Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (1) : 2-5    https://doi.org/10.15302/J-FASE-2014007
LETTER
One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system
Hongbing HAN1,Yonghe MA2,Tao WANG2,Ling LIAN1,Xiuzhi TIAN1,Rui HU1,Shoulong DENG3,Kongpan LI2,Feng WANG1,Ning LI2,Guoshi LIU1,*(),Yaofeng ZHAO2,*(),Zhengxing LIAN1,*()
1. Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
2. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
3. State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(269 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Guoshi LIU   
Issue Date: 22 May 2014
 Cite this article:   
Hongbing HAN,Yonghe MA,Tao WANG, et al. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 2-5.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014007
https://academic.hep.com.cn/fase/EN/Y2014/V1/I1/2
Fig.1  Generation of MSTN-knockout sheep and analysis of the mutant alleles. (a) A schematic of the sgRNAs targeting the third exon of the MSTN gene. The PAM motif is shown in green. The target site is underlined, and the 12 bp seed sequence is highlighted in blue. The primers for the PCR analysis are indicated by arrows; (b) Indel mutations in the ear and muscle were detected using the Surveyor assay. Ear and muscle tissues from the control group with a wild-type MSTN gene produced a 556 bp band. Monoallelic mutant sheep produced multiple bands with lengths of 556 bp, 331 bp, and 225 bp; (c) Sequence analysis of the mutations detected in the two lambs. Deletions are indicated by a dashed line, and insertions are shaded in cyan. The numbers following the sequences indicate the specific type of mutation, and the clone numbers are surrounded by brackets
1 Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics, 2011, 45(1): 273-297
https://doi.org/10.1146/annurev-genet-110410-132430 pmid: 22060043
2 Terns M P, Terns R M. CRISPR-based adaptive immune systems. Current Opinion in Microbiology, 2011, 14(3): 321-327
https://doi.org/10.1016/j.mib.2011.03.005 pmid: 21531607
3 Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586
https://doi.org/10.1073/pnas.1208507109 pmid: 22949671
4 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821
https://doi.org/10.1126/science.1225829 pmid: 22745249
5 Jinek M, Jiang F G, Taylor D W, Sternberg S H, Kaya E, Ma E B, Anders C, Hauer M, Zhou KH, Lin S, Kaplan M, Iavarone A T, Charpentier E, Nogales E, Doudna J A. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176).(first published online)
https://doi.org/10.1126/science.1247997
6 Deltcheva E, Chylinski K, Sharma C M, Gonzales K, Chao Y, Pirzada Z A, Eckert M R, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607
https://doi.org/10.1038/nature09886 pmid: 21455174
7 Deveau H, Garneau J E, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology, 2010, 64(1): 475-493
https://doi.org/10.1146/annurev.micro.112408.134123 pmid: 20528693
8 Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826
https://doi.org/10.1126/science.1232033 pmid: 23287722
9 Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823
https://doi.org/10.1126/science.1231143 pmid: 23287718
10 Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227-229
https://doi.org/10.1038/nbt.2501 pmid: 23360964
11 Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910-918
https://doi.org/10.1016/j.cell.2013.04.025 pmid: 23643243
12 Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8): 684-686
https://doi.org/10.1038/nbt.2652 pmid: 23929337
13 Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang A P, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836-843
https://doi.org/10.1016/j.cell.2014.01.027 pmid: 24486104
14 Hauschild J, Petersen B, Santiago Y, Queisser A L, Carnwath J W, Lucas-Hahn A, Zhang L, Meng X, Gregory P D, Schwinzer R, Cost G J, Niemann H. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12013-12017
https://doi.org/10.1073/pnas.1106422108 pmid: 21730124
15 Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B, Fahrenkrug S C. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382-17387
https://doi.org/10.1073/pnas.1211446109 pmid: 23027955
16 Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014, 24(3): 372-375
https://doi.org/10.1038/cr.2014.11 pmid: 24481528
17 Grobet L, Royo Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71-74
https://doi.org/10.1038/ng0997-71 pmid: 9288100
18 Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, Ostrander E A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 2007, 3(5): e79
https://doi.org/10.1371/journal.pgen.0030079 pmid: 17530926
19 McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90
https://doi.org/10.1038/387083a0 pmid: 9139826
20 Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826
https://doi.org/10.1038/nbt.2623 pmid: 23792628
21 Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9): 827-832
https://doi.org/10.1038/nbt.2647 pmid: 23873081
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed