Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (1) : 13-27    https://doi.org/10.15302/J-FASE-2015050
REVIEW
Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels
Jianchun JIANG(), Junming XU, Zhanqian SONG
Institute of Chemical Industry of Forestry Products, CAF; Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Forest Chemical Engineering, SFA, Nanjing 210042, China
 Download: PDF(1544 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

Keywords lignocellulosic biomass      thermochemical      liquid fuels      upgrading      biofuels     
Corresponding Author(s): Jianchun JIANG   
Just Accepted Date: 22 April 2015   Online First Date: 07 May 2015    Issue Date: 22 May 2015
 Cite this article:   
Jianchun JIANG,Junming XU,Zhanqian SONG. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 13-27.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015050
https://academic.hep.com.cn/fase/EN/Y2015/V2/I1/13
Fig.1  The reaction pathway for thermochemical processing of lignocellulosic biomass
Composition Percentage/%
Poplar Sawdust Bamboo Heavy fuel oil[ 13]
Moisture 8.29 9.04 10.02 0.1
Ash 1.34 1.04 1.48 0.1
Benzene-ethanol extractives 5.20 2.41 3.26
Lignin 16.45 21.36. 27.02
Cellulose 42.82 50.62 43.21
Hemicellulose 25.61 24.83 24.88
C 46.61 47.72 46.82 85
Element analysis H 6.63 6.98 4.23 11
O 46.76 45.30 41.01 1.0
Tab.1  Comparison of lignocellulosic biomass and petroleum heavy fuel oil a
Physical property Bio-oil Heavy fuel oil
Moisture content/% 15−30 0.1
pH 2.5
Specific gravity 1.2 0.94
Elemental composition/%
C 54−58 85
H 5.5−7.0 11
O 35−40 1
N 0−0.2 0.3
Ash 0−0.2 0.1
Higher heating value/(MJ·kg –1 ) 16−19 40
Viscosity (at 50°C)/cP 40−100 180
Solids/% 0.2−1.0 1
Distillation residue/% up to 50 1
Tab.2  Typical properties of wood pyrolysis bio-oil and of heavy fuel oil[ 16]
Fig.2  Aston University Mark 2 ablative fast pyrolysis reactor[ 17]
Fig.3  Main features of bubbling fluid bed and circulating fluid bed
Fig.4  Rotating cone pyrolysis reactor
Fig.5  Proposed mechanism of phenolics hydrodeoxygenation into cyclohydrocarbons (phenol as model compound)
Fig.6  Hydrodeoxygenation (HDO) process for the reaction pathway producing pyrolytic products from cellulose
Property Fast pyrolysis HDO bio-oil
Carbon/% 43.5 85.3−89.2
Hydrogen/% 7.3 10.5−14.1
Oxygen/% 49.2 0.0−0.7
H/C-ratio (dry) 1.23 1.40−1.97
Density/(g·mL –1 ) 24.8 0.796−0.926
Moisture/% 24.8 0.001−0.008
Higher heating value (MJ·kg –1 ) 22.6 42.3−45.3
Viscosity/cP 59 (40°C) 1.0−4-6 (23°C)
Aromatic/Aliphatic carbon 38/62−22/78
Research octane number 77
Distillation range/%
Initial boiling point–225°C 44 97−36
225−350°C coked 0−41
Tab.3  Properties of pyrolysis oil and hydrodeoxygenation (HDO) bio-oil[ 37]
Fig.7  A typical catalytic cracking system
Fig.8  Reaction pathway of bio-oil during the catalytic cracking reaction
Raw materials Solvent Catalyst Conditions Yield/% Purpose Reference
Algal biomass Water 300°C, 10−12?MPa, and 30?min retention time 24−45 Liquid fuel [ 57]
Microalgae Water 350°C for 60?min 40 Liquid fuel [ 58]
Microalgae Water Na 2 CO 3 /Formic acid 350°C, ~200 bar 5−25 Liquid fuel [ 59]
Kenaf biomass 1 st step: water
2 nd step: tetralin
Activated carbon supported Ru catalyst 1 st step: 250°C, 2?h
2 nd step: 350°C
5?MPa H 2
2 nd step: 70−75 Liquid fuel [ 60]
Water 1 st step: Acid
2 ndstep: Ca(OH) 2
1 st: 200°C
2 nd: 380°C
40 Liquid fuel [ 61]
Pine ( Pinus sp.) wood Ethanol No catalyst (0−240?min), (280−400°C), N 2 pressure (0.4−7.5?MPa), 15.8−59.9 Liquid fuel [ 62]
Bio-ethanol
residue (grains)
Ethanol (K 2 CO 3 ) /Zirconia-based catalyst 280−370°C, 25?MPa 34 Liquid fuel [ 63]
Co-solvent: alcohol and water 300°C for 15?min ~65 Liquid fuel [ 64]
Sawdust Glycol/Ethanol H 2 SO 4 250°C, 1?h 97.8 Liquid fuel [ 65]
Pine (Pinus sp.) tree sawdust Co-solvent: methanol and water H 2 SO 4 5?min to 180°C, keep at 180°C for 15min 48.5−76.3 [ 66]
Corn stover glycerol 1 st step: H 2 SO 4
2 nd step: NaOH
1 st step: 150°C for 30−165?min
2 nd step: 240°C for 45−180?min
Polyols [ 67]
Corn stover Glycerol NaOH 240°C for 3?h Polyols [ 68]
Rapeseed cake Polyethylene glycol H 2 SO 4 140−180°C, 1h 70−88 Polyols [ 69]
Sawdust, cornstalk Hot-compressed water 250−350°C, 2?MPa H 2 32 Phenolics [ 70]
Japanese beech Phenol 350°C, 4.2?MPa, 30?min 99.1 Phenolics [ 71]
Tab.4  Recent studies on liquefaction of biomass in solvents for biofuel production
Fig.9  Production of biopolyols and phenolic compounds from liquefied products of biomass
Fig.10  Integrated liquefaction system developed by the Chinese Academy of Forestry. (a) Stereogram; (b) schematic diagram: (1) material container; (2) high pressure reactor; (3) filter system; (4) condenser; (5) alcohol tanks; (6) film evaporator; (7) product collector.
1 IEA. Key world energy statistics . The International Energy Agency , 2013
2 P Gerland , A E Raftery , H Sevčíková , N Li , D Gu , T Spoorenberg , L Alkema , B K Fosdick , J Chunn , N Lalic , G Bay , T Buettner , G K Heilig , J Wilmoth . World population stabilization unlikely this century . Science , 2014 , 346 ( 6206 ): 234 – 237
https://doi.org/10.1126/science.1257469 pmid: 25301627
3 B van Ruijven , D P van Vuuren . Future bio-energy potential under various natural constraints . Energy Policy , 2009 , 37 ( 11 ): 47974808
https://doi.org/10.1016/j.enpol.2009.05.029
4 M Balat . Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review . Energy Conversion and Management , 2011 , 52 ( 2 ): 858 – 875
https://doi.org/10.1016/j.enconman.2010.08.013
5 S Sorrell , J Speirs , R Bentley , A Brandt , R Miller . Global oil depletion: a review of the evidence . Energy Policy , 2010 , 38 ( 9 ): 5290 – 5295
https://doi.org/10.1016/j.enpol.2010.04.046
6 P M Mortensen , J D Grunwaldt , P A Jensen , K G Knudsen , A D Jensen . A review of catalytic upgrading of bio-oil to engine fuels . Applied Catalysis A: General , 2011 , 407 ( 1−2 ): 1 – 19
https://doi.org/10.1016/j.apcata.2011.08.046
7 Renewable Energy Road Map . Available at Europa Website on April 14, 2015
8 Development of Renewable Energy. National Development and R eform Commission , 2007
9 Clean energy Progress Report . The International Energy Agency , 2011
10 D Mohan , C U Pittman Jr, P H Steele . Pyrolysis of wood/biomass for bio-oil: a critical review . Energy & Fuels , 2006 , 20 ( 3 ): 848 – 889
https://doi.org/10.1021/ef0502397
11 The EU biodiesel industry . European Biodiesel Board (EBB) . Available at EBB Website on April 14, 2015
12 World Ethanol & Biofuel (WEB). Available at WEB Website on April 14, 2015
13 Q Zhang , J Chang , T Wang , Y Xu . Review of biomass pyrolysis oil properties and upgrading research . Energy Conversion and Management , 2007 , 48 ( 1 ): 87 – 92
https://doi.org/10.1016/j.enconman.2006.05.010
14 J E Holladay , J J Bozell , J F White , D Johnson . Top value-added chemicals from biomass. Volume II—results of screening for potential candidates from biorefinery lignin . U.S. Department of Energy , 2007
15 X Junming , J Jianchun , L Wei , D Weidi , S Yunjuan . Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase . Biomass and Bioenergy , 2010 , 34 ( 7 ): 1059 – 1063
https://doi.org/10.1016/j.biombioe.2010.01.040
16 A Oasmaa , S Czernik . Fuel oil quality of biomass pyrolysis oils-state of the art for the end-users . Energy & Fuels , 1999 , 13 ( 4 ): 914 – 921
https://doi.org/10.1021/ef980272b
17 A V Bridgwater . Review of fast pyrolysis of biomass and product upgrading . Biomass and Bioenergy , 2012 , 38 : 68 – 94
https://doi.org/10.1016/j.biombioe.2011.01.048
18 D S Scott , J Piskorz , D Radlein . Liquid products from the continuous flash pyrolysis of biomass . Industrial & Engineering Chemistry Process Design and Development , 1985 , 24 ( 3 ): 581 – 588
https://doi.org/10.1021/i200030a011
19 D S Scott , J Piskorz . The flash pyrolysis of aspen poplar wood . Canadian Journal of Chemical Engineering , 1982 , 60 ( 5 ): 666 – 674
https://doi.org/10.1002/cjce.5450600514
20 A Cuevas , C Reinoso , D S Scott . Pyrolysis oil production and its perspectives . In: Proceeding of power production from biomass II . Espoo : VTT , 1995
21 A Robson . PyNe newsletter No. 11 . UK : Aston University , 2001 , 1 – 2
22 W Prins , B M Wagenaar . Review of rotating cone technology for flash pyrolysis of biomass . M K Kaltschmitt , A V Bridgwater , eds. Biomass gasification and pyrolysis . UK : CPL Scientific Ltd. , 1997 , 316 – 326
23 B M Wagenaar , R H Venderbosch , J Carrasco , R B J Strenziok , A van der . Rotating cone bio-oil production and applications . A V Bridgwater , eds. Progress in thermochemical biomass conversion , 2001 , 1268 – 1280
24 G V C Peacocke , A V Bridgwater . Ablative plate pyrolysis of biomass for liquids . Biomass and Bioenergy , 1995 , 7 ( 1−6 ): 147 – 154
https://doi.org/10.1016/0961-9534(94)00054-W
25 A V Bridgwater , G V C Peacocke , N M Robinson . Ablative thermolysis reactor . US Patent 7625532 , 2003
26 C Elliott D . Historical developments in hydroprocessing bio-oils . Energy & Fuels , 2007 , 21 ( 3 ): 1792 – 1815
https://doi.org/10.1021/ef070044u
27 P M Mortensen , J D Grunwaldt , P A Jensen , A D Jensen . Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil . ACS Catalysis , 2013 , 3 ( 8 ): 1774 – 1785
https://doi.org/10.1021/cs400266e
28 C Zhao , J He , A A Lemonidou , X Li , J A Lercher . Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes . Journal of Catalysis , 2011 , 280 ( 1 ): 8 – 16
https://doi.org/10.1016/j.jcat.2011.02.001
29 C R Lee , J S Yoon , Y W Suh , J W Choi , J M Ha , D J Suh , Y K Park . Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol . Catalysis Communications , 2012 , 17 : 54 – 58
https://doi.org/10.1016/j.catcom.2011.10.011
30 M V Bykova , D Y Ermakov , V V Kaichev , O A Bulavchenko , A A Saraev , M Y Lebedev , V A Yakovlev . Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: guaiacol hydrodeoxygenation study . Applied Catalysis B: Environmental , 2012 , 113−114 : 296 – 307
https://doi.org/10.1016/j.apcatb.2011.11.051
31 G W Huber , J N Chheda , C J Barrett , J A Dumesic . Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates . Science , 2005 , 308 ( 5727 ): 1446 – 1450
https://doi.org/10.1126/science.1111166 pmid: 15933197
32 S Sitthisa , T Sooknoi , Y Ma , P B Balbuena , D E Resasco . Kinetics and mechanism of hydrogenation of furfural on Cu/SiO 2 catalysts . Journal of Catalysis , 2011 , 277 ( 1 ): 1 – 13
https://doi.org/10.1016/j.jcat.2010.10.005
33 S Sitthisa , D Resasco . Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni . Catalysis Letters , 2011 , 141 ( 6 ): 784 – 791
https://doi.org/10.1007/s10562-011-0581-7
34 S Sitthisa , T Pham , T Prasomsri , T Sooknoi , R G Mallinson , D E Resasco . Conversion of furfural and 2-methylpentanal on Pd/SiO 2 and Pd–Cu/SiO 2 catalysts . Journal of Catalysis , 2011 , 280 ( 1 ): 17 – 27
https://doi.org/10.1016/j.jcat.2011.02.006
35 L Chen , Y Zhu , H Zheng , C Zhang , B Zhang , Y Li . Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts . Journal of Molecular Catalysis A: Chemical , 2011 , 351 : 217 – 227
https://doi.org/10.1016/j.molcata.2011.10.015
36 C Dupont , R Lemeur , A Daudin , P Raybaud . Hydrodeoxygenation pathways catalyzed by MoS 2 and NiMoS active phases: a DFT study . Journal of Catalysis , 2011 , 279 ( 2 ): 276 – 286
https://doi.org/10.1016/j.jcat.2011.01.025
37 G W Huber , S Iborra , A Corma . Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering . Chemical Reviews , 2006 , 106 ( 9 ): 4044 – 4098
https://doi.org/10.1021/cr068360d pmid: 16967928
38 G W Huber , A Corma . Synergies between bio- and oil refineries for the production of fuels from biomass . Angewandte Chemie International Edition , 2007 , 46 ( 38 ): 7184 – 7201
https://doi.org/10.1002/anie.200604504
39 T P Vispute , H Zhang , A Sanna , R Xiao , G W Huber . Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils . Science , 2010 , 330 ( 6008 ): 1222 – 1227
https://doi.org/10.1126/science.1194218 pmid: 21109668
40 A G Gayubo , A T Aguayo , A Atutxa , R Aguado , J Biolbao . Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. alcohols and phenols . Industrial & Engineering Chemistry Research , 2004 , 43 ( 11 ): 2610 – 2618
https://doi.org/10.1021/ie030791o
41 T R Carlson , T P Vispute , G W Huber . Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds . ChemSusChem , 2008 , 1 ( 5 ): 397 – 400
https://doi.org/10.1002/cssc.200800018 pmid: 18702131
42 S Vitolo , M Seggiani , P Frediani , G Ambrosini , L Politi . Catalytic upgrading of pyrolytic oils to fuel over different zeolites . Fuel , 1999 , 78 ( 10 ): 1147 – 1159
https://doi.org/10.1016/S0016-2361(99)00045-9
43 H J Park , Y K Park , J S Kim , J K Jeon , K S Yoo , J H Yim , J Jung , J M Sohn , 0. Young-Kwon Park, Joo-Sik Kim. Bio-oil upgrading over Ga modified zeolites in a bubbling fluidized bed reactor . Studies in Surface Science and Catalysis , 2006 , 159 : 553 – 556
https://doi.org/10.1016/S0167-2991(06)81656-3
44 S Vitolo , B Bresci , M Seggiani , M G Gallo . Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles . Fuel , 2001 , 80 ( 1 ): 17 – 26
https://doi.org/10.1016/S0016-2361(00)00063-6
45 J Adam , M Blazsó , E Me’sza’ros . Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts . Fuel , 2005 , 84 : 1494 – 1502
https://doi.org/10.1016/j.fuel.2005.02.006
46 J Adam , E Antonakou , A Lappas , M Stöcker , M H Nilsen , A Bouzga , J E Hustad , G Øye . In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials . Microporous and Mesoporous Materials , 2006 , 96 ( 1–3 ): 93 – 101
https://doi.org/10.1016/j.micromeso.2006.06.021
47 S Hu , X Luo , Y Li . Polyols and polyurethanes from the liquefaction of lignocellulosic biomass . ChemSusChem , 2014 , 7 ( 1 ): 66 – 72
https://doi.org/10.1002/cssc.201300760 pmid: 24357542
48 A Effendi , H Gerhauser , A V Bridgwater . Production of renewable phenolic resins by thermochemical conversion of biomass: a review . Renewable & Sustainable Energy Reviews , 2008 , 12 ( 8 ): 2092 – 2116
https://doi.org/10.1016/j.rser.2007.04.008
49 D C Elliott , P Biller , A B Ross , A J Schmidt , S B Jones . Hydrothermal liquefaction of biomass: developments from batch to continuous process . Bioresource Technology , 2014 , 178 : 147 – 156
https://doi.org/10.1016/j.biortech.2014.09.132
50 J Akhtar , N A S Amin . A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass . Renewable & Sustainable Energy Reviews , 2011 , 15 ( 3 ): 1615 – 1624
https://doi.org/10.1016/j.rser.2010.11.054
51 S S Toora , L Rosendahla , A Rudolfb . Hydrothermal liquefaction of biomass: a review of subcritical water technologies . Energy , 2011 , 36 ( 5 ): 2328 – 2342
https://doi.org/10.1016/j.energy.2011.03.013
52 T V Choudhary , C B Phillips . Renewable fuels via catalytic hydrodeoxygenation . Applied Catalysis A: General , 2011 , 397 ( 1−2 ): 1 – 12
https://doi.org/10.1016/j.apcata.2011.02.025
53 D C Elliott . Historical developments in hydroprocessing bio-oils . Energy & Fuels , 2007 , 21 ( 3 ): 1792 – 1815
https://doi.org/10.1021/ef070044u
54 D C Elliott , E G Baker . Upgrading biomass liquefaction products through hydrodeoxygenation . Pacific Northwest Laboratory , 1984
55 S B Gevert , P B W Andersson , S P Sandqvist , S G Jaeraas , M T Tokarz . Hydroprocessing of directly liquefied biomass with large-pore catalysts . Energy & Fuels , 1990 , 4 ( 1 ): 78 – 81
https://doi.org/10.1021/ef00019a014
56 E G Baker , D C Elliott . Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline . US Patent 5180868 , 1993
57 D R Vardon , B K Sharma , G V Blazina , K Rajagopalan , T J Strathmann . Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis . Bioresource Technology , 2012 , 109 : 178 – 187
https://doi.org/10.1016/j.biortech.2012.01.008 pmid: 22285293
58 U Jena , N Vaidyanathan , S Chinnasamy , K C Das . Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass . Bioresource Technology , 2011 , 102 ( 3 ): 3380 – 3387
https://doi.org/10.1016/j.biortech.2010.09.111 pmid: 20970327
59 P Biller , A B Ross . Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content . Bioresource Technology , 2011 , 102 ( 1 ): 215 – 225
https://doi.org/10.1016/j.biortech.2010.06.028 pmid: 20599375
60 B Meryemoğlu , A Hasanoğlu , S Irmak , O Erbatur . Biofuel production by liquefaction of kenaf ( Hibiscus cannabinus L.) biomass . Bioresource Technology , 2014 , 151 : 278 – 283
https://doi.org/10.1016/j.biortech.2013.10.085 pmid: 24262837
61 H Ramsurn , R B Gupta . Production of biocrude from biomass by acidic subcritical water followed by alkaline supercritical water two-step liquefaction . Energy & Fuels , 2012 , 26 ( 4 ): 2365 – 2375
https://doi.org/10.1021/ef2020414
62 S Brand , R F Susanti , S K Kim , L Hong-shik , J Kim , B I Sang . Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: influence of physical process parameters . Energy , 2013 , 59 ( 15 ): 173 – 182
https://doi.org/10.1016/j.energy.2013.06.049
63 S S Toor , L Rosendahl , M P Nielsen , M Glasius , A Rudolf , S B Iversen . Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production . Biomass and Bioenergy , 2012 , 36 : 327 – 332
https://doi.org/10.1016/j.biombioe.2011.10.044
64 S Cheng , I D’cruz , M Wang , M Leitch , C C Xu . Highly efficient liquefaction of woody biomass in hot-compressed alcohol−water co-solvents . Energy & Fuels , 2010 , 24 ( 9 ): 4659 – 4667
https://doi.org/10.1021/ef901218w
65 X U Junming , J I A N G Jianchun , D A I Weidi , X U Yu . Liquefaction of sawdust in hot compressed ethanol for the production of bio-oils . Process Safety and Environmental Protection , 2012 , 90 ( 4 ): 333 – 338
https://doi.org/10.1016/j.psep.2012.01.001
66 J Xu , J Jiang , C Hse , T F Shupe . Effect of methanol on the liquefaction reaction of biomass in hot compressed water . Energy & Fuels , 2013 , 27 ( 8 ): 4791 – 4795
https://doi.org/10.1021/ef401069e
67 S Hu , Y Li . Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams . Bioresource Technology , 2014 , 161 : 410 – 415
https://doi.org/10.1016/j.biortech.2014.03.072 pmid: 24727702
68 S Hu , Y Li . Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities . Industrial Crops and Products , 2014 , 57 : 188 – 194
https://doi.org/10.1016/j.indcrop.2014.03.032
69 R Briones , L Serrano , R Llano-Ponte , J Labidi . Polyols obtained from solvolysis liquefaction of biodiesel production solid residues . Chemical Engineering Journal , 2011 , 175 ( 15 ): 169 – 175
https://doi.org/10.1016/j.cej.2011.09.090
70 M Tymchyshyn , C C Xu . Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds . Bioresource Technology , 2010 , 101 ( 7 ): 2483 – 2490
https://doi.org/10.1016/j.biortech.2009.11.091 pmid: 20031393
71 G Mishra , S Saka . Kinetic behavior of liquefaction of Japanese beech in subcritical phenol . Bioresource Technology , 2011 , 102 ( 23 ): 10946 – 10950
https://doi.org/10.1016/j.biortech.2011.08.126 pmid: 21978623
72 J Xu , J Jiang , H Chungyun , F S Todd . Renewable chemical feedstocks from integrated liquefaction processing of lingocellulosic materials using microwave energy . Green Chemistry , 2012 , 14 ( 10 ): 2821 – 2830
https://doi.org/10.1039/c2gc35805k
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed