Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (3) : 223-229    https://doi.org/10.15302/J-FASE-2015065
RESEARCH ARTICLE
Characterization of NDM-1-producing carbapenemase in Acinetobacter spp. and E. coli isolates from diseased pigs
Rongmin ZHANG,Yang WANG,Zhihai LIU,Jiyun LI,Wenjuan YIN,Lei LEI,Congming WU,Jianzhong SHEN()
Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
 Download: PDF(792 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, the mobile metallo-β-lactamase (MBL) genes have been found to correspond to one of the most important resistance characters identified in Gram-negative bacteria, severely affecting clinical chemotherapy and threatening public health. The prevalence of mobile MBL genes and their flanking regions in Gram-negative bacteria from diseased pigs in China was investigated. A total of 334 lung samples from diseased pigs were screened for Gram-negative bacteria classified as non-susceptible to meropenem (MIC≥4 mg·L−1). Six isolates, including three Escherichia coli, two Acinetobacter baumanii and one A. calcoaeticus, exhibited MBL production and carried the blaNDM-1 gene. S1-PFGE and Southern blot analysis showed that the blaNDM-1 gene was located on the chromosome of one A. baumanii isolate and on plasmids of various sizes in the other five isolates. MIC testing using broth microdilution revealed that all blaNDM-1-carrying isolates and some of their transconjugants exhibited resistance to almost all β-lactams tested. Whole genome sequencing revealed that the flanking region of the blaNDM-1 gene from all porcine isolates had high levels of similarity with the corresponding regions in human isolates. One porcine E. coli isolate carrying blaNDM-1 was typed as ST48, a common sequence type in human E. coli isolates. These results suggest the possibility of human-to-food animal transfer of blaNDM-1-producing E. coli, highlighting the need for surveillance of carbapenemase producers among bacteria from food animals. In addition, the prudent use of antimicrobial agents to decrease the opportunities for co-selection of carbapenemase genes in food animals is also urgently needed.

Keywords carbapenemase      NDM-1      ISAba125      Enterobacteriaceae      food safety     
Corresponding Author(s): Jianzhong SHEN   
Just Accepted Date: 28 July 2015   Online First Date: 17 August 2015    Issue Date: 10 November 2015
 Cite this article:   
Rongmin ZHANG,Yang WANG,Zhihai LIU, et al. Characterization of NDM-1-producing carbapenemase in Acinetobacter spp. and E. coli isolates from diseased pigs[J]. Front. Agr. Sci. Eng. , 2015, 2(3): 223-229.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015065
https://academic.hep.com.cn/fase/EN/Y2015/V2/I3/223
Isolate Species PFGE type MLST type MIC/(mg·L−1) Location of blaNDM-1
IMP MERO CTZ CAZ AZT CIP GEN COL FFC TET
FSAB08 A. baumanii 1 512 512 >1024 256 >512 2 64 128 8 32 C
FSAB62 A. baumanii 2 256 256 1024 >1024 64 128 0.125 4 256 512 P/pAB62(~47 kb)
FSABC15 A. calcoaceticus 256 512 1024 >1024 128 256 128 4 512 >512 P/pABC15 (~47 kb)
FSEC38 E. coli a 5084 64 32 1024 >1024 512 2 128 8 512 256 P/pEC38 (~50 kb)
FSEC39 E. coli b 5069 128 128 512 >1024 4 8 >512 2 32 4 P/pEC39 (~70 kb)
EC600-39 E. coli 32 32 128 1024 0.25 0.125 512 0.5 4 4 P/pEC39 (~70 kb)
FSEC69 E. coli c 48 128 256 >1024 >1024 16 128 256 4 512 256 P/pEC69 (~200 kb)
EC600-69 E. coli 64 64 256 >1024 0.125 0.25 64 0.5 512 64 P/pEC69 (~200 kb)
EC600 E. coli 0.25 0.03 2 0.5 0.125 0.015 1 0.25 4 2
Tab.1  Antimicrobial susceptibility profiles of Acinetobacter. baumannii FSAB08 and FSAB62, A. calcoaceticus FSABC15, E. coli FSEC38, FSEC39, FSEC69, transconjugants EC600-39 and EC600-69, and recipient strains EC600
Fig.1  Localization of blaNDM-1 in NDM-1-producing isolates by S1-PFGE (a) and Southern blot hybridization with blaNDM-1 probe (b). Lane M, low-range pulsed-field gel marker (New England BioLabs, Beverly, MA). Lane 17–3, E. coli isolates FSEC38, FSEC39 and FSEC69; Lane 4, Acinetobacter. calcoaceticus isolate FSABC15; Lane 5–6, A. baumanii isolates FSAB62 and FSAB08.
Fig.2  Genetic environment of blaNDM-1 in E. coli and Acinetobacter spp. isolates of pig origin, and its structural comparison with the corresponding genetic regions in plasmids pAL-1, pNDM-SX04, and pGUE-NDM. The arrows indicate the positions and directions of transcription of the genes. Different genes are indicated by different types of shading. Regions of≥99.8% homology are marked by gray shading
1 Cornaglia  G, Giamarellou  H, Rossolini  G M. Metallo-β-lactamases: a last frontier for β-lactams? The Lancet Infectious Diseases, 2011, 11(5): 381–393
https://doi.org/10.1016/S1473-3099(11)70056-1 pmid: 21530894
2 Yong  D, Toleman  M A, Giske  C G, Cho  H S, Sundman  K, Lee  K, Walsh  T R. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy, 2009, 53(12): 5046–5054
https://doi.org/10.1128/AAC.00774-09 pmid: 19770275
3 Satlin  M J, Calfee  D P, Chen  L, Fauntleroy  K A, Wilson  S J, Jenkins  S G, Feldman  E J, Roboz  G J, Shore  T B, Helfgott  D C, Soave  R, Kreiswirth  B N, Walsh  T J. Emergence of carbapenem-resistant Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leukemia & Lymphoma, 2013, 54(4): 799–806
https://doi.org/10.3109/10428194.2012.723210 pmid: 22916826
4 Dortet  L, Poirel  L, Nordmann  P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed Research International, 2014: 249856
5 Walsh  T R, Weeks  J, Livermore  D M, Toleman  M A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. The Lancet Infectious Diseases, 2011, 11(5): 355–362
https://doi.org/10.1016/S1473-3099(11)70059-7 pmid: 21478057
6 Isozumi  R, Yoshimatsu  K, Yamashiro  T, Hasebe  F, Nguyen  B M, Ngo  T C, Yasuda  S P, Koma  T, Shimizu  K, Arikawa  J. blaNDM-1-positive Klebsiella pneumoniae from environment, Vietnam. Emerging Infectious Diseases, 2012, 18(8): 1383–1385
https://doi.org/10.3201/eid1808.111816 pmid: 22840532
7 Zhang  C, Qiu  S, Wang  Y, Qi  L, Hao  R, Liu  X, Shi  Y, Hu  X, An  D, Li  Z, Li  P, Wang  L, Cui  J, Wang  P, Huang  L, Klena  J D, Song  H. Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PLoS ONE, 2014, 8(6): e64857
https://doi.org/10.1371/journal.pone.0064857 pmid: 23755152
8 Wang   B,  Sun  D.  Detection of  NDM-1  carbapenemase-producing Acinetobacter calcoaceticus  and  Acinetobacter junii  in environmental samples from livestock farms. Journal of Antimicrobial Chemotherapy, 2015, 70(2): 611–613
https://doi.org/10.1093/jac/dku405 pmid: 25349061
9 Zhang   W  J,  Lu   Z,  Schwarz  S,  Zhang  R  M,  Wang  X  M,  Si   W, Yu  S, Chen  L, Liu  S. Complete sequence of the blaNDM-1-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. Journal of Antimicrobial Chemotherapy, 2013, 68(7): 1681–1682
https://doi.org/10.1093/jac/dkt066 pmid: 23449827
10 Wang  Y, Wu  C, Zhang  Q, Qi  J, Liu  H, Wang  Y, He  T, Ma  L, Lai  J, Shen  Z, Liu  Y, Shen  J. Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS ONE, 2012, 7(5): e37152
https://doi.org/10.1371/journal.pone.0037152 pmid: 22629360
11 Shaheen  B W, Nayak  R, Boothe  D M. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrobial Agents and Chemotherapy, 2013, 57(6): 2902–2903
https://doi.org/10.1128/AAC.02028-12 pmid: 23587948
12 Wang  Y, He  T, Schwarz  S, Zhao  Q, Shen  Z, Wu  C, Shen  J. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. International Journal of Medical Microbiology, 2013, 303(2): 84–87
https://doi.org/10.1016/j.ijmm.2012.12.004 pmid: 23337100
13 CLSI document M100-S25. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. Panama: Clinical and Laboratory Standards Institute, 2015
14 Wang  Y, Wang  X, Schwarz  S, Zhang  R, Lei  L, Liu  X, Lin  D, Shen  J. IMP-45-producing multidrug-resistant Pseudomonas aeruginosa of canine origin. Journal of Antimicrobial Chemotherapy, 2014, 69(9): 2579–2581
https://doi.org/10.1093/jac/dku133 pmid: 24777897
15 Benson  D A, Cavanaugh  M, Clark  K, Karsch-Mizrachi  I, Lipman  D J, Ostell  J, Sayers  E W. GenBank. Nucleic Acids Research, 2013, 41(D1): D36–D42
https://doi.org/10.1093/nar/gks1195 pmid: 23193287
16 Liu  Y, Wang  Y, Schwarz  S, Li  Y, Shen  Z, Zhang  Q, Wu  C, Shen  J. Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrobial Agents and Chemotherapy, 2013, 57(1): 42–48
17 Smet  A, Martel  A, Persoons  D, Dewulf  J, Heyndrickx  M, Claeys  G, Lontie  M, Van Meensel  B, Herman  L, Haesebrouck  F, Butaye  P. Characterization of extended-spectrum β-lactamases produced by Escherichia coli isolated from hospitalized and nonhospitalized patients: emergence of CTX-M-15-producing strains causing urinary tract infections. Microbial Drug Resistance, 2010, 16(2): 129–134
https://doi.org/10.1089/mdr.2009.0132 pmid: 20370505
18 Ben Sallem  R, Ben Slama  K, Estepa  V, Jouini  A, Gharsa  H, Klibi  N, Sáenz  Y, Ruiz-Larrea  F, Boudabous  A, Torres  C. Prevalence and characterisation of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in healthy volunteers in Tunisia. European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31(7): 1511–1516
https://doi.org/10.1007/s10096-011-1471-z pmid: 22065280
19 Philippon  A, Arlet  G, Jacoby  G A. Plasmid-determined AmpC-type β-lactamases. Antimicrobial Agents and Chemotherapy, 2002, 46(1): 1–11
https://doi.org/10.1128/AAC.46.1.1-11.2002 pmid: 11751104
20 Hu  H, Hu  Y, Pan  Y, Liang  H, Wang  H, Wang  X, Hao  Q, Yang  X, Yang  X, Xiao  X, Luan  C, Yang  Y, Cui  Y, Yang  R, Gao  G F, Song  Y, Zhu  B. Novel plasmid and its variant harboring both a blaNDM-1 gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrobial Agents and Chemotherapy, 2012, 56(4): 1698–1702
https://doi.org/10.1128/AAC.06199-11 pmid: 22290961
21 Wang  X, Xu  X, Li  Z, Chen  H, Wang  Q, Yang  P, Zhao  C, Ni  M, Wang  H. An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microbial Drug Resistance, 2014, 20(2): 144–149
https://doi.org/10.1089/mdr.2013.0100 pmid: 24199986
22 Bonnin  R A, Poirel  L, Carattoli  A, Nordmann  P. Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131. PLoS ONE, 2012, 7(4): e34752
https://doi.org/10.1371/journal.pone.0034752 pmid: 22511964
[1] Fang-Jie ZHAO. Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 333-338.
[2] Jan Pieter VAN DER BERG, Gijs A. KLETER, Evy BATTAGLIA, Martien A. M. GROENEN, Esther J. KOK. Developments in genetic modification of cattle and implications for regulation, safety and traceability[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 136-147.
[3] Jing TENG, Xiaoqian HU, Ningping TAO, Mingfu WANG. Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 321-329.
[4] Joseph J. JEN. Global challenges of food safety for China[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 291-293.
[5] Kaye BASFORD,Richard BENNETT,Joanne DALY,Mary Ann AUGUSTIN,Snow BARLOW,Tony GREGSON,Alice LEE,Deli CHEN,Matt WENHAM. Delivering food safety[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed