|
|
Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels |
Jianchun JIANG( ), Junming XU, Zhanqian SONG |
Institute of Chemical Industry of Forestry Products, CAF; Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Forest Chemical Engineering, SFA, Nanjing 210042, China |
|
|
Abstract Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.
|
Keywords
lignocellulosic biomass
thermochemical
liquid fuels
upgrading
biofuels
|
Corresponding Author(s):
Jianchun JIANG
|
Just Accepted Date: 22 April 2015
Online First Date: 07 May 2015
Issue Date: 22 May 2015
|
|
1 |
IEA. Key world energy statistics . The International Energy Agency , 2013
|
2 |
P Gerland , A E Raftery , H Sevčíková , N Li , D Gu , T Spoorenberg , L Alkema , B K Fosdick , J Chunn , N Lalic , G Bay , T Buettner , G K Heilig , J Wilmoth . World population stabilization unlikely this century . Science , 2014 , 346 ( 6206 ): 234 – 237
https://doi.org/10.1126/science.1257469
pmid: 25301627
|
3 |
B van Ruijven , D P van Vuuren . Future bio-energy potential under various natural constraints . Energy Policy , 2009 , 37 ( 11 ): 47974808
https://doi.org/10.1016/j.enpol.2009.05.029
|
4 |
M Balat . Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review . Energy Conversion and Management , 2011 , 52 ( 2 ): 858 – 875
https://doi.org/10.1016/j.enconman.2010.08.013
|
5 |
S Sorrell , J Speirs , R Bentley , A Brandt , R Miller . Global oil depletion: a review of the evidence . Energy Policy , 2010 , 38 ( 9 ): 5290 – 5295
https://doi.org/10.1016/j.enpol.2010.04.046
|
6 |
P M Mortensen , J D Grunwaldt , P A Jensen , K G Knudsen , A D Jensen . A review of catalytic upgrading of bio-oil to engine fuels . Applied Catalysis A: General , 2011 , 407 ( 1−2 ): 1 – 19
https://doi.org/10.1016/j.apcata.2011.08.046
|
7 |
Renewable Energy Road Map . Available at Europa Website on April 14, 2015
|
8 |
Development of Renewable Energy. National Development and R eform Commission , 2007
|
9 |
Clean energy Progress Report . The International Energy Agency , 2011
|
10 |
D Mohan , C U Pittman Jr, P H Steele . Pyrolysis of wood/biomass for bio-oil: a critical review . Energy & Fuels , 2006 , 20 ( 3 ): 848 – 889
https://doi.org/10.1021/ef0502397
|
11 |
The EU biodiesel industry . European Biodiesel Board (EBB) . Available at EBB Website on April 14, 2015
|
12 |
World Ethanol & Biofuel (WEB). Available at WEB Website on April 14, 2015
|
13 |
Q Zhang , J Chang , T Wang , Y Xu . Review of biomass pyrolysis oil properties and upgrading research . Energy Conversion and Management , 2007 , 48 ( 1 ): 87 – 92
https://doi.org/10.1016/j.enconman.2006.05.010
|
14 |
J E Holladay , J J Bozell , J F White , D Johnson . Top value-added chemicals from biomass. Volume II—results of screening for potential candidates from biorefinery lignin . U.S. Department of Energy , 2007
|
15 |
X Junming , J Jianchun , L Wei , D Weidi , S Yunjuan . Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase . Biomass and Bioenergy , 2010 , 34 ( 7 ): 1059 – 1063
https://doi.org/10.1016/j.biombioe.2010.01.040
|
16 |
A Oasmaa , S Czernik . Fuel oil quality of biomass pyrolysis oils-state of the art for the end-users . Energy & Fuels , 1999 , 13 ( 4 ): 914 – 921
https://doi.org/10.1021/ef980272b
|
17 |
A V Bridgwater . Review of fast pyrolysis of biomass and product upgrading . Biomass and Bioenergy , 2012 , 38 : 68 – 94
https://doi.org/10.1016/j.biombioe.2011.01.048
|
18 |
D S Scott , J Piskorz , D Radlein . Liquid products from the continuous flash pyrolysis of biomass . Industrial & Engineering Chemistry Process Design and Development , 1985 , 24 ( 3 ): 581 – 588
https://doi.org/10.1021/i200030a011
|
19 |
D S Scott , J Piskorz . The flash pyrolysis of aspen poplar wood . Canadian Journal of Chemical Engineering , 1982 , 60 ( 5 ): 666 – 674
https://doi.org/10.1002/cjce.5450600514
|
20 |
A Cuevas , C Reinoso , D S Scott . Pyrolysis oil production and its perspectives . In: Proceeding of power production from biomass II . Espoo : VTT , 1995
|
21 |
A Robson . PyNe newsletter No. 11 . UK : Aston University , 2001 , 1 – 2
|
22 |
W Prins , B M Wagenaar . Review of rotating cone technology for flash pyrolysis of biomass . M K Kaltschmitt , A V Bridgwater , eds. Biomass gasification and pyrolysis . UK : CPL Scientific Ltd. , 1997 , 316 – 326
|
23 |
B M Wagenaar , R H Venderbosch , J Carrasco , R B J Strenziok , A van der . Rotating cone bio-oil production and applications . A V Bridgwater , eds. Progress in thermochemical biomass conversion , 2001 , 1268 – 1280
|
24 |
G V C Peacocke , A V Bridgwater . Ablative plate pyrolysis of biomass for liquids . Biomass and Bioenergy , 1995 , 7 ( 1−6 ): 147 – 154
https://doi.org/10.1016/0961-9534(94)00054-W
|
25 |
A V Bridgwater , G V C Peacocke , N M Robinson . Ablative thermolysis reactor . US Patent 7625532 , 2003
|
26 |
C Elliott D . Historical developments in hydroprocessing bio-oils . Energy & Fuels , 2007 , 21 ( 3 ): 1792 – 1815
https://doi.org/10.1021/ef070044u
|
27 |
P M Mortensen , J D Grunwaldt , P A Jensen , A D Jensen . Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil . ACS Catalysis , 2013 , 3 ( 8 ): 1774 – 1785
https://doi.org/10.1021/cs400266e
|
28 |
C Zhao , J He , A A Lemonidou , X Li , J A Lercher . Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes . Journal of Catalysis , 2011 , 280 ( 1 ): 8 – 16
https://doi.org/10.1016/j.jcat.2011.02.001
|
29 |
C R Lee , J S Yoon , Y W Suh , J W Choi , J M Ha , D J Suh , Y K Park . Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol . Catalysis Communications , 2012 , 17 : 54 – 58
https://doi.org/10.1016/j.catcom.2011.10.011
|
30 |
M V Bykova , D Y Ermakov , V V Kaichev , O A Bulavchenko , A A Saraev , M Y Lebedev , V A Yakovlev . Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: guaiacol hydrodeoxygenation study . Applied Catalysis B: Environmental , 2012 , 113−114 : 296 – 307
https://doi.org/10.1016/j.apcatb.2011.11.051
|
31 |
G W Huber , J N Chheda , C J Barrett , J A Dumesic . Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates . Science , 2005 , 308 ( 5727 ): 1446 – 1450
https://doi.org/10.1126/science.1111166
pmid: 15933197
|
32 |
S Sitthisa , T Sooknoi , Y Ma , P B Balbuena , D E Resasco . Kinetics and mechanism of hydrogenation of furfural on Cu/SiO 2 catalysts . Journal of Catalysis , 2011 , 277 ( 1 ): 1 – 13
https://doi.org/10.1016/j.jcat.2010.10.005
|
33 |
S Sitthisa , D Resasco . Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni . Catalysis Letters , 2011 , 141 ( 6 ): 784 – 791
https://doi.org/10.1007/s10562-011-0581-7
|
34 |
S Sitthisa , T Pham , T Prasomsri , T Sooknoi , R G Mallinson , D E Resasco . Conversion of furfural and 2-methylpentanal on Pd/SiO 2 and Pd–Cu/SiO 2 catalysts . Journal of Catalysis , 2011 , 280 ( 1 ): 17 – 27
https://doi.org/10.1016/j.jcat.2011.02.006
|
35 |
L Chen , Y Zhu , H Zheng , C Zhang , B Zhang , Y Li . Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts . Journal of Molecular Catalysis A: Chemical , 2011 , 351 : 217 – 227
https://doi.org/10.1016/j.molcata.2011.10.015
|
36 |
C Dupont , R Lemeur , A Daudin , P Raybaud . Hydrodeoxygenation pathways catalyzed by MoS 2 and NiMoS active phases: a DFT study . Journal of Catalysis , 2011 , 279 ( 2 ): 276 – 286
https://doi.org/10.1016/j.jcat.2011.01.025
|
37 |
G W Huber , S Iborra , A Corma . Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering . Chemical Reviews , 2006 , 106 ( 9 ): 4044 – 4098
https://doi.org/10.1021/cr068360d
pmid: 16967928
|
38 |
G W Huber , A Corma . Synergies between bio- and oil refineries for the production of fuels from biomass . Angewandte Chemie International Edition , 2007 , 46 ( 38 ): 7184 – 7201
https://doi.org/10.1002/anie.200604504
|
39 |
T P Vispute , H Zhang , A Sanna , R Xiao , G W Huber . Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils . Science , 2010 , 330 ( 6008 ): 1222 – 1227
https://doi.org/10.1126/science.1194218
pmid: 21109668
|
40 |
A G Gayubo , A T Aguayo , A Atutxa , R Aguado , J Biolbao . Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. alcohols and phenols . Industrial & Engineering Chemistry Research , 2004 , 43 ( 11 ): 2610 – 2618
https://doi.org/10.1021/ie030791o
|
41 |
T R Carlson , T P Vispute , G W Huber . Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds . ChemSusChem , 2008 , 1 ( 5 ): 397 – 400
https://doi.org/10.1002/cssc.200800018
pmid: 18702131
|
42 |
S Vitolo , M Seggiani , P Frediani , G Ambrosini , L Politi . Catalytic upgrading of pyrolytic oils to fuel over different zeolites . Fuel , 1999 , 78 ( 10 ): 1147 – 1159
https://doi.org/10.1016/S0016-2361(99)00045-9
|
43 |
H J Park , Y K Park , J S Kim , J K Jeon , K S Yoo , J H Yim , J Jung , J M Sohn , 0. Young-Kwon Park, Joo-Sik Kim. Bio-oil upgrading over Ga modified zeolites in a bubbling fluidized bed reactor . Studies in Surface Science and Catalysis , 2006 , 159 : 553 – 556
https://doi.org/10.1016/S0167-2991(06)81656-3
|
44 |
S Vitolo , B Bresci , M Seggiani , M G Gallo . Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles . Fuel , 2001 , 80 ( 1 ): 17 – 26
https://doi.org/10.1016/S0016-2361(00)00063-6
|
45 |
J Adam , M Blazsó , E Me’sza’ros . Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts . Fuel , 2005 , 84 : 1494 – 1502
https://doi.org/10.1016/j.fuel.2005.02.006
|
46 |
J Adam , E Antonakou , A Lappas , M Stöcker , M H Nilsen , A Bouzga , J E Hustad , G Øye . In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials . Microporous and Mesoporous Materials , 2006 , 96 ( 1–3 ): 93 – 101
https://doi.org/10.1016/j.micromeso.2006.06.021
|
47 |
S Hu , X Luo , Y Li . Polyols and polyurethanes from the liquefaction of lignocellulosic biomass . ChemSusChem , 2014 , 7 ( 1 ): 66 – 72
https://doi.org/10.1002/cssc.201300760
pmid: 24357542
|
48 |
A Effendi , H Gerhauser , A V Bridgwater . Production of renewable phenolic resins by thermochemical conversion of biomass: a review . Renewable & Sustainable Energy Reviews , 2008 , 12 ( 8 ): 2092 – 2116
https://doi.org/10.1016/j.rser.2007.04.008
|
49 |
D C Elliott , P Biller , A B Ross , A J Schmidt , S B Jones . Hydrothermal liquefaction of biomass: developments from batch to continuous process . Bioresource Technology , 2014 , 178 : 147 – 156
https://doi.org/10.1016/j.biortech.2014.09.132
|
50 |
J Akhtar , N A S Amin . A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass . Renewable & Sustainable Energy Reviews , 2011 , 15 ( 3 ): 1615 – 1624
https://doi.org/10.1016/j.rser.2010.11.054
|
51 |
S S Toora , L Rosendahla , A Rudolfb . Hydrothermal liquefaction of biomass: a review of subcritical water technologies . Energy , 2011 , 36 ( 5 ): 2328 – 2342
https://doi.org/10.1016/j.energy.2011.03.013
|
52 |
T V Choudhary , C B Phillips . Renewable fuels via catalytic hydrodeoxygenation . Applied Catalysis A: General , 2011 , 397 ( 1−2 ): 1 – 12
https://doi.org/10.1016/j.apcata.2011.02.025
|
53 |
D C Elliott . Historical developments in hydroprocessing bio-oils . Energy & Fuels , 2007 , 21 ( 3 ): 1792 – 1815
https://doi.org/10.1021/ef070044u
|
54 |
D C Elliott , E G Baker . Upgrading biomass liquefaction products through hydrodeoxygenation . Pacific Northwest Laboratory , 1984
|
55 |
S B Gevert , P B W Andersson , S P Sandqvist , S G Jaeraas , M T Tokarz . Hydroprocessing of directly liquefied biomass with large-pore catalysts . Energy & Fuels , 1990 , 4 ( 1 ): 78 – 81
https://doi.org/10.1021/ef00019a014
|
56 |
E G Baker , D C Elliott . Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline . US Patent 5180868 , 1993
|
57 |
D R Vardon , B K Sharma , G V Blazina , K Rajagopalan , T J Strathmann . Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis . Bioresource Technology , 2012 , 109 : 178 – 187
https://doi.org/10.1016/j.biortech.2012.01.008
pmid: 22285293
|
58 |
U Jena , N Vaidyanathan , S Chinnasamy , K C Das . Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass . Bioresource Technology , 2011 , 102 ( 3 ): 3380 – 3387
https://doi.org/10.1016/j.biortech.2010.09.111
pmid: 20970327
|
59 |
P Biller , A B Ross . Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content . Bioresource Technology , 2011 , 102 ( 1 ): 215 – 225
https://doi.org/10.1016/j.biortech.2010.06.028
pmid: 20599375
|
60 |
B Meryemoğlu , A Hasanoğlu , S Irmak , O Erbatur . Biofuel production by liquefaction of kenaf ( Hibiscus cannabinus L.) biomass . Bioresource Technology , 2014 , 151 : 278 – 283
https://doi.org/10.1016/j.biortech.2013.10.085
pmid: 24262837
|
61 |
H Ramsurn , R B Gupta . Production of biocrude from biomass by acidic subcritical water followed by alkaline supercritical water two-step liquefaction . Energy & Fuels , 2012 , 26 ( 4 ): 2365 – 2375
https://doi.org/10.1021/ef2020414
|
62 |
S Brand , R F Susanti , S K Kim , L Hong-shik , J Kim , B I Sang . Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: influence of physical process parameters . Energy , 2013 , 59 ( 15 ): 173 – 182
https://doi.org/10.1016/j.energy.2013.06.049
|
63 |
S S Toor , L Rosendahl , M P Nielsen , M Glasius , A Rudolf , S B Iversen . Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production . Biomass and Bioenergy , 2012 , 36 : 327 – 332
https://doi.org/10.1016/j.biombioe.2011.10.044
|
64 |
S Cheng , I D’cruz , M Wang , M Leitch , C C Xu . Highly efficient liquefaction of woody biomass in hot-compressed alcohol−water co-solvents . Energy & Fuels , 2010 , 24 ( 9 ): 4659 – 4667
https://doi.org/10.1021/ef901218w
|
65 |
X U Junming , J I A N G Jianchun , D A I Weidi , X U Yu . Liquefaction of sawdust in hot compressed ethanol for the production of bio-oils . Process Safety and Environmental Protection , 2012 , 90 ( 4 ): 333 – 338
https://doi.org/10.1016/j.psep.2012.01.001
|
66 |
J Xu , J Jiang , C Hse , T F Shupe . Effect of methanol on the liquefaction reaction of biomass in hot compressed water . Energy & Fuels , 2013 , 27 ( 8 ): 4791 – 4795
https://doi.org/10.1021/ef401069e
|
67 |
S Hu , Y Li . Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams . Bioresource Technology , 2014 , 161 : 410 – 415
https://doi.org/10.1016/j.biortech.2014.03.072
pmid: 24727702
|
68 |
S Hu , Y Li . Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities . Industrial Crops and Products , 2014 , 57 : 188 – 194
https://doi.org/10.1016/j.indcrop.2014.03.032
|
69 |
R Briones , L Serrano , R Llano-Ponte , J Labidi . Polyols obtained from solvolysis liquefaction of biodiesel production solid residues . Chemical Engineering Journal , 2011 , 175 ( 15 ): 169 – 175
https://doi.org/10.1016/j.cej.2011.09.090
|
70 |
M Tymchyshyn , C C Xu . Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds . Bioresource Technology , 2010 , 101 ( 7 ): 2483 – 2490
https://doi.org/10.1016/j.biortech.2009.11.091
pmid: 20031393
|
71 |
G Mishra , S Saka . Kinetic behavior of liquefaction of Japanese beech in subcritical phenol . Bioresource Technology , 2011 , 102 ( 23 ): 10946 – 10950
https://doi.org/10.1016/j.biortech.2011.08.126
pmid: 21978623
|
72 |
J Xu , J Jiang , H Chungyun , F S Todd . Renewable chemical feedstocks from integrated liquefaction processing of lingocellulosic materials using microwave energy . Green Chemistry , 2012 , 14 ( 10 ): 2821 – 2830
https://doi.org/10.1039/c2gc35805k
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|