Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (3) : 214-222    https://doi.org/10.15302/J-FASE-2014024
RESEARCH ARTICLE
Transcriptome analysis of wheat grain using RNA-Seq
Liu WEI1,Zhihui WU1,Yufeng ZHANG1,Dandan GUO1,Yuzhou XU2,Weixia CHEN1,Haiying ZHOU1,Mingshan YOU2,Baoyun LI1,*()
1. Beijing Key Laboratory of Crop Genetic Improvement,College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
2. Key Laboratory of Crop Heterosis & Utilization, Ministry of Education,College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
 Download: PDF(732 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the increase in consumer demand, wheat grain quality improvement has become a focus in China and worldwide. Transcriptome analysis is a powerful approach to research grain traits and elucidate their genetic regulation. In this study, two cDNA libraries from the developing grain and leaf-stem components of bread wheat cultivar, Nongda211, were sequenced using Roche/454 technology. There were 1061274 and 1516564 clean reads generated from grain and leaf-stem, respectively. A total of 61393 high-quality unigenes were obtained with an average length of 1456 bp after de novo assembly. The analysis of the 61393 unigenes involved in the biological processes of the grain showed that there were 7355 differentially expressed genes upregulated in the grain library. Gene ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that many transcription products and transcription factors associated with carbohydrate and protein metabolism were abundantly expressed in the grain. These results contribute to excavate genes associated with wheat quality and further study how they interact.

Keywords transcriptome analysis      wheat grain      differentially expressed genes      enrichment analysis     
Corresponding Author(s): Baoyun LI   
Online First Date: 01 December 2014    Issue Date: 27 January 2015
 Cite this article:   
Liu WEI,Zhihui WU,Yufeng ZHANG, et al. Transcriptome analysis of wheat grain using RNA-Seq[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 214-222.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014024
https://academic.hep.com.cn/fase/EN/Y2014/V1/I3/214
ItemGrainLeaf-stemTotal
Number of raw reads10673371519674-
Number of clean reads10612741516564-
Number of unigenes--61393
Average length of unigenes/bp--1456
N50 of unigenes/bp--1814
N90 of unigenes/bp--750
Min length of unigenes/bp--102
Max length of unigenes/bp--12033
Total length of unigenes/bp--89401619
Tab.1  Statistical summary of cDNA sequences generated using the Roche/454
Number of unigenesPercentage/%
Annotated in Nr5560990.57
Annotated in Nt5578090.85
Annotated in KEGG1187619.34
Annotated in SwissProt4282069.74
Annotated in Pfam4268969.53
Annotated in GO4634575.48
Annotated in KOG2818645.91
Annotated in all databases788312.84
Annotated in at least one database5872495.65
Total unigenes61393-
Tab.2  Annotation statistics of unigenes
Fig.1  Venn diagram showing the genes expressed in seed and leaf-stem tissues. The number indicated the unigenes in different tissues.
Fig.2  Volcano diagram of DEGs. The x-axis indicates the fold change in unigene expression in grain and leaf-stem, and the y-axis indicates the statistical significance of the variance in unigene expression. A larger –log10 (Q-value) indicates that the difference is more significant. The dots in the diagram represent different unigenes. Each unigene is represented by a blue dot if the difference in expression is not significant and by a red dot if the difference is significant.
Fig.3  GO enrichment analysis of upregulated DEGs. The results are summarized in three main categories: biologic process (BP), cellular component (CC) and molecular function (MF). The x-axis indicates GO terms, (the description refer to Appendix D)while the y-axis indicates the number of genes in a category.
Fig.4  KEGG pathway enrichment scatter diagram of upregulated DEGs. Only the top 20 most strongly represented pathways were displayed in the diagram. The degree of KEGG pathway enrichment was represented by an enrichment factor, the Q-value, and the number of unigenes enriched in a KEGG pathway. The enrichment factor indicates the ratio of differential expression unigenes enriched in this pathway to the total number of annotated unigenes in this pathway. The names of the KEGG pathways are listed along the y-axis. The Q-value indicates the corrected P-value, ranging from 0 and 1, and a Q-value closer to 0 indicates more enrichment.
Fig.5  Expression analysis of some upregulated genes via qPCR. (a) Genes associated with wheat storage protein, gliadin and gluten; (b)transcription factors regulating storage protein, WPBF, GAMyb, SPA.
1 Gupta P K, Mir R R, Mohan A, Kumar J. Wheat genomics: present status and future prospects. International Journal of Plant Genomics, 2008, 2008: 1-36
https://doi.org/10.1155/2008/896451 pmid: 18528518
2 Evers T, Millar S. Cereal grain structure and development: some implications for quality. Journal of Cereal Science, 2002, 36(3): 261-284
https://doi.org/10.1006/jcrs.2002.0435
3 Laudencia-Chingcuanco D L, Stamova B S, Lazo G R, Cui X, Anderson O D. Analysis of the wheat endosperm transcriptome. Journal of Applied Genetics, 2006, 47(4): 287-302
https://doi.org/10.1007/BF03194638 pmid: 17132893
4 Hammond-Kosack M C U, Holdsworth M J, Bevan M W. In vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. The EMBO Journal, 1993, 12(2): 545-554
pmid: 8440244
5 Shewry P R, Halford N G. Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 2002, 53(370): 947-958
https://doi.org/10.1093/jexbot/53.370.947 pmid: 11912237
6 Ball S G, Morell M K. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology, 2003, 54(1): 207-233
https://doi.org/10.1146/annurev.arplant.54.031902.134927 pmid: 14502990
7 Hattori J, Ouellet T, Tinker N A. Wheat EST sequence assembly facilitates comparison of gene contents among plant species and discovery of novel genes. Genome, 2005, 48(2): 197-206
https://doi.org/10.1139/g04-106 pmid: 15838541
8 Leader D J. Transcriptional analysis and functional genomics in wheat. Journal of Cereal Science, 2005, 41(2): 149-163
https://doi.org/10.1016/j.jcs.2004.10.006
9 McIntosh S, Watson L, Bundock P, Crawford A, White J, Cordeiro G, Barbary D, Rooke L, Henry R. SAGE of the developing wheat caryopsis. Plant Biotechnology Journal, 2007, 5(1): 69-83
https://doi.org/10.1111/j.1467-7652.2006.00218.x pmid: 17207258
10 Wan Y, Poole R L, Huttly A K, Toscano-Underwood C, Feeney K, Welham S, Gooding M J, Mills C, Edwards K J, Shewry P R, Mitchell R A. Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics, 2008, 9(1): 121-136
https://doi.org/10.1186/1471-2164-9-121 pmid: 18325108
11 Yang X, Xu H, Li W, Li L, Sun J, Li Y, Yan Y, Hu Y. Screening and identification of seed-specific genes using digital differential display tools combined with microarray data from common wheat. BMC Genomics, 2011, 12(1): 513-524
https://doi.org/10.1186/1471-2164-12-513 pmid: 22003838
12 Xu H, Gao Y, Wang J. Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PLoS ONE, 2012, 7(2): e30646
https://doi.org/10.1371/journal.pone.0030646 pmid: 22347394
13 Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376-380
pmid: 16056220
14 Mardis E R. The impact of next-generation sequencing technology on genetics. Trends in Genetics, 2008, 24(3): 133-141
https://doi.org/10.1016/j.tig.2007.12.007 pmid: 18262675
15 Vera J C, Wheat C W, Fescemyer H W, Frilander M J, Crawford D L, Hanski I, Marden J H. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular Ecology, 2008, 17(7): 1636-1647
https://doi.org/10.1111/j.1365-294X.2008.03666.x pmid: 18266620
16 Altschul S F, Madden T L, Sch?ffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402
https://doi.org/10.1093/nar/25.17.3389 pmid: 9254694
17 Finn R D, Mistry J, Tate J, Coggill P, Heger A, Pollington J E, Gavin O L, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer E L, Eddy S R, Bateman A. The Pfam protein families database. Nucleic Acids Research, 2010, 38(Suppl 1): D211-D222
https://doi.org/10.1093/nar/gkp985 pmid: 19920124
18 G?tz S, García-Gómez J M, Terol J, Williams T D, Nagaraj S H, Nueda M J, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 2008, 36(10): 3420-3435
https://doi.org/10.1093/nar/gkn176 pmid: 18445632
19 Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36(Database issue): D480-D484
pmid: 18077471
20 Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1): 323-338
https://doi.org/10.1186/1471-2105-12-323 pmid: 21816040
21 Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628
https://doi.org/10.1038/nmeth.1226 pmid: 18516045
22 Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11(10): R106
https://doi.org/10.1186/gb-2010-11-10-r106 pmid: 20979621
23 Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26(1): 136-138
https://doi.org/10.1093/bioinformatics/btp612 pmid: 19855105
24 Young M D, Wakefield M J, Smyth G K, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 2010, 11(2): R14
https://doi.org/10.1186/gb-2010-11-2-r14 pmid: 20132535
25 Mao X, Cai T, Olyarchuk J G, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21(19): 3787-3793
https://doi.org/10.1093/bioinformatics/bti430 pmid: 15817693
26 Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CT Method. Methods, 2001, 25(4): 402-408
https://doi.org/10.1006/meth.2001.1262 pmid: 11846609
27 Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496(7443): 87-90
https://doi.org/10.1038/nature11997 pmid: 23535596
28 Luo M C, Gu Y Q, You F M, Deal K R, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen C M, Zhang Y, McGuire P E, Pasternak S, Stein J C, Ware D, Kramer M, McCombie W R, Kianian S F, Martis M M, Mayer K F, Sehgal S K, Li W, Gill B S, Bevan M W, Simková H, Dolezel J, Weining S, Lazo G R, Anderson O D, Dvorak J. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7940-7945
https://doi.org/10.1073/pnas.1219082110 pmid: 23610408
29 Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. The Plant Journal, 2009, 59(6): 908-920
https://doi.org/10.1111/j.1365-313X.2009.03925.x pmid: 19473328
30 Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G. Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiology, 2009, 151(4): 2133-2144
https://doi.org/10.1104/pp.109.146076 pmid: 19828671
31 Albani D, Hammond-Kosack M C, Smith C, Conlan S, Colot V, Holdsworth M, Bevan M W. The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell, 1997, 9(2): 171-184
https://doi.org/10.1105/tpc.9.2.171 pmid: 9061949
32 Conlan R S, Hammond-Kosack M, Bevan M. Transcription activation mediated by the bZIP factor SPA on the endosperm box is modulated by ESBF-1 in vitro. The Plant Journal, 1999, 19(2): 173-181
https://doi.org/10.1046/j.1365-313X.1999.00522.x pmid: 10476064
33 Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C. Colocation between a gene encoding the bZip factor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome, 2004, 47(4): 705-713
https://doi.org/10.1139/g04-031 pmid: 15284875
34 Dong G, Ni Z, Yao Y, Nie X, Sun Q. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Molecular Biology, 2007, 63(1): 73-84
https://doi.org/10.1007/s11103-006-9073-3 pmid: 17021941
35 Gibbs B F, Alli I. Characterization of a purified alpha-amylase inhibitor from white kidney bean (Phaseolus vulgaris). Food Research International, 1998, 31(3): 217-225
https://doi.org/10.1016/S0963-9969(98)00074-X
36 Feng G H, Richardson M, Chen M S, Kramer K J, Morgan T D, Reeck G R. α -amylase inhibitors from wheat: amino acid sequences and patterns of inhibition of insect and human α-amylases. Insect Biochemistry and Molecular Biology, 1996, 26(5): 419-426
https://doi.org/10.1016/0965-1748(95)00087-9 pmid: 8763161
37 Franco O L, Rigden D J, Melo F R, Bloch C Jr, Silva C P, Grossi de Sá M F. Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities. European Journal of Biochemistry, 2000, 267(8): 2166-2173
https://doi.org/10.1046/j.1432-1327.2000.01199.x pmid: 10759839
38 Lajolo F M, Finardi F F. Partial characterization of the amylase inhibitor of black beans (Phaseolus vulgaris), variety Rico 23. Journal of Agricultural and Food Chemistry, 1985, 33(1): 132-138
https://doi.org/10.1021/jf00061a038
[1] Supplementary Material 1 Download
[2] Supplementary Material 2 Download
[3] Supplementary Material 3 Download
[4] Supplementary Material 4 Download
[5] Supplementary Material 5 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed