Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (4) : 318-326    https://doi.org/10.15302/J-FASE-2015080
RESEARCH ARTICLE
Oral administration of Allium sativum extract protects against infectious bursal disease in chickens
Sufen ZHAO,Yuanyuan JIA,Weiwei ZHANG,Lili WANG,Yunfei MA(),Kedao TENG()
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
 Download: PDF(1535 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Garlic (Allium sativum, Liliaceae) has been safely used for more than 5000 years, and research on garlic extract is rapidly increasing because of its multiple biological functions. The in vivo effects of oral administration of garlic mixture (GM, water-soluble extract) on infectious bursal disease virus (IBDV)-infected specific pathogen free male white leghorn chicken were examined through histopathological, immunohistochemical, and Western blot analyses, and enzyme-linked immunosorbent assay. The results confirmed the protective effects of oral administration of 5 mg·kg1 BW GM (Group GM1) on bursal lesions after IBDV infection. In particular, protein expression of IBDV in the bursa decreased in Group GM1, indicating that GM administration decreased IBDV replication in the bursa. Furthermore, immunoglobulin M- and A-bearing B lymphocytes significantly increased 7 days post infection in bursae in Group GM1 (P<0.01), suggesting that the oral administration of 5 mg·kg1 GM offers moderate protection against B cell destruction after IBDV infection. During infection, the concentration of bursal interferon gamma (IFN-g) increased and peaked in Group GM1 earlier than in Group T (IBDV-exposed), demonstrating that GM administration prompted the production of IFN-g to protect against IBDV infection.

Keywords garlic      infectious bursal disease virus (IBDV)      antiviral effect      IgM-bearing B lymphocyte     
Corresponding Author(s): Yunfei MA,Kedao TENG   
Just Accepted Date: 11 December 2015   Online First Date: 31 December 2015    Issue Date: 19 January 2016
 Cite this article:   
Sufen ZHAO,Yuanyuan JIA,Weiwei ZHANG, et al. Oral administration of Allium sativum extract protects against infectious bursal disease in chickens[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 318-326.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015080
https://academic.hep.com.cn/fase/EN/Y2015/V2/I4/318
Fig.1  Effect of GM on the bursal weight index of IBDV-infected chickens. Mean bursal indexes of Groups GM1 and GM2 at 1 to 7 and 2 to 7 dpi, respectively, were higher than the mean bursal index of Group T. Among them, bursal indexes of Groups GM1 and GM2 at 3 and 3 to 4 dpi, respectively, were remarkably higher (P<0.05). Bursal indexes of Group T were significantly lower than those of Group C at 4 to 7 dpi (P<0.05). However, a significant decrease occurred in Groups GM1 and GM2 at 5 to 7 and 7 dpi, respectively (P<0.05). Data were given as mean±SD. Data simultaneously marked with different letters indicate significant differences (P<0.05).
Fig.2  Effect of GM on the bursal structure changes of IBDV-infected chickens. At 7 dpi, a few injured bursal lymphoid follicles were still observed in Group T, and local infiltration of lymphocytes (LIL) and fibrillation were investigated in the interfollicular areas (a, b). Many LIL and a high number of original bursal lymphoid follicles were detected with orderly cortical and medullary epithelial cells and many lymphocytes in the cortex and medulla in Group GM1 (c, d). The most serious congestion, edema, hemorrhage and heterophil accumulation were observed in Group GM2, and a high number of degenerated tissues accumulated in the bursal tube, with few lymphoid follicles (e, f). Arrows indicate fibrillation. Arrowheads indicate LIL.
Fig.3  Effect of GM on the B lymphocyte changes of IBDV-infected chickens. A few IgM+ B lymphocytes were scattered in the tissues where lesions involuted in Group T, and LIL were IgM negative (a, b). A high number of IgM+ B lymphocytes were detected in the cortex and medulla in Group GM1 (c, d). Fewer IgM+ B lymphocytes were observed in the bursal epibiotic area (EA) of Group GM2 (e, f). At 7 dpi, many IgA+ B lymphocytes were observed in the cortex and medulla in Group GM1, and LIL were IgA negative (g, h). Few IgA+ B lymphocytes were observed in Groups T (i, j) and GM2 (k, l). At 7 dpi, IgM+ B lymphocytes were enumerated in five fields/bursa/chicken, and a significantly higher number of IgM+ B lymphocytes in Group GM1 and the epibiotic area of Group GM2 was observed than in Group T (P <0.01) (m). The number of IgA+ B lymphocytes in Group GM1 was significantly higher than that in Group T at 7 dpi (P<0.01) (n). Solid arrows and arrowheads indicate scattered IgM immunoreactivities and IgM+ B lymphocytes, respectively. Feint arrows and arrowheads indicate scattered IgA immunoreactivities and IgA+ B lymphocytes, respectively. Data are given as mean±SD. **, P<0.01 between Groups GM1 and T; ##, P<0.01 between Groups GM2 and T.
Fig.4  Effect of GM on the expression of bursal viral antigens of IBDV-infected chickens. At 7 dpi, many VP2 immunoreactivities were concentrated in the medulla of injured bursal lymphoid follicles, and some diffusely distributed in the cortex and interfollicular areas in Group T (a). A few VP2 immunoreactivities exhibited diffuse distribution in the plicae in Group GM1 (b). The strongest VP2 immunoreactivities were observed in Group GM2, with most accumulated in degenerated tissues (c). Western blot analysis (d, e) confirmed the low VP2 expression in GM1.
Fig.5  Effect of GM on IFN-g concentrations in the bursal homogenate of IBDV-infected chickens. After infection, bursal IFN-g concentrations increased in the chickens. Among them, IFN-g concentrations in Groups T and GM1 initially increased and subsequently decreased, with a significant increase at 4 and 5 dpi in Group T and 2 to 4 dpi in Group GM1 (P<0.05). A significantly higher bursal IFN-g concentration was observed in Group GM2 at 4 and 7 dpi (P<0.05). The IFN-g concentration peaked at 3 dpi in Group GM1, 2 days earlier than that in Groups T and GM2. Data are given as mean±SD. Data simultaneously marked with different letters indicate significant differences (P<0.05).
1 Abdel-Moneim  A S, Abdel-Gawad  M M. Genetic variations in maternal transfer and immune responsiveness to infectious bursal disease virus. Veterinary Microbiology, 2006, 114(1–2): 16–24
https://doi.org/10.1016/j.vetmic.2005.10.037
2 Khatri  M, Palmquist  J M, Cha  R M, Sharma  J M. Infection and activation of bursal macrophages by virulent infectious bursal disease virus. Virus Research, 2005, 113(1): 44–50
https://doi.org/10.1016/j.virusres.2005.04.014
3 Petek  M, D'Aprile  P N, Cancellotti  F. Biological and physico-chemical properties of the infectious bursal disease virus (IBDV). Avian Pathology, 1973, 2(2): 135–152
4 Stoute  S T, Jackwood  D J, Sommer-Wagner  S E, Crossley  B M, Woolcock  P R, Charlton  B R. Pathogenicity associated with coinfection with very virulent infectious bursal disease and Infectious bursal disease virus strains endemic in the United States. Journal of Veterinary Diagnostic Investigation, 2013, 25(3): 352–358
https://doi.org/10.1177/1040638713483538
5 Li  Z, Wang  Y, Li  X, Cao  H, Zheng  S J. Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4. Journal of Virology, 2013, 87(2): 1221–1231
https://doi.org/10.1128/JVI.02421-12
6 Müller  H, Islam  M R, Raue  R. Research on infectious bursal disease-the past, the present and the future. Veterinary Microbiology, 2003, 97(1-2): 153–165
https://doi.org/10.1016/j.vetmic.2003.08.005
7 Liang  J F, Yin  Y Y, Qin  T, Yang  Q. Chicken bone marrow-derived dendritic cells maturation in response to infectious bursal disease virus. Veterinary Immunology and Immunopathology, 2015, 164(1–2): 51–55
https://doi.org/10.1016/j.vetimm.2014.12.012
8 Stricker  R L, Behrens  S E, Mundt  E. Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. Journal of Virology, 2010, 84(20): 10592–10605
https://doi.org/10.1128/JVI.02506-09
9 Hirai  K, Funakoshi  T, Nakai  T, Shimakura  S. Sequential changes in the number of surface immunoglobulin-bearing B lymphocytes in infectious bursal disease virus-infected chickens. Avian Diseases, 1981, 25(2): 484–496
https://doi.org/10.2307/1589940
10 Rodenberg  J, Sharma  J M, Belzer  S W, Nordgren  R M, Naqi  S. Flow cytometric analysis of B cell and T cell subpopulations in specific-pathogen-free chickens infected with infectious bursal disease virus. Avian Diseases, 1994, 38(1): 16–21
https://doi.org/10.2307/1591831
11 Mundt  E, Beyer  J, Müller  H. Identification of a novel viral protein in infectious bursal disease virus-infected cells. Journal of General Virology, 1995, 76(2): 437–443
https://doi.org/10.1099/0022-1317-76-2-437
12 Xu  H, Yuan  L, Wang  F, Wang  Y, Wang  R, Song  C, Xia  Q, Zhao  P. Overexpression of recombinant infectious bursal disease virus (IBDV) capsid protein VP2 in the middle silk gland of transgenic silkworm. Transgenic Research, 2014, 23(5): 809–816
https://doi.org/10.1007/s11248-014-9827-7
13 Wang  A R, Liu  F H, Wang  Z P, Jiang  X, Wang  W, Teng  K D, Xu  J. Pathological study of SPF chickens experimentally infected with a Chinese IBDV strain BC6/85. Asian Journal of Animal and Veterinary Advances, 2011, 6(1): 36–50
https://doi.org/10.3923/ajava.2011.36.50
14 Li  Y, Wang  L, Li  S, Chen  X, Shen  Y, Zhang  Z, He  H, Xu  W, Shu  Y, Liang  G, Fang  R, Hao  X. Seco-pregnane steroids target the subgenomic RNA of alphavirus-like RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 104(19): 8083–8088
https://doi.org/10.1073/pnas.0702398104
15 Amagase  H. Significance of garlic and its constituents in cancer and cardiovascular disease. Clarifying the real bioactive constituents of garlic. Journal of Nutrition, 2006, 136: 716S–725S
16 Boonpeng  S, Siripongvutikorn  S, Sae-Wong  C, Sutthirak  P. The antioxidant and anti-cadmium toxicity properties of garlic extracts. Food Science & Nutrition, 2014, 2(6): 792–801
https://doi.org/10.1002/fsn3.164
17 Milner  J A. Significance of garlic and its constituents in cancer and cardiovascular disease. Preclinical perspectives on garlic and cancer. Journal of Nutrition, 2006, 136: 827S–831S
18 Thomas  S, Senthilkumar  G P, Sivaraman  K, Bobby  Z, Paneerselvam  S, Harichandrakumar  K T. Effect of s-methyl-L-cysteine on oxidative stress, inflammation and insulin resistance in male wistar rats fed with high fructose diet. Iranian Journal of Basic Medical Sciences, 2015, 40(1): 45–50
19 Majewski  M. Allium sativum: facts and myths regarding human health. Roczniki Panstwowego Zakladu Higieny, 2014, 65(1): 1–8
20 Asadpour  R, Azari  M, Hejazi  M, Tayefi  H, Zaboli  N. Protective effects of garlic aquous extract (Allium sativum), vitamin E, and N-acetylcysteine on reproductive quality of male rats exposed to lead. Veterinary Research Forum : An International Quarterly Journal, 2013, 4(4): 251–257
21 Miron  T, Rabinkov  A, Mirelman  D, Wilchek  M, Weiner  L. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochimica et Biophysica Acta, 2000, 1463(1): 20–30
https://doi.org/10.1016/S0005-2736(99)00174-1
22 Weber  N D, Andersen  D O, North  J A, Murray  B K, Lawson  L D, Hughes  B G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Medica, 1992, 58(5): 417–423 doi:10.1055/s-2006-961504
23 Zeng  T, Zhang  C L, Song  F Y, Han  X Y, Xie  K Q. The modulatory effects of garlic oil on hepatic cytochrome P450s in mice. Human and Experimental Toxicology, 2009, 28(12): 777–783
https://doi.org/10.1177/0960327109353057
24 Lawson  L D, Wang  Z J, Hughes  B G. Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Medica, 1991, 57(04): 363–370
https://doi.org/10.1055/s-2006-960119
25 Wang  A R. Development of an experimental model of IBDV infection and a preliminary study for antiviral action of garlic oil. Dissertation for the Doctoral Degree. Beijing: China Agriculture University, 2009 (in Chinese)
26 Maity  H K, Dey  S, Mohan  C M, Khulape  S A, Pathak  D C, Vakharia  V N. Protective efficacy of a DNA vaccine construct encoding the VP2 gene of infectious bursal disease and a truncated HSP70 of Mycobacterium tuberculosis in chickens. Vaccine, 2015, 33(8): 1033–1039
https://doi.org/10.1016/j.vaccine.2015.01.006
27 Ma  H, Zhao  S, Ma  Y, Guo  X, Han  D, Jia  Y, Zhang  W, Teng  K. Susceptibility of Kupffer cells to virus in chickens experimentally infected with Chinese virulent IBDV. Veterinary Microbiology, 2013, 164(3-4): 270–280
https://doi.org/10.1016/j.vetmic.2013.03.002
28 Bíró  E, Kocsis  K, Nagy  N, Molnár  D, Kabell  S, Palya  V, Oláh  I. Origin of the chicken splenic reticular cells influences the effect of the infectious bursal disease virus on the extracellular matrix. Avian Pathology, 2011, 40(2): 199–206
https://doi.org/10.1080/03079457.2011.554797
29 Dobrosavljević  I, Vidanović  D, Velhne  M, Miljkovi  B ć  B, Lako. Simultaneous detection of vaccinal and field infectious bursal disease viruses in layer chickens challenged with a very virulent strain after vaccination. Acta Veterinaria Hungarica, 2014, 62(2): 264–273
https://doi.org/10.1556/AVet.2014.003
30 Käufer  I, Weiss  E. Significance of bursa of Fabricius as target organ in infectious bursal disease of chickens. Infection and Immunity, 1980, 27: 364–367
31 Salman  H, Bergman  M, Bessler  H, Punsky  I, Djaldetti  M. Effect of a garlic derivative (alliin) on peripheral blood cell immune responses. International Journal of Immunopharmacology, 1999, 21(9): 589–597
https://doi.org/10.1016/S0192-0561(99)00038-7
32 Kim  I J, You  S K, Kim  H, Yeh  H Y, Sharma  J M. Characteristics of bursal T lymphocytes induced by infectious bursal disease virus. Journal of Virology, 2000, 74(19): 8884–8892
https://doi.org/10.1128/JVI.74.19.8884-8892.2000
33 Rautenschlein  S, Yeh  H Y, Sharma  J M. The role of T cells in protection by an inactivated infectious bursal disease virus vaccine. Veterinary Immunology and Immunopathology, 2002, 89(3–4): 159–167
https://doi.org/10.1016/S0165-2427(02)00202-7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed