Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (3) : 242-249    https://doi.org/10.15302/J-FASE-2014018
RESEARCH ARTICLE
Genomic regions associated with the sex-linked inhibitor of dermal melanin in Silkie chicken
Ming TIAN,Rui HAO,Suyun FANG,Yanqiang WANG,Xiaorong GU,Chungang FENG,Xiaoxiang HU(),Ning LI()
State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
 Download: PDF(1291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A unique characteristic of the Silkie chicken is its fibromelanosis phenotype. The dermal layer of its skin, its connective tissue and shank dermis are hyperpigmented. This dermal hyperpigmentation phenotype is controlled by the sex-linked inhibitor of dermal melanin gene (ID) and the dominant fibromelanosis allele. This study attempted to confirm the genomic region associated with ID. By genotyping, ID was found to be closely linked to the region between GGA_rs16127903 and GGA_rs14685542 (8406919 bp) on chromosome Z, which contains ten functional genes. The expression of these genes was characterized in the embryo and 4 days after hatching and it was concluded that MTAP, encoding methylthioadenosinephosphorylase, would be the most likely candidate gene. Finally, target DNA capture and sequence analysis was performed, but no specific SNP(s) was found in the targeted region of the Silkie genome. Further work is necessary to identify the causal ID mutation located on chromosome Z.

Keywords sex-linked inhibitor of dermal melanin (Id)      Silkie      chromosome Z     
Corresponding Author(s): Xiaoxiang HU,Ning LI   
Online First Date: 03 December 2014    Issue Date: 27 January 2015
 Cite this article:   
Ming TIAN,Rui HAO,Suyun FANG, et al. Genomic regions associated with the sex-linked inhibitor of dermal melanin in Silkie chicken[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 242-249.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014018
https://academic.hep.com.cn/fase/EN/Y2014/V1/I3/242
Fig.1  Founding breeds for the mapping populations
Fig.2  Shank color of crosses (F2 generation) at 12 weeks
Fig.3  The results of Q-PCR analysis of the expression of ten target functional genes. (a) ALDH7A1 mRNA; (b) CCDC112 mRNA; (c) CDKN2B mRNA; (d) FEM1C mRNA; (e) GRAMD3 mRNA; (f) MTAP mRNA; (g) PGGT1B mRNA; (h) TRIM36 mRNA; (i) ZNF608 mRNA; (j) β-4-GALT1 mRNA. BLH: White Leghorn. WJ: Silkie. * means P<0.05. ** means P<0.01. *** means P<0.001. These P values are compared between BLH and WJ in each time and tissue. E: embryo. 4D: the 4th day after born. HL: hind-leg. F: shank skin. S: skin.
ChromosomeRelative locusSilkie–Jinhu and Silkie–Gushi shared homozygous SNPsGenotypes of the reference breeds
RefAltCobb BroilerWhite LeghornBeijing fattyWahuiWhite Recessive
chrZ2321AG1/11/11/1-1/1
5321AG1/11/1--1/1
40214AG1/11/1-1/11/1
72985GC1/11/11/10/11/1
83822GC1/1-1/11/11/1
84032TA1/11/11/1-1/1
88662AC1/11/11/11/10/1
118162TC1/11/1-1/1-
191536AG1/1--1/11/1
192350CG-0/11/10/1-
221100CG1/11/10/11/11/1
221157CT0/1-0/11/10/1
221172AC---1/11/1
244086CG1/11/11/11/11/1
254088TG1/1-1/11/10/1
254178CA1/11/11/11/10/1
280024AG-1/11/11/11/1
283040CT-1/11/11/11/1
341728AT1/11/11/11/11/1
354810AC1/11/10/10/11/1
354825AC1/11/1---
409749AG1/11/11/1-1/1
460397CT1/11/11/11/11/1
460403CT1/11/11/11/11/1
460407AC1/11/11/11/11/1
463090CT--0/1-1/1
468704CT1/11/11/11/11/1
538448TA0/11/11/1-0/1
538453GA0/11/11/11/10/1
549422TC1/1--1/10/1
666040AG1/10/10/11/10/1
729694AG1/11/10/10/10/1
729950GA1/11/11/10/10/1
733499GC1/10/11/11/1-
740135TC1/11/11/10/10/1
743503TC1/1----
761539GA1/11/10/11/10/1
782432CT1/11/11/11/10/1
865966TA1/1-0/11/11/1
954985AC0/1-1/11/11/1
955036AC1/1-1/11/11/1
955067CA0/11/11/11/11/1
967807AC1/1-1/11/11/1
996017GC-----
1088274TC-1/10/11/10/1
1094160CT1/11/11/11/10/1
1233167TC1/11/11/1--
1255948TA1/1-0/11/10/1
1255959CT1/1-1/10/10/1
1255999AG1/11/11/11/10/1
1256029AT1/11/1--0/1
1363748GA1/1-0/10/10/1
1400989CG-1/1-1/1-
Tab.1  Sequencing data based on genotype
Relative locus [position]Silkie–Jinhu and Silkie–Gushi shared SNPsGenotypeGenotypes of the reference breeds
RefAltJinhuGushiSilkieCobb BroilerWhite LeghornBeijing fattyWahuiWhite Recessive
chrZ103096AG0/10/10/1-----
154216TC1/10/10/1-----
1023728AT0/10/10/1-----
Tab.2  Sequencing data without consideration of the genotype
Relative locus [position]Silkie–Jinhu and Silkie–Gushi shared Indels
Reference alleleAlternative allele
chrZ42365TTTTTGTTTTGTTTTTTTGTT
143621ATTATTCTT
234203GTCTTGTCTTCTT
327975GTCATTCGTCATTCATTC
537090ATATGTGTGTGT
745905GAATTCATCCAAATTCATCCAGAATTCATCCA
783875CCAAGTT
1181206GGTGGTGT
1341702TGAAGAAGAAGAAGAAGAAGAAGAAGAAGTGAAGAAGAAGAAGAAGAAGAAGAAG
1429331GGTGGTGT
Tab.3  InDel sequences
1 Rosengren Pielberg G, Golovko A, Sundstr?m E, Curik I, Lennartsson J, Seltenhammer M H, Druml T, Binns M, Fitzsimmons C, Lindgren G, Sandberg K, Baumung R, Vetterlein M, Str?mberg S, Grabherr M, Wade C, Lindblad-Toh K, Pontén F, Heldin C H, S?lkner J, Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics, 2008, 40(8): 1004–1009
https://doi.org/10.1038/ng.185 pmid: 18641652
2 Eizirik E, David V A, Buckley-Beason V, Roelke M E, Sch?ffer A A, Hannah S S, Narfstr?m K, O’Brien S J, Menotti-Raymond M. Defining and mapping mammalian coat pattern genes: multiple genomic regions implicated in domestic cat stripes and spots. Genetics, 2010, 184(1): 267–275
https://doi.org/10.1534/genetics.109.109629 pmid: 19858284
3 Alizadeh A, Hong L Z, Kaelin C B, Raudsepp T, Manuel H, Barsh G S. Genetics of Sex-linked yellow in the Syrian hamster. Genetics, 2009, 181(4): 1427–1436
https://doi.org/10.1534/genetics.108.095018 pmid: 19189957
4 Gunnarsson U, Hellstr?m A R, Tixier-Boichard M, Minvielle F, Bed’hom B, Ito S, Jensen P, Rattink A, Vereijken A, Andersson L. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics, 2007, 175(2): 867–877
https://doi.org/10.1534/genetics.106.063107 pmid: 17151254
5 Eriksson J, Larson G, Gunnarsson U, Bed’hom B, Tixier-Boichard M, Str?mstedt L, Wright D, Jungerius A, Vereijken A, Randi E, Jensen P, Andersson L. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLOS Genetics, 2008, 4(2): e1000010
https://doi.org/10.1371/journal.pgen.1000010 pmid: 18454198
6 Dorshorst B, Okimoto R, Ashwell C. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. Journal of Heredity, 2010, 101(3): 339–350
https://doi.org/10.1093/jhered/esp120 pmid: 20064842
7 Smyth J R Jr. Genetics of plumage. Skin and eye pigmentation in chickens. Crawford RD, ed. Amsterdam. 1990
8 Hutt F B. Genetics of the fowl. McGraw-Hill. 1949
9 Le D. M. N. The Neural Crest. Cambridge University. 1982
10 Erickson C A, Reedy M V. Neural crest development: the interplay between morphogenesis and cell differentiation. Current Topics in Developmental Biology, 1998, 40: 177–209
11 Erickson C A, Goins T L. Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development, 1995, 121(3): 915–924
pmid: 7720593
12 Reedy M V, Faraco C D, Erickson C A. Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens. Developmental Dynamics, 1998, 213(4): 476–485
https://doi.org/10.1002/(SICI)1097-0177(199812)213:4<476::AID-AJA12>3.0.CO;2-R pmid: 9853968
13 Hallet M M, Ferrand R. Quail melanoblast migration in two breeds of fowl and in their hybrids: evidence for a dominant genic control of the mesodermal pigment cell pattern through the tissue environment. Journal of Experimental Zoology, 1984, 230(2): 229–238
https://doi.org/10.1002/jez.1402300208 pmid: 6736895
14 Dunn L, Jull M. On the inheritance of some characters op the silky fowl. Journal of Genetics, 1927, 19: 27–63
15 Bateson W, Punnett R. The inheritance of the peculiar pigmentation of the silky fowl. Journal of Genetics, 1911, 1: 185–203
16 Bitgood J J. Linear relationship of the loci for barring, dermal melanin inhibitor, and recessive white skin on the chicken Z chromosome. Poulty Science, 1988, 67(4): 530–533
17 Dorshorst B J, Ashwell C M. Genetic mapping of the sex-linked barring gene in the chicken. Poulty Science, 2009, 88(9): 1811–1817
18 Groenen M A, Cheng H H, Bumstead N, Benkel B F, Briles W E, Burke T, Burt D W, Crittenden L B, Dodgson J, Hillel J, Lamont S, de Leon AP, Soller M, Takahashi H, Vignal A. A consensus linkage map of the chicken genome. Genome Research, 2000, 10(1): 137–147
19 Levin I, Crittenden L B, Dodgson J B. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. Genomics, 1993, 16(1): 224–230
https://doi.org/10.1006/geno.1993.1163 pmid: 8486362
20 Wright D, Kerje S, Lundstr?m K, Babol J, Schütz K, Jensen P, Andersson L. Quantitative trait loci analysis of egg and meat production traits in a red junglefowl×White Leghorn cross. Animal Genetics, 2006, 37(6): 529–534
https://doi.org/10.1111/j.1365-2052.2006.01515.x pmid: 17121597
21 Dorshorst B, Okimoto R, Ashwell C. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. Journal of Heredity, 2010, 101(3): 339–350
https://doi.org/10.1093/jhered/esp120 pmid: 20064842
22 Bellott D W, Skaletsky H, Pyntikova T, Mardis E R, Graves T, Kremitzki C, Brown L G, Rozen S, Warren W C, Wilson R K, Page D C. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature, 2010, 466(7306): 612–616
https://doi.org/10.1038/nature09172 pmid: 20622855
23 Been J V, Bok L A, Willemsen M A, Struys E A, Jakobs C. Mutations in the ALDH7A1 gene cause pyridoxine-dependent seizures. Arquivos de Neuro-Psiquiatria, 2008, 66(2-A): 288–289
https://doi.org/10.1590/S0004-282X2008000200035 pmid: 18545806
24 Strunnikova N V, Maminishkis A, Barb J J, Wang F, Zhi C, Sergeev Y, Chen W, Edwards A O, Stambolian D, Abecasis G, Swaroop A, Munson P J, Miller S S. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Human Molecular Genetics, 2010, 19(12): 2468–2486
https://doi.org/10.1093/hmg/ddq129 pmid: 20360305
25 Lee R, Chang S Y, Trinh H, Tu Y, White A C, Davies B S, Bergo M O, Fong L G, Lowry W E, Young S G. Genetic studies on the functional relevance of the protein prenyltransferases in skin keratinocytes. Human Molecular Genetics, 2010, 19(8): 1603–1617
https://doi.org/10.1093/hmg/ddq036 pmid: 20106865
26 Miyajima N, Maruyama S, Nonomura K, Hatakeyama S. TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression. Biochemical and Biophysical Research Communications, 2009, 381(3): 383–387
https://doi.org/10.1016/j.bbrc.2009.02.059 pmid: 19232519
27 Haecker A, Qi D, Lilja T, Moussian B, Andrioli L P, Luschnig S, Mannervik M. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos. PLoS Biology, 2007, 5(6): e145
https://doi.org/10.1371/journal.pbio.0050145 pmid: 17503969
28 Appeddu P A, Shur B D. Control of stable lamellipodia formation by expression of cell surface beta 1,4-galactosyltransferase cytoplasmic domains. Journal of Cell Science, 1994, 107(Pt 9): 2535–2545
pmid: 7844169
29 Reedy M V, Faraco C D, Erickson C A. Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens. Developmental Dynamics, 1998, 213(4): 476–485
https://doi.org/10.1002/(SICI)1097-0177(199812)213:4<476::AID-AJA12>3.0.CO;2-R pmid: 9853968
30 Thomas A J, Erickson C A. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell & Melanoma Research, 2008, 21(6): 598–610
https://doi.org/10.1111/j.1755-148X.2008.00506.x pmid: 19067969
31 Ventura-Holman T, Lu D, Si X, Izevbigie E B, Maher J F. The Fem1c genes: conserved members of the Fem1 gene family in vertebrates. Gene, 2003, 314: 133–139
https://doi.org/10.1016/S0378-1119(03)00712-1 pmid: 14527725
32 Krakow D, Sebald E, King L M, Cohn D H. Identification of human FEM1A, the ortholog of a C.elegans sex-differentiation gene. Gene, 2001, 279(2): 213–219
https://doi.org/10.1016/S0378-1119(01)00756-9 pmid: 11733146
33 Rose A E, Poliseno L, Wang J, Clark M, Pearlman A, Wang G, Vega Y Saenz de Miera E C, Medicherla R, Christos P J, Shapiro R, Pavlick A, Darvishian F, Zavadil J, Polsky D, Hernando E, Ostrer H, Osman I. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression. Cancer Research, 2011, 71(7): 2561–2571
https://doi.org/10.1158/0008-5472.CAN-10-2958 pmid: 21343389
34 Holdt L M, Sass K, G?bel G, Bergert H, Thiery J, Teupser D. Expression of Chr9p21 genes CDKN2B (p15INK4b), CDKN2A (p16INK4a, p14ARF) and MTAP in human atherosclerotic plaque. Atherosclerosis, 2011, 214(2): 264–270
https://doi.org/10.1016/j.atherosclerosis.2010.06.029 pmid: 20637465
[1] Supplementary Material 1 Download
[2] Supplementary Material 2 Download
[1] Ming TIAN,Suyun FANG,Yanqiang WANG,Xiaorong GU,Chungang FENG,Rui HAO,Xiaoxiang HU,Ning LI. Inverted duplication including Endothelin 3 closely related to dermal hyperpigmentation in Silkie chickens[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed