Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (3) : 205-215    https://doi.org/10.15302/J-FASE-2015073
REVIEW
Risk analysis methods of the water resources system under uncertainty
Zeying GUI,Chenglong ZHANG,Mo Li,Ping GUO()
Centre for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
 Download: PDF(748 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main characteristic of the water resources system (WRS) is its great complexity and uncertainty, which makes it highly desirable to carry out a risk analysis of the WRS. The natural environmental, social economic conditions as well as limitations of human cognitive ability are possible sources of the uncertainties that need to be taken into account in the risk analysis process. In this paper the inherent stochastic uncertainty and cognitive subjective uncertainty of the WRS are discussed first, from both objective and subjective perspectives. Then the quantitative characterization methods of risk analysis are introduced, including three criteria (reliability, resiliency and vulnerability) and five basic optimization models (the expected risk value model, conditional value at risk model, chance-constrained risk model, minimizing probability of risk events model, and the multi-objective optimization model). Finally, this paper focuses on the various methods of risk analysis under uncertainty, which are summarized as random, fuzzy and mixed methods. A more comprehensive risk analysis methodology for the WRS is proposed based on the comparison of the advantages, disadvantages and applicable conditions of these three methods. This paper provides a decision support of risk analysis for researchers, policy makers and stakeholders of the WRS.

Keywords water resources system      evaluation criterion      optimization model      risk analysis method      uncertainty     
Corresponding Author(s): Ping GUO   
Just Accepted Date: 22 October 2015   Online First Date: 03 November 2015    Issue Date: 10 November 2015
 Cite this article:   
Zeying GUI,Chenglong ZHANG,Mo Li, et al. Risk analysis methods of the water resources system under uncertainty[J]. Front. Agr. Sci. Eng. , 2015, 2(3): 205-215.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015073
https://academic.hep.com.cn/fase/EN/Y2015/V2/I3/205
Fig.1  The framework of water resources system (WRS) risk analysis
Fig.2  Conceptual model for identifying the risk factors in the risk of water shortages
Evaluation criteria (RRV)Sub-criteriaFormulaeInterrelationshipFeaturesApplicable conditions
ReliabilityReliabilityα=P(XtS)α + r = 1Reliability and risk rate is relativeIf α = 1(r = 0), then the system is in a normal state and high stability; otherwise, the system is in an unsatisfactory stateUncertaintyFocusing to describe the probabilities of a failure, but the magnitude and the consequences caused by risk cannot be given
Risk rater=P(XtF)
ResiliencyResiliencyβ=P(XtS|Xt1F)=P(Xt1F,XtS)P(Xt1F)The longer recurrence cycle last, the resiliency is smaller, i.e. after a long recurrence cycle, it is more difficult to back to normalIf β = 1(or β = 0), then the system is in a normal state.If 0<β<1, then the system sometimes an unsatisfactory state, but it is possible to return to normalSensitivityNow that the system is in an unsatisfactory state, how long does the state return to normal
Recurrence cycleT=1N1n=1N1d(μ,n)
VulnerabilityVulnerabilityχ=E(S)=t=1NFPiSiGenerally it can be described by expected value, standard deviation and coefficient of variation0≤χ≤1, if χ = 1, than the system has be in a vulnerable state; if χ = 0, it is always in the normal stateSeverityHow much the severity and consequences resulted from a failure
Risk levelσ=D(X)=i=1n(XtE(X))2·P(Xt)Cv=σ/E(X)=σ/μ
Tab.1  The risk evaluation criteria of the WRS
Optimization modelsObjective functionsConstraintsReferences
The expected risk value modelminE[f(x;ξ)]E[gj(x;ξ)]0[3842]
The conditional value at risk modelminφα(x;ξ)gj(x;ξ)0[4345]
The chance-constrained risk modelminf(x;ξ){Pr{f(x;ξ)f}αPr{gj(x;ξ)f}β[4649]
The minimizing probability of risk event modelminPr{hk(x;ξ)}gj(x;ξ)0
The multi-objective optimization modelmin[f1(x;ξ),f2(x;ξ),,fm(x;ξ)]gj(x;ξ)0[5052]
Tab.2  The risk optimization models of the WRS
MethodsFeaturesApplicable conditionsAn overview of the application
AdvantagesDisadvantages
Stochastic 1. Sensitivity to hypothesis, depending on sample size and the number of sample1. The number of samples is relatively sufficient.1. The description of the “probability” of risk is more realistic.1. The gap between the assumption and the practice.
2. High precision, sufficient results.2. Probability distribution obtained by an empirical or theoretical estimation.2. Mature development.2. Heavy workload and complex computation.
FuzzyDescribing the probability distribution is unknown and the sample size is pretty small.1. Data are relatively insufficient.1. Subjective evaluation can be involved.1. The membership function construction is inconsistent standard yet.
2. Focus on the magnitude of the risk of relativity.2. Widely used in the risk evaluation indices.2. The principles of selecting the indices are inconsistent.
MixedCombination of the above two methods.Describing fuzziness and risk random probability distribution.Accurately reflect the actual characteristics of risk assessment in the WRS1. The workload of processing data will increase worrisomely
2. The mathematical model used for processing variables and its coupling relationship will be more complicated.
Tab.3  Comparison among the three methods of risk analysis in the WRS
1 Li  Y P, Huang  G H. Risk analysis and management for water resources systems. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 593–597
https://doi.org/10.1007/s00477-012-0625-6
2 Wang  X Q. A study on regional difference of fresh water resources shortage in China. Journal of Natural Resources. 2001, 16(6): 516, 520
3 Loucks  D P, Van  B E, Stedinger  J R, Dijkman  J P M, Villars  M T. Water resources systems planning and management: an introduction to methods, models and applications. Paris: UNESCO, 2005
4 Hashimoto  T, Stedinger  J R, Loucks  D P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 1982, 18(1): 14–20
https://doi.org/10.1029/WR018i001p00014
5 Haimes  Y Y. Total Risk Management. Risk Analysis, 1991, 11(2): 169–171
https://doi.org/10.1111/j.1539-6924.1991.tb00589.x
6 Kaplan  S, Garrick  B J. On the quantitative definition of risk. Risk Analysis, 1981, 1(01): 11–27
https://doi.org/10.1111/j.1539-6924.1981.tb01350.x pmid: 11798118
7 Paté-Cornell  M E. Uncertainties in risk analysis: six levels of treatment. Reliability Engineering & System Safety, 1996, 54(2): 95–111
https://doi.org/10.1016/S0951-8320(96)00067-1
8 U. S. Water Resources Council. Principles and standards for water and related land resources planning. Federal Register, 1980, (September): 28 (S)
9 Tartakovsky  D M. Assessment and management of risk in subsurface hydrology: a review and perspective. Advances in Water Resources, 2013, 51: 247–260
https://doi.org/10.1016/j.advwatres.2012.04.007
10 Ruan  B Q, Han  Y P, Wang  H, Jiang  R F. Fuzzy comprehensive assessment of water shortage risk. Journal of Hydraulic Engineering, 2005, (08): 906–912 (in Chinese)
11 Simonivic  S P. Risk in sustainable water resources management, in Sustainability of Water Resources Under Increasing Uncertainty. Proceedings of the Rabat Symposium. 1997, 240: 3–17
12 Ruan  B Q, Liang  R J, Chen  S J. A method for risk analysis and evaluation of water supply and demand. Journal of Hydraulic Engineering, 2000, (09): 1–7 (in Chinese)
13 Ang  A H S, Tang  W H. Probability concepts in engineering planning and design. Beijing: Metallurgical Industry Press, 1991, 430–460 (in Chinese)
14 Tang  W H, Yucemen  M S, Ang  A H S. Probability-based short-term design of soil slopes. Canadian Geotechnical Journal, 1976, 13(3): 201–215
https://doi.org/10.1139/t76-024
15 Helton  J C. Treatment of uncertainty in performance assessments for complex systems. Risk Analysis, 1994, 14(4): 483–511
https://doi.org/10.1111/j.1539-6924.1994.tb00266.x
16 Dechant  C M, Moradkhani  H. On the assessment of reliability in probabilistic hydro meteorological event forecasting. Water Resources Research, 2015, 51(6): 3867–3883
https://doi.org/10.1002/2014WR016617
17 Babel  M S, Das  G A, Nayak  D K. A model for optimal allocation of water to competing demands. Water Resources Management, 2005, 19(6): 693–712
https://doi.org/10.1007/s11269-005-3282-4
18 Wang  H R, Qian  L X, Xu  X Y, Wang  Y. Model for evaluating water shortage risk based on fuzzy probability and its application. Journal of Hydraulic Engineering, 2009, (07): 813–821 (in Chinese)
19 Brekke  L D, Maurer  E P, Anderson  J D, Dettinger  M D, Townsley  E S, Harrison  A, Pruitt  T. Assessing reservoir operations risk under climate change. Water Resources Research, 2009, 45(4): n/a
https://doi.org/10.1029/2008WR006941
20 Loaiciga  H A, Mariño  M A. Risk analysis for reservoir operation. Water Resources Research, 1986, 22(4): 483–488
https://doi.org/10.1029/WR022i004p00483
21 Mcbean  E A. Risk characterization for arsenic-impacted water sources, including ground-trothing. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 705–711
https://doi.org/10.1007/s00477-012-0633-6
22 Ghosh  S, Mujumdar  P P. Risk minimization in water quality control problems of a river system. Advances in Water Resources, 2006, 29(3): 458–470
https://doi.org/10.1016/j.advwatres.2005.06.001
23 Mujumdar  P P, Sasikumar  K. A fuzzy risk approach for seasonal water quality management of a river system. Water Resources Research. 2002, 38(1): 1–5, 5–9
24 Sasikumar  K, Mujumdar  P P. Application of fuzzy probability in water quality management of a river system. International Journal of Systems Science, 2000, 31(5): 575–591
https://doi.org/10.1080/002077200290894
25 Ahmad  S S, Simonovic  S P. Spatial and temporal analysis of urban flood risk assessment. Urban Water Journal, 2013, 10(1): 26–49
https://doi.org/10.1080/1573062X.2012.690437
26 Yu  J J, Qin  X S, Larsen  O. Joint Monte Carlo and possibilistic simulation for flood damage assessment. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 725–735
https://doi.org/10.1007/s00477-012-0635-4
27 Thumerer  T, Jones  A P, Brown  D. A GIS based coastal management system for climate change associated flood risk assessment on the east coast of England. International Journal of Geographical Information Science, 2000, 14(3): 265–281
https://doi.org/10.1080/136588100240840
28 Anselmo  V, Galeati  G, Palmieri  S, Rossi  U, Todini  E. Flood risk assessment using an integrated hydrological and hydraulic modelling approach: A case study. Journal of Hydrology, 1996, 175(1−4): 533–554
https://doi.org/10.1016/S0022-1694(96)80023-0
29 Dyck  J, Willems  P. Probabilistic flood risk assessment over large geographical regions. Water Resources Research, 2013, 49(6): 3330–3344
https://doi.org/10.1002/wrcr.20149
30 James  A L, Oldenburg  C M. Linear and Monte Carlo uncertainty analysis for subsurface contaminant transport simulation. Water Resources Research, 1997, 33(11): 2495–2508
https://doi.org/10.1029/97WR01925
31 Whitehead  P, Young  P. Water quality in river systems: Monte-Carlo analysis. Water Resources Research, 1979, 15(2): 451–459
https://doi.org/10.1029/WR015i002p00451
32 El-Baroudy  I, Simonovic  S P. Fuzzy criteria for the evaluation of water resource systems performance. Water Resources Research, 2004, 40(10): W10503
https://doi.org/10.1029/2003WR002828
33 Wang  Z U, Jin  J L, Li  R Z, Wang  M W, Zhou  Y L. Risk based regional water security assessment method using stochastic simulation and triangular fuzzy numbers. Journal of Sichuan University, 2010, 42(6): 1–5
34 Han  Y P. Study on risk management of water resources shortage. Xi'an University of Technology. 2003 (in Chinese)
35 Kenji  J, Xu  Z X, Akika  D, Kaname  T. Risk assessment of a water supply system during drought. Water Resources Development., 1995, 11(2): 185–204
https://doi.org/10.1080/07900629550042399
36 Moy  W S, Cohon  J L, Revelle  C S. A programming model for analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resources Research, 1986, 22(4): 489–498
https://doi.org/10.1029/WR022i004p00489
37 Kjeldsen  T R, Rosbjerg  D. Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems. Hydrological Sciences Journal, 2004, 49(5): 755–767
https://doi.org/10.1623/hysj.49.5.755.55136
38 Guo  P, Huang  G H, He  L, Sun  B W. ITSSIP: Interval-parameter two-stage stochastic semi-infinite programming for environmental management under uncertainty. Environmental Modelling & Software, 2008, 23(12): 1422–1437
https://doi.org/10.1016/j.envsoft.2008.04.009
39 Guo  P, Huang  G H, Zhu  H, Wang  X L. A two-stage programming approach for water resources management under randomness and fuzziness.Environmental Modelling &amp. Software, 2010, 25(12): 1573–1581
40 Fan  Y R, Huang  G H, Guo  P, Yang  A L. Inexact two-stage stochastic partial programming: application to water resources management under uncertainty. Stochastic Environmental Research and Risk Assessment, 2012, 26(2): 281–293
https://doi.org/10.1007/s00477-011-0504-6
41 Li  M, Guo  P, Fang  S Q, Zhang  L D. An inexact fuzzy parameter two-stage stochastic programming model for irrigation water allocation under uncertainty. Stochastic Environmental Research and Risk Assessment, 2013, 27(6): 1441–1452
https://doi.org/10.1007/s00477-012-0681-y
42 Mark  G, Joseph  Y S L, Meng  F W. A stochastic model for risk management in global supply chain networks. European Journal of Operational Research, 2007, 182(1): 164–173
https://doi.org/10.1016/j.ejor.2006.08.028
43 Andersson  F, Mausser  H, Rosen  D, Uryasev  S. Credit risk optimization with Conditional Value-at-Risk criterion. Mathematical Programming, 2001, 89(2): 273–291
https://doi.org/10.1007/PL00011399
44 Rockafellar  R T, Royset  J O, Miranda  S I. Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk. European Journal of Operational Research, 2014, 234(1): 140–154
https://doi.org/10.1016/j.ejor.2013.10.046
45 Wang  Y Q. Robust v-support vector machine based on worst-case conditional value-at-risk minimization. Optimization Methods & Software, 2012, 27(6): 1025–1038
https://doi.org/10.1080/10556788.2011.614608
46 Guo  P, Chen  X H, Li  M, Li  J B. Fuzzy chance-constrained linear fractional programming approach for optimal water allocation. Stochastic Environmental Research and Risk Assessment, 2014, 28(6): 1601–1612
https://doi.org/10.1007/s00477-013-0810-2
47 Guo  P, Huang  G H, Li  Y P. An inexact fuzzy-chance-constrained two-stage mixed-integer linear programming approach for flood diversion planning under multiple uncertainties. Advances in Water Resources, 2010, 33(1): 81–91
https://doi.org/10.1016/j.advwatres.2009.10.009
48 Huang  G H. A hybrid inexact-stochastic water management model. European Journal of Operational Research, 1998, 107(1): 137–158
https://doi.org/10.1016/S0377-2217(97)00144-6
49 Morgan  D R, Eheart  J W, Valocchi  A J. Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resources Research, 1993, 29(3): 551–561
https://doi.org/10.1029/92WR02130
50 Li  M, Guo  P. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Applied Mathematical Modelling, 2014, 38(19−20): 4897–4911
https://doi.org/10.1016/j.apm.2014.03.043
51 Zeng  X T, Kang  S Z, Li  F S, Zhang  L, Guo  P. Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management, 2010, 98(1): 134–142
https://doi.org/10.1016/j.agwat.2010.08.010
52 Guo  P, Huang  G H. Two-stage fuzzy chance-constrained programming: application to water resources management under dual uncertainties. Stochastic Environmental Research and Risk Assessment, 2009, 23(3): 349–359
https://doi.org/10.1007/s00477-008-0221-y
53 Fu  X, Wang  L P, Ji  C M. Application of statistics of extremes of flood hazard risk evaluation. Journal of Hydraulic Engineering, 2001, (07): 8–12 (in Chinese)
54 Lambert  J H, Li  D. Evaluating risk of extreme events for univariate-loss functions. Journal of Water Resources Planning and Management, 1994, 120(3): 382–399
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:3(382)
55 Huang  M C, Xie  J C, Ruan  B Q, Wang  Y M. Model for assessing water shortage risk based on support vector machine. Journal of Hydraulic Engineering, 2007, (03): 255–259 (in Chinese)
56 Luo  J G, Xie  J C, Ruan  B Q. Fuzzy comprehensive assessment model for water shortage risk based on entropy weight. Journal of Hydraulic Engineering, 2008, (09): 1092–1097 (in Chinese)
57 Gu  W Q, Shao  D G, Huang  X F, Dai  T. Multi-objective risk assessment on water resources optimal deployment. Journal of Hydraulic Engineering, 2008, (03): 339–345 (in Chinese)
58 Gu  W Q, Shao  D G, Jiang  Y F. Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China. Water Resources Management, 2012, 26(12): 3479–3493
https://doi.org/10.1007/s11269-012-0086-1
59 Ashofteh  P S, Haddad  O B, Marino  M A. Risk analysis of water demand for agricultural crops under climate change. Journal of Hydrologic Engineering, 2015. (first published online)
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001053
60 Donald  M, Cook  A, Mengersen  K. Bayesian network for risk of diarrhea associated with the use of recycled water. Risk Analysis, 2009, 29(12): 1672–1685
https://doi.org/10.1111/j.1539-6924.2009.01301.x pmid: 19883393
61 Qian  L X, Wang  H R, Zhang  K N. Evaluation criteria and model for risk between water supply and water demand and its application in Beijing. Water Resources Management, 2014, 28(13): 4433–4447
https://doi.org/10.1007/s11269-014-0624-0
62 Koutsoyiannis  D. Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling. Hydrological Sciences Journal, 2005, 50(3): 381–404
63 Koutsoyiannis  D. Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling. Hydrological Sciences Journal, 2005, 50(3): 405–426
64 Coles  S, Tawn  J. Seasonal effects of extreme surges. Stochastic Environmental Research and Risk Assessment, 2005, 19(6): 417–427
https://doi.org/10.1007/s00477-005-0008-3
65 Marshall  L, Nott  D, Sharma  A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research, 2004, 40(2): W02501
https://doi.org/10.1029/2003WR002378
66 Firat  F K, Yucemen  M S. Determination of reliabffity based new load and resistance factors for reinforced concrete structural members. Teknik Dergi, 2014, 25(3): 6805–6829
67 Wu  S J, Lien  H C, Chang  C H. Modeling risk analysis for forecasting peak discharge during flooding prevention and warning operation. Stochastic Environmental Research and Risk Assessment, 2010, 24(8): 1175–1191
https://doi.org/10.1007/s00477-010-0436-6
68 Cacuci  D G, Ionescu-Bujor  M. A comparative review of sensitivity and uncertainty analysis of large-scale systems- II: Statistical methods. Nuclear Science and Engineering, 2004, 147(3): 204–217
https://doi.org/10.13182/04-54CR
69 Helton  J C, Davis  F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 2003, 81(1): 23–69
https://doi.org/10.1016/S0951-8320(03)00058-9
70 Jiang  Y, Nan  Z, Yang  S. Risk assessment of water quality using Monte Carlo simulation and artificial neural network method. Journal of Environmental Management, 2013, 122: 130–136
https://doi.org/10.1016/j.jenvman.2013.03.015 pmid: 23583753
71 Zhang  X, Ma  W, Chen  L. New similarity of triangular fuzzy number and its application. The Scientific World Journal, 2014, 2014: 215047
pmid: 24790553
72 Patra  K, Mondal  S K. Fuzzy risk analysis using area and height based similarity measure on generalized trapezoidal fuzzy numbers and its application. Applied Soft Computing, 2015, 28: 276–284
https://doi.org/10.1016/j.asoc.2014.11.042
73 Qin  X S, Huang  G H, Zeng  G M, Chakma  A, Huang  Y F. An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research, 2007, 180(3): 1331–1357
https://doi.org/10.1016/j.ejor.2006.03.053
74 Maqsood  I, Huang  G H, Yeomans  J S. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. European Journal of Operational Research, 2005, 167(1): 208–225
https://doi.org/10.1016/j.ejor.2003.08.068
75 Karimi  I, Huellermeier  E. Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems, 2007, 158(9): 987–999
https://doi.org/10.1016/j.fss.2006.12.013
76 Khan  U T, Valeo  C, He  J X. Non-linear fuzzy-set based uncertainty propagation for improved DO prediction using multiple-linear regression. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 599–616
https://doi.org/10.1007/s00477-012-0626-5
77 Zhu  Y, Li  Y P, Huang  G H, Guo  L. Risk assessment of agricultural irrigation water under interval functions. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 693–704
https://doi.org/10.1007/s00477-012-0632-7
78 Gu  J J, Guo  P, Huang  G H, Shen  N. Optimization of the industrial structure facing sustainable development in resource-based city subjected to water resources under uncertainty. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 659–673
https://doi.org/10.1007/s00477-012-0630-9
79 Chen  C, Huang  G H, Li  Y P, Zhou  Y. A robust risk analysis method for water resources allocation under uncertainty. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 713–723
https://doi.org/10.1007/s00477-012-0634-5
80 García Nieto  P J, Alonso Fernández  J R, de Cos Juez  F J, Sánchez Lasheras  F, Díaz Muñiz  C. Hybrid modelling based on support vector regression with genetic algorithms in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain). Environmental Research, 2013, 122: 1–10
https://doi.org/10.1016/j.envres.2013.01.001 pmid: 23375084
81 Merabtene  T, Kawamura  A, Jinno  K, Olsson  J. Risk assessment for optimal drought management of an integrated water resources system using a genetic algorithm. Hydrological Processes, 2002, 16(11): 2189–2208
https://doi.org/10.1002/hyp.1150
[1] Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 231-240.
[2] Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG. Uncertain and multi-objective programming models for crop planting structure optimization[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 34-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed