|
|
Oral administration of Allium sativum extract protects against infectious bursal disease in chickens |
Sufen ZHAO,Yuanyuan JIA,Weiwei ZHANG,Lili WANG,Yunfei MA( ),Kedao TENG( ) |
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China |
|
|
Abstract Garlic (Allium sativum, Liliaceae) has been safely used for more than 5000 years, and research on garlic extract is rapidly increasing because of its multiple biological functions. The in vivo effects of oral administration of garlic mixture (GM, water-soluble extract) on infectious bursal disease virus (IBDV)-infected specific pathogen free male white leghorn chicken were examined through histopathological, immunohistochemical, and Western blot analyses, and enzyme-linked immunosorbent assay. The results confirmed the protective effects of oral administration of 5 mg·kg−1 BW GM (Group GM1) on bursal lesions after IBDV infection. In particular, protein expression of IBDV in the bursa decreased in Group GM1, indicating that GM administration decreased IBDV replication in the bursa. Furthermore, immunoglobulin M- and A-bearing B lymphocytes significantly increased 7 days post infection in bursae in Group GM1 (P<0.01), suggesting that the oral administration of 5 mg·kg−1 GM offers moderate protection against B cell destruction after IBDV infection. During infection, the concentration of bursal interferon gamma (IFN-g) increased and peaked in Group GM1 earlier than in Group T (IBDV-exposed), demonstrating that GM administration prompted the production of IFN-g to protect against IBDV infection.
|
Keywords
garlic
infectious bursal disease virus (IBDV)
antiviral effect
IgM-bearing B lymphocyte
|
Corresponding Author(s):
Yunfei MA,Kedao TENG
|
Just Accepted Date: 11 December 2015
Online First Date: 31 December 2015
Issue Date: 19 January 2016
|
|
1 |
Abdel-Moneim A S, Abdel-Gawad M M. Genetic variations in maternal transfer and immune responsiveness to infectious bursal disease virus. Veterinary Microbiology, 2006, 114(1–2): 16–24
https://doi.org/10.1016/j.vetmic.2005.10.037
|
2 |
Khatri M, Palmquist J M, Cha R M, Sharma J M. Infection and activation of bursal macrophages by virulent infectious bursal disease virus. Virus Research, 2005, 113(1): 44–50
https://doi.org/10.1016/j.virusres.2005.04.014
|
3 |
Petek M, D'Aprile P N, Cancellotti F. Biological and physico-chemical properties of the infectious bursal disease virus (IBDV). Avian Pathology, 1973, 2(2): 135–152
|
4 |
Stoute S T, Jackwood D J, Sommer-Wagner S E, Crossley B M, Woolcock P R, Charlton B R. Pathogenicity associated with coinfection with very virulent infectious bursal disease and Infectious bursal disease virus strains endemic in the United States. Journal of Veterinary Diagnostic Investigation, 2013, 25(3): 352–358
https://doi.org/10.1177/1040638713483538
|
5 |
Li Z, Wang Y, Li X, Cao H, Zheng S J. Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4. Journal of Virology, 2013, 87(2): 1221–1231
https://doi.org/10.1128/JVI.02421-12
|
6 |
Müller H, Islam M R, Raue R. Research on infectious bursal disease-the past, the present and the future. Veterinary Microbiology, 2003, 97(1-2): 153–165
https://doi.org/10.1016/j.vetmic.2003.08.005
|
7 |
Liang J F, Yin Y Y, Qin T, Yang Q. Chicken bone marrow-derived dendritic cells maturation in response to infectious bursal disease virus. Veterinary Immunology and Immunopathology, 2015, 164(1–2): 51–55
https://doi.org/10.1016/j.vetimm.2014.12.012
|
8 |
Stricker R L, Behrens S E, Mundt E. Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. Journal of Virology, 2010, 84(20): 10592–10605
https://doi.org/10.1128/JVI.02506-09
|
9 |
Hirai K, Funakoshi T, Nakai T, Shimakura S. Sequential changes in the number of surface immunoglobulin-bearing B lymphocytes in infectious bursal disease virus-infected chickens. Avian Diseases, 1981, 25(2): 484–496
https://doi.org/10.2307/1589940
|
10 |
Rodenberg J, Sharma J M, Belzer S W, Nordgren R M, Naqi S. Flow cytometric analysis of B cell and T cell subpopulations in specific-pathogen-free chickens infected with infectious bursal disease virus. Avian Diseases, 1994, 38(1): 16–21
https://doi.org/10.2307/1591831
|
11 |
Mundt E, Beyer J, Müller H. Identification of a novel viral protein in infectious bursal disease virus-infected cells. Journal of General Virology, 1995, 76(2): 437–443
https://doi.org/10.1099/0022-1317-76-2-437
|
12 |
Xu H, Yuan L, Wang F, Wang Y, Wang R, Song C, Xia Q, Zhao P. Overexpression of recombinant infectious bursal disease virus (IBDV) capsid protein VP2 in the middle silk gland of transgenic silkworm. Transgenic Research, 2014, 23(5): 809–816
https://doi.org/10.1007/s11248-014-9827-7
|
13 |
Wang A R, Liu F H, Wang Z P, Jiang X, Wang W, Teng K D, Xu J. Pathological study of SPF chickens experimentally infected with a Chinese IBDV strain BC6/85. Asian Journal of Animal and Veterinary Advances, 2011, 6(1): 36–50
https://doi.org/10.3923/ajava.2011.36.50
|
14 |
Li Y, Wang L, Li S, Chen X, Shen Y, Zhang Z, He H, Xu W, Shu Y, Liang G, Fang R, Hao X. Seco-pregnane steroids target the subgenomic RNA of alphavirus-like RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 104(19): 8083–8088
https://doi.org/10.1073/pnas.0702398104
|
15 |
Amagase H. Significance of garlic and its constituents in cancer and cardiovascular disease. Clarifying the real bioactive constituents of garlic. Journal of Nutrition, 2006, 136: 716S–725S
|
16 |
Boonpeng S, Siripongvutikorn S, Sae-Wong C, Sutthirak P. The antioxidant and anti-cadmium toxicity properties of garlic extracts. Food Science & Nutrition, 2014, 2(6): 792–801
https://doi.org/10.1002/fsn3.164
|
17 |
Milner J A. Significance of garlic and its constituents in cancer and cardiovascular disease. Preclinical perspectives on garlic and cancer. Journal of Nutrition, 2006, 136: 827S–831S
|
18 |
Thomas S, Senthilkumar G P, Sivaraman K, Bobby Z, Paneerselvam S, Harichandrakumar K T. Effect of s-methyl-L-cysteine on oxidative stress, inflammation and insulin resistance in male wistar rats fed with high fructose diet. Iranian Journal of Basic Medical Sciences, 2015, 40(1): 45–50
|
19 |
Majewski M. Allium sativum: facts and myths regarding human health. Roczniki Panstwowego Zakladu Higieny, 2014, 65(1): 1–8
|
20 |
Asadpour R, Azari M, Hejazi M, Tayefi H, Zaboli N. Protective effects of garlic aquous extract (Allium sativum), vitamin E, and N-acetylcysteine on reproductive quality of male rats exposed to lead. Veterinary Research Forum : An International Quarterly Journal, 2013, 4(4): 251–257
|
21 |
Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochimica et Biophysica Acta, 2000, 1463(1): 20–30
https://doi.org/10.1016/S0005-2736(99)00174-1
|
22 |
Weber N D, Andersen D O, North J A, Murray B K, Lawson L D, Hughes B G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Medica, 1992, 58(5): 417–423 doi:10.1055/s-2006-961504
|
23 |
Zeng T, Zhang C L, Song F Y, Han X Y, Xie K Q. The modulatory effects of garlic oil on hepatic cytochrome P450s in mice. Human and Experimental Toxicology, 2009, 28(12): 777–783
https://doi.org/10.1177/0960327109353057
|
24 |
Lawson L D, Wang Z J, Hughes B G. Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Medica, 1991, 57(04): 363–370
https://doi.org/10.1055/s-2006-960119
|
25 |
Wang A R. Development of an experimental model of IBDV infection and a preliminary study for antiviral action of garlic oil. Dissertation for the Doctoral Degree. Beijing: China Agriculture University, 2009 (in Chinese)
|
26 |
Maity H K, Dey S, Mohan C M, Khulape S A, Pathak D C, Vakharia V N. Protective efficacy of a DNA vaccine construct encoding the VP2 gene of infectious bursal disease and a truncated HSP70 of Mycobacterium tuberculosis in chickens. Vaccine, 2015, 33(8): 1033–1039
https://doi.org/10.1016/j.vaccine.2015.01.006
|
27 |
Ma H, Zhao S, Ma Y, Guo X, Han D, Jia Y, Zhang W, Teng K. Susceptibility of Kupffer cells to virus in chickens experimentally infected with Chinese virulent IBDV. Veterinary Microbiology, 2013, 164(3-4): 270–280
https://doi.org/10.1016/j.vetmic.2013.03.002
|
28 |
Bíró E, Kocsis K, Nagy N, Molnár D, Kabell S, Palya V, Oláh I. Origin of the chicken splenic reticular cells influences the effect of the infectious bursal disease virus on the extracellular matrix. Avian Pathology, 2011, 40(2): 199–206
https://doi.org/10.1080/03079457.2011.554797
|
29 |
Dobrosavljević I, Vidanović D, Velhne M, Miljkovi B ć B, Lako. Simultaneous detection of vaccinal and field infectious bursal disease viruses in layer chickens challenged with a very virulent strain after vaccination. Acta Veterinaria Hungarica, 2014, 62(2): 264–273
https://doi.org/10.1556/AVet.2014.003
|
30 |
Käufer I, Weiss E. Significance of bursa of Fabricius as target organ in infectious bursal disease of chickens. Infection and Immunity, 1980, 27: 364–367
|
31 |
Salman H, Bergman M, Bessler H, Punsky I, Djaldetti M. Effect of a garlic derivative (alliin) on peripheral blood cell immune responses. International Journal of Immunopharmacology, 1999, 21(9): 589–597
https://doi.org/10.1016/S0192-0561(99)00038-7
|
32 |
Kim I J, You S K, Kim H, Yeh H Y, Sharma J M. Characteristics of bursal T lymphocytes induced by infectious bursal disease virus. Journal of Virology, 2000, 74(19): 8884–8892
https://doi.org/10.1128/JVI.74.19.8884-8892.2000
|
33 |
Rautenschlein S, Yeh H Y, Sharma J M. The role of T cells in protection by an inactivated infectious bursal disease virus vaccine. Veterinary Immunology and Immunopathology, 2002, 89(3–4): 159–167
https://doi.org/10.1016/S0165-2427(02)00202-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|