Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (1) : 16-20    https://doi.org/10.15302/J-FASE-2014011
REVIEW
Initiation of Setaria as a model plant
Xianmin DIAO1,*(),James SCHNABLE1,Jeffrey L. BENNETZEN2,Jiayang LI3,*()
1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. Departments of Genetics, University of Georgia, Athens, GA30602, USA and Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650000, China
3. Chinese Academy of Agricultural Sciences, Beijing 100081, China
 Download: PDF(96 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Model organisms such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have proven essential for efficient scientific discovery and development of new methods. With the diversity of plant lineages, some important processes such as C4 photosynthesis are not found in either Arabidopsis or rice, so new model species are needed. Due to their small diploid genomes, short life cycles, self-pollination, small adult statures and prolific seed production, domesticated foxtail millet (Setaria italica) and its wild ancestor, green foxtail (S. viridis), have recently been proposed as novel model species for functional genomics of the Panicoideae, especially for study of C4 photosynthesis. This review outlines the development of these species as model organisms, and discusses current challenges and future potential of a Setaria model.

Keywords Setaria      foxtail millet      C4 photosynthesis      model organism     
Corresponding Author(s): Xianmin DIAO   
Issue Date: 22 May 2014
 Cite this article:   
Xianmin DIAO,James SCHNABLE,Jeffrey L. BENNETZEN, et al. Initiation of Setaria as a model plant[J]. Front. Agr. Sci. Eng. , 2014, 1(1): 16-20.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014011
https://academic.hep.com.cn/fase/EN/Y2014/V1/I1/16
1 Sage R F. The evolution of C4 photosynthesis. New Phytologist, 2004, 161(2): 341–370
https://doi.org/10.1111/j.1469-8137.2004.00974.x
2 Rominger J M. Taxonomy of Setaria (Gramineae) in North America. In: Illinois Biol Monogr, volume 29. Edited by Horsfall WR, Delevoryas T, De Moss RD, Kruidenier FJ, and Taylor AB. Urbana: University of Illinois Press; 1962, 100–108
3 Zhao M, Zhi H, Doust A N, Li W, Wang Y, Li H, Jia G, Wang Y, Zhang N, Diao X. Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria. BMC Genomics, 2013, 14(1): 244
https://doi.org/10.1186/1471-2164-14-244 pmid: 23577839
4 Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30(6): 555–561
https://doi.org/10.1038/nbt.2196 pmid: 22580951
5 Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45(8): 957–961
https://doi.org/10.1038/ng.2673 pmid: 23793027
6 Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiology, 2009, 149(1): 137–141
https://doi.org/10.1104/pp.108.129627 pmid: 19126705
7 Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010, 22(8): 2537–2544
https://doi.org/10.1105/tpc.110.075309 pmid: 20693355
8 Li P, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany, 2011, 62(9): 3031–3037
https://doi.org/10.1093/jxb/err096 pmid: 21459768
9 Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 2013, 33(3): 328–343
https://doi.org/10.3109/07388551.2012.716809 pmid: 22985089
10 Wang Y H, Upadhyaya H D, Burrell A M, Sahraeian S M, Klein R R, Klein P E. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3 (Bethesda), 2013, 3(5): 783–93
https://doi.org/10.1534/g3.112.004861
11 von Caemmerer S, Quick W P, Furbank R T. The development of C? rice: current progress and future challenges. Science, 2012, 336(6089): 1671–1672
https://doi.org/10.1126/science.1220177 pmid: 22745421
12 Karki S, Rizal G, Quick W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice, 2013, 6(1): 28
https://doi.org/10.1186/1939-8433-6-28 pmid: 24280149
13 Gu S. Relationship between foxtail millet growth and environmental factors, In Gu S. ed., Foxtail Millet Cultivation and Production in China, Beijing, Chinese Agricultural Press, 1987, 63–71
14 Li Y. Breeding for foxtail millet drought tolerant cultivars (in Chinese). In Li Y ed., Foxtail Millet Breeding, Beijing, Chinese Agricultural Press, 1997, 421–446
15 Zhu X, Song Y, Zhao Z, Shi Y, Liu Y, Li Y, Wang T. Methods for identification of drought tolerance at germination period of foxtail millet by osmotic stress. Journal of Plant Genetic Resources, 2008, 9: 62–67
16 Zhang J, Liu T, Fu J, Zhu Y, Jia J, Zheng J, Zhao Y, Zhang Y, Wang G. Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics, 2007, 90(1): 121–131
https://doi.org/10.1016/j.ygeno.2007.03.016 pmid: 17498921
17 Lata C, Sahu P P, Prasad M. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochemical and Biophysical Research Communications, 2010, 393(4): 720–727
https://doi.org/10.1016/j.bbrc.2010.02.068 pmid: 20171162
18 Yi F, Xie S, Liu Y, Qi X, Yu J. Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC Plant Biology, 2013, 13(1): 212
https://doi.org/10.1186/1471-2229-13-212 pmid: 24330712
19 Qi X, Xie S, Liu Y, Yi F, Yu J. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Molecular Biology, 2013, 83(4-5): 459–473
https://doi.org/10.1007/s11103-013-0104-6 pmid: 23860794
20 Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30(6): 549–554
https://doi.org/10.1038/nbt.2195 pmid: 22580950
21 Bai H, Cao Y, Quan J, Dong L, Li Z, Zhu Y, Zhu L, Dong Z, Li D. Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a Landrace cultivar of foxtail millet. PLoS ONE, 2013, 8(9): e73514
https://doi.org/10.1371/journal.pone.0073514 pmid: 24039970
22 Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M, Liu X, Chai Y, Zhang X, Wang H, Li Y, Li W, Zhi H, Jia G, Diao X. Development and characterization of highly polymorphic SSR (Simple Sequence Repeat) markers through genome-wide microsatellite variants analysis in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2014, 15: 78
https://doi.org/10.1186/1471-2164-15-78 pmid: 24472631
23 Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida S K, Prasad M. Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Research, 2014, 21(1): 41–52
https://doi.org/10.1093/dnares/dst039 pmid: 24086082
24 Jia G, Shi S, Wang C, Niu Z, Chai Y, Zhi H, Diao X. Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis. Journal of Experimental Botany, 2013, 64(12): 3645–3656
https://doi.org/10.1093/jxb/ert198 pmid: 23956411
25 Wang C F, Jia G Q, Zhi H, Niu Z G, Chai Y, Li W, Wang Y F, Li H Q, Lu P, Zhao B H, Diao X M. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 (Bethesda), 2012, 2(7): 769–777.
26 Diao X, Li W, Zhi H, Jia G, Ge Y, Chai Y, Li J. Construction of an EMS mutation library for foxtail millet functional genomics. The first international Setaria genetics conference abstracts, Beijing, 2014, 56
27 Bennetzen J, Chaluvadi S, Feng L, Wang H. Setaria genome structure and evolution. The first international Setaria genetics conference abstracts, Beijing, 2014, 6
28 Martins P K, Dias B B A, Ribeiro A P, Kobayashi A K, Molinari H B C. Setaria viridis: a tool for functional gene analysis in sugancane. The first international Setaria genetics conference abstracts, Beijing, 2014, 19
29 Zhi H, Jia G, Niu Z, Liu X, Ge Y, Chai Y, Diao X. Construction of an RIL population and segment introgression lines via interspecific cross between Setaria italica and S. viridis. The first international Setaria genetics conference abstracts, Beijing, 2014, 50
[1] Lu HE,Bin ZHANG,Xingchun WANG,Hongying LI,Yuanhuai HAN. Foxtail millet: nutritional and eating quality, and prospects for genetic improvement[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 124-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed