|
|
Genomic regions associated with the sex-linked inhibitor of dermal melanin in Silkie chicken |
Ming TIAN,Rui HAO,Suyun FANG,Yanqiang WANG,Xiaorong GU,Chungang FENG,Xiaoxiang HU( ),Ning LI( ) |
State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China |
|
|
Abstract A unique characteristic of the Silkie chicken is its fibromelanosis phenotype. The dermal layer of its skin, its connective tissue and shank dermis are hyperpigmented. This dermal hyperpigmentation phenotype is controlled by the sex-linked inhibitor of dermal melanin gene (ID) and the dominant fibromelanosis allele. This study attempted to confirm the genomic region associated with ID. By genotyping, ID was found to be closely linked to the region between GGA_rs16127903 and GGA_rs14685542 (8406919 bp) on chromosome Z, which contains ten functional genes. The expression of these genes was characterized in the embryo and 4 days after hatching and it was concluded that MTAP, encoding methylthioadenosinephosphorylase, would be the most likely candidate gene. Finally, target DNA capture and sequence analysis was performed, but no specific SNP(s) was found in the targeted region of the Silkie genome. Further work is necessary to identify the causal ID mutation located on chromosome Z.
|
Keywords
sex-linked inhibitor of dermal melanin (Id)
Silkie
chromosome Z
|
Corresponding Author(s):
Xiaoxiang HU,Ning LI
|
Online First Date: 03 December 2014
Issue Date: 27 January 2015
|
|
1 |
Rosengren Pielberg G, Golovko A, Sundstr?m E, Curik I, Lennartsson J, Seltenhammer M H, Druml T, Binns M, Fitzsimmons C, Lindgren G, Sandberg K, Baumung R, Vetterlein M, Str?mberg S, Grabherr M, Wade C, Lindblad-Toh K, Pontén F, Heldin C H, S?lkner J, Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics, 2008, 40(8): 1004–1009
https://doi.org/10.1038/ng.185
pmid: 18641652
|
2 |
Eizirik E, David V A, Buckley-Beason V, Roelke M E, Sch?ffer A A, Hannah S S, Narfstr?m K, O’Brien S J, Menotti-Raymond M. Defining and mapping mammalian coat pattern genes: multiple genomic regions implicated in domestic cat stripes and spots. Genetics, 2010, 184(1): 267–275
https://doi.org/10.1534/genetics.109.109629
pmid: 19858284
|
3 |
Alizadeh A, Hong L Z, Kaelin C B, Raudsepp T, Manuel H, Barsh G S. Genetics of Sex-linked yellow in the Syrian hamster. Genetics, 2009, 181(4): 1427–1436
https://doi.org/10.1534/genetics.108.095018
pmid: 19189957
|
4 |
Gunnarsson U, Hellstr?m A R, Tixier-Boichard M, Minvielle F, Bed’hom B, Ito S, Jensen P, Rattink A, Vereijken A, Andersson L. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics, 2007, 175(2): 867–877
https://doi.org/10.1534/genetics.106.063107
pmid: 17151254
|
5 |
Eriksson J, Larson G, Gunnarsson U, Bed’hom B, Tixier-Boichard M, Str?mstedt L, Wright D, Jungerius A, Vereijken A, Randi E, Jensen P, Andersson L. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLOS Genetics, 2008, 4(2): e1000010
https://doi.org/10.1371/journal.pgen.1000010
pmid: 18454198
|
6 |
Dorshorst B, Okimoto R, Ashwell C. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. Journal of Heredity, 2010, 101(3): 339–350
https://doi.org/10.1093/jhered/esp120
pmid: 20064842
|
7 |
Smyth J R Jr. Genetics of plumage. Skin and eye pigmentation in chickens. Crawford RD, ed. Amsterdam. 1990
|
8 |
Hutt F B. Genetics of the fowl. McGraw-Hill. 1949
|
9 |
Le D. M. N. The Neural Crest. Cambridge University. 1982
|
10 |
Erickson C A, Reedy M V. Neural crest development: the interplay between morphogenesis and cell differentiation. Current Topics in Developmental Biology, 1998, 40: 177–209
|
11 |
Erickson C A, Goins T L. Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development, 1995, 121(3): 915–924
pmid: 7720593
|
12 |
Reedy M V, Faraco C D, Erickson C A. Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens. Developmental Dynamics, 1998, 213(4): 476–485
https://doi.org/10.1002/(SICI)1097-0177(199812)213:4<476::AID-AJA12>3.0.CO;2-R
pmid: 9853968
|
13 |
Hallet M M, Ferrand R. Quail melanoblast migration in two breeds of fowl and in their hybrids: evidence for a dominant genic control of the mesodermal pigment cell pattern through the tissue environment. Journal of Experimental Zoology, 1984, 230(2): 229–238
https://doi.org/10.1002/jez.1402300208
pmid: 6736895
|
14 |
Dunn L, Jull M. On the inheritance of some characters op the silky fowl. Journal of Genetics, 1927, 19: 27–63
|
15 |
Bateson W, Punnett R. The inheritance of the peculiar pigmentation of the silky fowl. Journal of Genetics, 1911, 1: 185–203
|
16 |
Bitgood J J. Linear relationship of the loci for barring, dermal melanin inhibitor, and recessive white skin on the chicken Z chromosome. Poulty Science, 1988, 67(4): 530–533
|
17 |
Dorshorst B J, Ashwell C M. Genetic mapping of the sex-linked barring gene in the chicken. Poulty Science, 2009, 88(9): 1811–1817
|
18 |
Groenen M A, Cheng H H, Bumstead N, Benkel B F, Briles W E, Burke T, Burt D W, Crittenden L B, Dodgson J, Hillel J, Lamont S, de Leon AP, Soller M, Takahashi H, Vignal A. A consensus linkage map of the chicken genome. Genome Research, 2000, 10(1): 137–147
|
19 |
Levin I, Crittenden L B, Dodgson J B. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. Genomics, 1993, 16(1): 224–230
https://doi.org/10.1006/geno.1993.1163
pmid: 8486362
|
20 |
Wright D, Kerje S, Lundstr?m K, Babol J, Schütz K, Jensen P, Andersson L. Quantitative trait loci analysis of egg and meat production traits in a red junglefowl×White Leghorn cross. Animal Genetics, 2006, 37(6): 529–534
https://doi.org/10.1111/j.1365-2052.2006.01515.x
pmid: 17121597
|
21 |
Dorshorst B, Okimoto R, Ashwell C. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. Journal of Heredity, 2010, 101(3): 339–350
https://doi.org/10.1093/jhered/esp120
pmid: 20064842
|
22 |
Bellott D W, Skaletsky H, Pyntikova T, Mardis E R, Graves T, Kremitzki C, Brown L G, Rozen S, Warren W C, Wilson R K, Page D C. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature, 2010, 466(7306): 612–616
https://doi.org/10.1038/nature09172
pmid: 20622855
|
23 |
Been J V, Bok L A, Willemsen M A, Struys E A, Jakobs C. Mutations in the ALDH7A1 gene cause pyridoxine-dependent seizures. Arquivos de Neuro-Psiquiatria, 2008, 66(2-A): 288–289
https://doi.org/10.1590/S0004-282X2008000200035
pmid: 18545806
|
24 |
Strunnikova N V, Maminishkis A, Barb J J, Wang F, Zhi C, Sergeev Y, Chen W, Edwards A O, Stambolian D, Abecasis G, Swaroop A, Munson P J, Miller S S. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Human Molecular Genetics, 2010, 19(12): 2468–2486
https://doi.org/10.1093/hmg/ddq129
pmid: 20360305
|
25 |
Lee R, Chang S Y, Trinh H, Tu Y, White A C, Davies B S, Bergo M O, Fong L G, Lowry W E, Young S G. Genetic studies on the functional relevance of the protein prenyltransferases in skin keratinocytes. Human Molecular Genetics, 2010, 19(8): 1603–1617
https://doi.org/10.1093/hmg/ddq036
pmid: 20106865
|
26 |
Miyajima N, Maruyama S, Nonomura K, Hatakeyama S. TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression. Biochemical and Biophysical Research Communications, 2009, 381(3): 383–387
https://doi.org/10.1016/j.bbrc.2009.02.059
pmid: 19232519
|
27 |
Haecker A, Qi D, Lilja T, Moussian B, Andrioli L P, Luschnig S, Mannervik M. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos. PLoS Biology, 2007, 5(6): e145
https://doi.org/10.1371/journal.pbio.0050145
pmid: 17503969
|
28 |
Appeddu P A, Shur B D. Control of stable lamellipodia formation by expression of cell surface beta 1,4-galactosyltransferase cytoplasmic domains. Journal of Cell Science, 1994, 107(Pt 9): 2535–2545
pmid: 7844169
|
29 |
Reedy M V, Faraco C D, Erickson C A. Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens. Developmental Dynamics, 1998, 213(4): 476–485
https://doi.org/10.1002/(SICI)1097-0177(199812)213:4<476::AID-AJA12>3.0.CO;2-R
pmid: 9853968
|
30 |
Thomas A J, Erickson C A. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell & Melanoma Research, 2008, 21(6): 598–610
https://doi.org/10.1111/j.1755-148X.2008.00506.x
pmid: 19067969
|
31 |
Ventura-Holman T, Lu D, Si X, Izevbigie E B, Maher J F. The Fem1c genes: conserved members of the Fem1 gene family in vertebrates. Gene, 2003, 314: 133–139
https://doi.org/10.1016/S0378-1119(03)00712-1
pmid: 14527725
|
32 |
Krakow D, Sebald E, King L M, Cohn D H. Identification of human FEM1A, the ortholog of a C.elegans sex-differentiation gene. Gene, 2001, 279(2): 213–219
https://doi.org/10.1016/S0378-1119(01)00756-9
pmid: 11733146
|
33 |
Rose A E, Poliseno L, Wang J, Clark M, Pearlman A, Wang G, Vega Y Saenz de Miera E C, Medicherla R, Christos P J, Shapiro R, Pavlick A, Darvishian F, Zavadil J, Polsky D, Hernando E, Ostrer H, Osman I. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression. Cancer Research, 2011, 71(7): 2561–2571
https://doi.org/10.1158/0008-5472.CAN-10-2958
pmid: 21343389
|
34 |
Holdt L M, Sass K, G?bel G, Bergert H, Thiery J, Teupser D. Expression of Chr9p21 genes CDKN2B (p15INK4b), CDKN2A (p16INK4a, p14ARF) and MTAP in human atherosclerotic plaque. Atherosclerosis, 2011, 214(2): 264–270
https://doi.org/10.1016/j.atherosclerosis.2010.06.029
pmid: 20637465
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|