| 
					
						|  |  
    					|  |  
    					| One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system |  
						| Hongbing HAN1,Yonghe MA2,Tao WANG2,Ling LIAN1,Xiuzhi TIAN1,Rui HU1,Shoulong DENG3,Kongpan LI2,Feng WANG1,Ning LI2,Guoshi LIU1,*(  ),Yaofeng ZHAO2,*(  ),Zhengxing LIAN1,*(  ) |  
						| 1. Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China 2. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
 3. State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    |  |  
															| Corresponding Author(s):
																Guoshi LIU |  
															| Issue Date: 22 May 2014 |  |  
								            
								                
																																												
															| 1 | Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics, 2011, 45(1): 273-297 https://doi.org/10.1146/annurev-genet-110410-132430
														     															     															     		pmid: 22060043
 |  
															| 2 | Terns M P, Terns R M. CRISPR-based adaptive immune systems. Current Opinion in Microbiology, 2011, 14(3): 321-327 https://doi.org/10.1016/j.mib.2011.03.005
														     															     															     		pmid: 21531607
 |  
															| 3 | Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586 https://doi.org/10.1073/pnas.1208507109
														     															     															     		pmid: 22949671
 |  
															| 4 | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821 https://doi.org/10.1126/science.1225829
														     															     															     		pmid: 22745249
 |  
															| 5 | Jinek M, Jiang F G, Taylor D W, Sternberg S H, Kaya E, Ma E B, Anders C, Hauer M, Zhou KH, Lin S, Kaplan M, Iavarone A T, Charpentier E, Nogales E, Doudna J A. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176).(first published online) https://doi.org/10.1126/science.1247997
 |  
															| 6 | Deltcheva E, Chylinski K, Sharma C M, Gonzales K, Chao Y, Pirzada Z A, Eckert M R, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607 https://doi.org/10.1038/nature09886
														     															     															     		pmid: 21455174
 |  
															| 7 | Deveau H, Garneau J E, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology, 2010, 64(1): 475-493 https://doi.org/10.1146/annurev.micro.112408.134123
														     															     															     		pmid: 20528693
 |  
															| 8 | Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826 https://doi.org/10.1126/science.1232033
														     															     															     		pmid: 23287722
 |  
															| 9 | Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823 https://doi.org/10.1126/science.1231143
														     															     															     		pmid: 23287718
 |  
															| 10 | Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227-229 https://doi.org/10.1038/nbt.2501
														     															     															     		pmid: 23360964
 |  
															| 11 | Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910-918 https://doi.org/10.1016/j.cell.2013.04.025
														     															     															     		pmid: 23643243
 |  
															| 12 | Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8): 684-686 https://doi.org/10.1038/nbt.2652
														     															     															     		pmid: 23929337
 |  
															| 13 | Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang A P, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836-843 https://doi.org/10.1016/j.cell.2014.01.027
														     															     															     		pmid: 24486104
 |  
															| 14 | Hauschild J, Petersen B, Santiago Y, Queisser A L, Carnwath J W, Lucas-Hahn A, Zhang L, Meng X, Gregory P D, Schwinzer R, Cost G J, Niemann H. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12013-12017 https://doi.org/10.1073/pnas.1106422108
														     															     															     		pmid: 21730124
 |  
															| 15 | Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B, Fahrenkrug S C. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382-17387 https://doi.org/10.1073/pnas.1211446109
														     															     															     		pmid: 23027955
 |  
															| 16 | Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014, 24(3): 372-375 https://doi.org/10.1038/cr.2014.11
														     															     															     		pmid: 24481528
 |  
															| 17 | Grobet L, Royo Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71-74 https://doi.org/10.1038/ng0997-71
														     															     															     		pmid: 9288100
 |  
															| 18 | Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, Ostrander E A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 2007, 3(5): e79 https://doi.org/10.1371/journal.pgen.0030079
														     															     															     		pmid: 17530926
 |  
															| 19 | McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90 https://doi.org/10.1038/387083a0
														     															     															     		pmid: 9139826
 |  
															| 20 | Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826 https://doi.org/10.1038/nbt.2623
														     															     															     		pmid: 23792628
 |  
															| 21 | Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9): 827-832 https://doi.org/10.1038/nbt.2647
														     															     															     		pmid: 23873081
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |