038/418497a
pmid: 12152066
|
22 |
Byrne J A, Simonsson S, Western P S, Gurdon J B. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Current Biology, 2003, 13(14): 1206-1213
https://doi.org/10.1016/S0960-9822(03)00462-7
pmid: 12867031
|
23 |
Ba?akier H, Tarkowski A K. The role of germinal vesicle karyoplasm in the development of male pronucleus in the mouse. Experimental Cell Research, 1980, 128(1): 79-85
https://doi.org/10.1016/0014-4827(80)90389-4
pmid: 7190927
|
24 |
Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature, 2013, 501(7466): 222-226
https://doi.org/10.1038/nature12417
pmid: 23913270
|
25 |
Laskey R A, Mills A D, Philpott A, Leno G H, Dilworth S M, Dingwall C, Lindquist S, Horwich A, Green N M, Gething M J, Neupert W, Ellis R J. The role of nucleoplasmin in chromatin assembly and disassembly. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1993, 339(1289): 263-269, discussion 268-269
https://doi.org/10.1098/rstb.1993.0024
pmid: 8098530
|
26 |
Iwashita J, Hayano Y, Sagata N. Essential role of germinal vesicle material in the meiotic cell cycle of Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8): 4392-4397
https://doi.org/10.1073/pnas.95.8.4392
|
27 |
Choi T, Rulong S, Resau J, Fukasawa K, Matten W, Kuriyama R, Mansour S, Ahn N, Vande Woude C F. Mos/mitogen-activated protein kinase can induce early meiotic phenotypes in the absence of maturation-promoting factor: a novel system for analysing spindle formation during meiosis I. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(10): 4730-4735
https://doi.org/10.1073/pnas.93.10.4730
|
28 |
Inoue M, Naito K, Nakayama T, Sato E. Mitogen-activated protein kinase translocates into the germinal vesicle and induces germinal vesicle breakdown in porcine oocytes. Biology of Reproduction, 1998, 58(1): 130-136
https://doi.org/10.1095/biolreprod58.1.130
pmid: 9472933
|
29 |
Gurdon J B, Laskey R A, De Robertis E M, Partington G A. Reprogramming of transplanted nuclei in amphibia. International Review of Cytology. Supplement, 1979, 9(9): 161-178
https://doi.org/10.1016/S0074-7696(08)60902-X
pmid: 385535
|
30 |
Mohammed A A, Karasiewicz J, Kubacka J, Greda P, Modliński J A. Enucleated GV oocytes as recipients of embryonic nuclei in the G1, S, or G2 stages of the cell cycle. Cell Reprogram, 2010, 12(4): 427-435
https://doi.org/10.1089/cell.2009.0107
pmid: 20698781
|
31 |
Bui H T, Kwon D N, Kang M H, Oh M H, Park M R, Park W J, Paik S S, Van Thuan N, Kim J H. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development, 2012, 139(23): 4330-4340
https://doi.org/10.1242/dev.086116
pmid: 23132243
|
32 |
Polanski Z, Hoffmann S, Tsurumi C. Oocyte nucleus controls progression through meiotic maturation. Developmental Biology, 2005, 281(2): 184-195
https://doi.org/10.1016/j.ydbio.2005.02.024
pmid: 15893972
|
33 |
Greda P, Karasiewicz J, Modliński J A. Mouse zygotes as recipients in embryo cloning. Reproduction, 2006, 132(5): 741-748
https://doi.org/10.1530/rep.1.01204
pmid: 17071775
|
34 |
Egli D, Rosains J, Birkhoff G, Eggan K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature, 2007, 447(7145): 679-685
https://doi.org/10.1038/nature05879
pmid: 17554301
|
35 |
Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 2001, 11(19): 1553-1558
https://doi.org/10.1016/S0960-9822(01)00459-6
pmid: 11591326
|
36 |
Cowan C A, Atienza J, Melton D A, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005, 309(5739): 1369-1373
https://doi.org/10.1126/science.1116447
pmid: 16123299
|
37 |
Bui H T, Wakayama S, Kishigami S, Kim J H, Van Thuan N, Wakayama T. The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming. Development, 2008, 135(23): 3935-3945
https://doi.org/10.1242/dev.023747
pmid: 18997114
|
38 |
Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S. Proteome of mouse oocytes at different developmental stages. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17639-17644
https://doi.org/10.1073/pnas.1013185107
|
39 |
Modliński J A. Transfer of embryonic nuclei to fertilised mouse eggs and development of tetraploid blastocysts. Nature, 1978, 273(5662): 466-467 PMID:566383
https://doi.org/10.1038/273466a0
|
40 |
McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37(1): 179-183
https://doi.org/10.1016/0092-8674(84)90313-1
pmid: 6722870
|
41 |
Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J Jr. The maternal nucleolus is essential for early embryonic development in mammals. Science, 2008, 319(5863): 613-616
https://doi.org/10.1126/science.1151276
pmid: 18239124
|
42 |
Campbell K H S, Fisher P, Chen W C, Choi I, Kelly R D W, Lee J H, Xhu J. Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology, 2007, 68(Suppl 1): S214-S231
https://doi.org/10.1016/j.theriogenology.2007.05.059
pmid: 17610946
|
43 |
Li G P, White K L, Bunch T D. Review of enucleation methods and procedures used in animal cloning: state of the art. Cloning and Stem Cells, 2004, 6(1): 5-13
https://doi.org/10.1089/15362300460743781
pmid: 15107241
|
44 |
Collas P, Pinto-Correia C, Ponce de Leon F A, Robl J M. Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biology of Reproduction, 1992, 46(3): 501-511
https://doi.org/10.1095/biolreprod46.3.501
pmid: 1617022
|
45 |
Lee J H, Campbell K H. Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biology of Reproduction, 2006, 74(4): 691-698
https://doi.org/10.1095/biolreprod.105.043885
pmid: 16371593
|
46 |
Czo?owska R, Modliński J A, Tarkowski A K. Behaviour of thymocyte nuclei in non-activated and activated mouse oocytes. Journal of Cell Science, 1984, 69: 19-34
pmid: 6386837
|
47 |
Tani T, Kato Y, Tsunoda Y. Reprogramming of bovine somatic cell nuclei is not directly regulated by maturation promoting factor or mitogen-activated protein kinase activity. Biology of Reproduction, 2003, 69(6): 1890-1894
https://doi.org/10.1095/biolreprod.103.018945
pmid: 12904315
|
48 |
Chung Y G, Ratnam S, Chaillet J R, Latham K E. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biology of Reproduction, 2003, 69(1): 146-153
https://doi.org/10.1095/biolreprod.102.014076
pmid: 12606374
|
49 |
Mann M R, Chung Y G, Nolen L D, Verona R I, Latham K E, Bartolomei M S. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biology of Reproduction, 2003, 69(3): 902-914
https://doi.org/10.1095/biolreprod.103.017293
pmid: 12748125
|
50 |
Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Molecular Reproduction and Development, 2002, 63(3): 329-334
https://doi.org/10.1002/mrd.90016
pmid: 12237948
|
51 |
Bordignon V, Clarke H J, Smith L C. Factors controlling the loss of immunoreactive somatic histone H1 from blastomere nuclei in oocyte cytoplasm: a potential marker of nuclear reprogramming. Developmental Biology, 2001, 233(1): 192-203
https://doi.org/10.1006/dbio.2001.0215
pmid: 11319868
|
52 |
Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 13734-13738
https://doi.org/10.1073/pnas.241522698
|
53 |
Kang Y K, Park J S, Koo D B, Choi Y H, Kim S U, Lee K K, Han Y M. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. The EMBO Journal, 2002, 21(5): 1092-1100
https://doi.org/10.1093/emboj/21.5.1092
pmid: 11867537
|
54 |
Wu X. li Y, Li G P, Yang D S, Yue Y L, Wang L L, Li K H, Xin P H, Bou S, Yu H Q. Trichostatin A reduced genome DNA methylation of transgenic cells but not improved subsequent cloned embryo development. Animal Biotechnology, 2008, 19(4): 211-224
https://doi.org/10.1080/10495390802271482
pmid: 18855246
|
55 |
Wu X, Li Y, Wang L, Yue Y, Li K, Bao S, Li G P, Yu H. Multiple sites modifications of histone in somatic cell nuclear transfer and in vitro fertilized embryos in bovine. Zygote, 2010, 8: 1-15
|
56 |
Enright B P, Kubota C, Yang X, Tian X C. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biology of Reproduction, 2003, 69(3): 896-901
https://doi.org/10.1095/biolreprod.103.017954
pmid: 12748129
|
57 |
Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Current Biology, 2003, 13(13): 1116-1121
https://doi.org/10.1016/S0960-9822(03)00419-6
pmid: 12842010
|
58 |
Aston K I, Li G P, Hicks B A, Sessions B R, Pate B J, Hammon D, Bunch T D, White K L. Effect of the time interval between fusion and activation on nuclear state and development in vitro and in vivo of bovine somatic cell nuclear transfer embryos. Reproduction, 2006, 131(1): 45-51
https://doi.org/10.1530/rep.1.00714
pmid: 16388008
|
59 |
Shi W, Hoeflich A, Flaswinkel H, Stojkovic M, Wolf E, Zakhartchenko V. Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biology of Reproduction, 2003, 69(1): 301-309
https://doi.org/10.1095/biolreprod.102.012112
pmid: 12646489
|
60 |
Bilodeau-Goeseels S, Panich P. Effects of oocyte quality on development and transcriptional activity in early bovine embryos. Animal Reproduction Science, 2002, 71(3-4): 143-155
https://doi.org/10.1016/S0378-4320(01)00188-9
pmid: 12047924
|
61 |
Dominko T, Chan A, Simerly C, Luetjens C M, Hewitson L, Martinovich C, Schatten G. Dynamic imaging of the metaphase II spindle and maternal chromosomesin bovine oocytes: implications for enucleation efficiency verification, avoidanceof parthenogenesis, and successful embryogenesis. Biology of Reproduction, 2000, 62(1): 150-154
https://doi.org/10.1095/biolreprod62.1.150
pmid: 10611079
|
62 |
Meng Q, Bai C, Liu Y, Wu X, Bunch T D, Li G P. In vitro development and chromosomal configuration of bovine somatic cloned embryos with nonenucleated metaphase II oocytes. Cellular Reprogramming, 2010, 12(4): 481-490
https://doi.org/10.1089/cell.2009.0114
pmid: 20698786
|
63 |
Yang H, Shi L, Zhang S, Ling J, Jiang J, Li J. High-efficiency somatic reprogramming induced by intact MII oocytes. Cell Research, 2010, 20(9): 1034-1042
https://doi.org/10.1038/cr.2010.97
pmid: 20603641
|
64 |
Fulka J Jr, First N L, Moor R M. Nuclear transplantation in mammals: remodelling of transplanted nuclei under the influence of maturation promoting factor. BioEssays, 1996, 18(10): 835-840
https://doi.org/10.1002/bies.950181010
pmid: 8885721
|
65 |
Sung L Y, Shen P C, Jeong B S, Xu J, Chang C C, Cheng W T, Wu J S, Lee S N, Broek D, Faber D, Tian X C, Yang X, Du F. Premature chromosome condensation is not essential for nuclear reprogramming in bovine somatic cell nuclear transfer.Biology of Reproduction,2007, 76(2): 232-240
https://doi.org/10.1095/biolreprod.106.053561
pmid: 17108336
|
66 |
Bian Y, Alberio R, Allegrucci C, Campbell K H, Johnson A D. Epigenetic marks in somatic chromatin are remodelled to resemble pluripotent nuclei by amphibian oocyte extracts. Epigenetics, 2009, 4(3): 194-202
https://doi.org/10.4161/epi.4.3.8787
pmid: 19440040
|
67 |
Ji G, Ruan W, Liu K, Wang F, Sakellariou D, Chen J, Yang Y, Okuka M, Han J, Liu Z, Lai L, Gagos S, Xiao L, Deng H, Li N, Liu L. Telomere reprogramming and maintenance in porcine iPS cells. PLoS ONE, 2013, 8(9): e74202
https://doi.org/10.1371/journal.pone.0074202
pmid: 24098638
|
68 |
Ruan W, Han J, Li P, Cao S, An Y, Lim B, Li N. A novel strategy to derive iPS cells from porcine fibroblasts. Science China Life Sciences, 2011, 54(6): 553-559
https://doi.org/10.1007/s11427-011-4179-5
pmid: 21706416
|
69 |
Miyamoto K, Tsukiyama T, Yang Y, Li N, Minami N, Yamada M, Imai H. Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biology of Reproduction, 2009, 80(5): 935-943
https://doi.org/10.1095/biolreprod.108.073676
pmid: 19164171
|
70 |
Kanka J, Nemcova L, Toralova T, Vodickova-Kepkova K, Vodicka P, Jeseta M, Machatkova M. Association of the transcription profile of bovine oocytes and embryos with developmental potential.Animal Reproduction Science, 2012(1-2): 29-35http://dx.doi.org/10.1016/j.anireprosci.2012.08.008
|
71 |
Labrecque R, Sirard M A. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Molucular Human Reproduction, 2014, 20(2): 103-116
https://doi.org/10.1093/molehr/gat082
|
72 |
Jiao Z X, Woodruff T K. Detection and quantification of maternal-effect gene transcripts in mouse second polar bodies: potential markers of embryo developmental competence.Fertility and Sterility, 2013, 99(7): 2055-2061
|
73 |
Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Human Reproduction, 1999, 14(2): 429-447
https://doi.org/10.1093/humrep/14.2.429
pmid: 10099991
|
74 |
Hardy K, Spanos S, Becker D, Iannelli P, Winston R M, Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1655-1660
https://doi.org/10.1073/pnas.98.4.1655
|
75 |
Hawes S M, Gie Chung Y, Latham K E. Genetic and epigenetic factors affecting blastomere fragmentation in two-cell stage mouse embryos. Biology of Reproduction, 2001, 65(4): 1050-1056
https://doi.org/10.1095/biolreprod65.4.1050
pmid: 11566725
|
76 |
Jurisicova A, Latham K E, Casper R F, Varmuza S L. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Molecular Reproduction and Development, 1998, 51(3): 243-253
https://doi.org/10.1002/(SICI)1098-2795(199811)51:3<243::AID-MRD3>3.0.CO;2-P
pmid: 9771644
|
77 |
Han Z, Chung Y G, Gao S, Latham K E. Maternal factors controlling blastomere fragmentation in early mouse embryos. Biology of Reproduction, 2005, 72(3): 612-618
https://doi.org/10.1095/biolreprod.104.035444
pmid: 15537860
|
78 |
Han Z, Mtango N R, Zhong Z, Vassena R, Latham K E. Early transcription from the maternal genome controlling blastomere integrity in mouse two-cell-stage embryos. American Journal of Physiology. Cell Physiology, 2010, 298(5): C1235-C1244
https://doi.org/10.1152/ajpcell.00393.2009
pmid: 20107036
|
79 |
Aoki F, Worrad D M, Schultz R M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Developmental Biology, 1997, 181(2): 296-307
https://doi.org/10.1006/dbio.1996.8466
pmid: 9013938
|
80 |
Bouniol C, Nguyen E, Debey P. Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Experimental Cell Research, 1995, 218(1): 57-62
https://doi.org/10.1006/excr.1995.1130
pmid: 7537698
|
81 |
Schultz R M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update, 2002, 8(4): 323-331
https://doi.org/10.1093/humupd/8.4.323
pmid: 12206467
|
82 |
Sun F, Fang H, Li R, Gao T, Zheng J, Chen X, Ying W, Sheng H Z. Nuclear reprogramming: the zygotic transcription program is established through an “erase-and-rebuild” strategy. Cell Research, 2007, 17(2): 117-134
https://doi.org/10.1038/cr.2007.1
pmid: 17287829
|
83 |
Gao T, Zheng J, Xing F, Fang H, Sun F, Yan A, Gong X, Ding H, Tang F, Sheng H Z. Nuclear reprogramming: the strategy used in normal development is also used in somatic cell nuclear transfer and parthenogenesis. Cell Research, 2007, 17(2): 135-150
https://doi.org/10.1038/cr.2007.2
pmid: 17287828
|
84 |
Surani M A. Nuclear reprogramming by human embryonic stem cells. Cell, 2005, 122(5): 653-654
https://doi.org/10.1016/j.cell.2005.08.023
pmid: 16143098
|
85 |
Gurdon J B, Byrne J A. The first half-century of nuclear transplantation. Bioscience Reports, 2004, 24(4-5): 545-557
https://doi.org/10.1007/s10540-005-2744-5
pmid: 16134025
|
86 |
Mattson B A, Albertini D F. Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Molecular Reproduction and Development, 1990, 25(4): 374-383
https://doi.org/10.1002/mrd.1080250411
pmid: 1691651
|
87 |
Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi C A. Chromatin organization during mouse oocyte growth. Molecular Reproduction and Development, 1995, 41(4): 479-485
https://doi.org/10.1002/mrd.1080410410
pmid: 7576615
|
88 |
Torres-Padilla M E, Zernicka-Goetz M. Role of TIF1α as a modulator of embryonic transcription in the mouse zygote. TheJournal of Cell Biology, 2006, 174(3): 329-338
https://doi.org/10.1083/jcb.200603146
pmid: 16880268
|
89 |
Gurdon J B. Nuclear transplantation in eggs and oocytes. Journal of Cell Science. Supplement, 1986, 4: 287-318
https://doi.org/10.1242/jcs.1986.Supplement_4.17
pmid: 3528196
|
90 |
Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells.Science, 2008, 321(5889): 699-702
https://doi.org/10.1126/science.1154884
pmid: 18276851
|
91 |
Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte A P, Tian X C, Yang X, Ishino F, Abe K, Ogura A. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 2010, 330(6003): 496-499
https://doi.org/10.1126/science.1194174
pmid: 20847234
|
92 |
Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun Y E. Liu J, Horvath S, Fan G. hereditary programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature, 2013, 500(7464): 593-597 PMID:23892778
https://doi.org/10.1038/nature12364
|
93 |
Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 4139-4144
https://doi.org/10.1073/pnas.1321569111
|
94 |
Pikulkaew S, Benato F, Celeghin A, Zucal C, Skobo T, Colombo L, Dalla Valle L. The knockdown of maternal glucocorticoid receptor mRNA alters embryo development in zebrafish. Developmental Dynamics, 2011, 240(4): 874-889
https://doi.org/10.1002/dvdy.22586
pmid: 21360790
|
95 |
Tashiro F, Kanai-Azuma M, Miyazaki S, Kato M, Tanaka T, Toyoda S, Yamato E, Kawakami H, Miyazaki T, Miyazaki J. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes to Cells, 2010, 15(8): 813-828
https://doi.org/10.1111/j.1365-2443.2010.01420.x
pmid: 20590823
|
96 |
Tesfaye D, Regassa A, Rings F, Ghanem N, Phatsara C, Tholen E, Herwig R, Un C, Schellander K, Hoelker M. Suppression of the transcription factor MSX1 gene delays bovine preimplantation embryo development in vitro. Reproduction, 2010, 139(5): 857-870
https://doi.org/10.1530/REP-09-0312
pmid: 20176746
|
97 |
Paranjpe S S, Jacobi U G, van Heeringen S J, C Veenstra G J. A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development. BMC Genomics, 2013, 14(1): 762
https://doi.org/10.1186/1471-2164-14-762
pmid: 24195446
|
98 |
Mondou E, Dufort I, Gohin M, Fournier E, Sirard M A. Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human Reproduction, 2012, 18(9): 425-434
https://doi.org/10.1093/molehr/gas015
pmid: 22491901
|
99 |
Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 2011, 474(7350): 225-229
https://doi.org/10.1038/nature10106
pmid: 21654807
|
100 |
Meissner A, Jaenisch R. Mammalian nuclear transfer. Developmental Dynamics, 2006, 235(9): 2460-2469
https://doi.org/10.1002/dvdy.20915
pmid: 16881069
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|