Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (4) : 308-320    https://doi.org/10.15302/J-FASE-2016113
RESEARCH ARTICLE
Annotation and validation of genes involved in photosynthesis and starch synthesis from a Manihot full-length cDNA library
Yang ZHANG1,Xin CHEN1,Haiyan WANG1,Zhiqiang XIA1,Peng LING2,Wenquan WANG1()
1. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
2. Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
 Download: PDF(1205 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A full-length cDNA library from leaf and root tissues of cassava (Manihot esculenta) Arg7 and one accession of its wild ancestor W14 (M. esculenta ssp. flabellifolia) has been constructed. The library is comprised of four sub-libraries, containing 32640 recombinant clones, 6028 cDNA clones from their 5′ ends, and 128 clones from the 3′ ends were sequenced. In total, 5013 high-quality expressed sequence tags (ESTs) and 1259 unigenes were obtained. Of these, 746 unigenes were identified by their sequence homologies to ESTs from model plants, and 323 unigenes were mapped onto 114 different KEGG pathways. From these, 24 differentially expressed genes involved in starch metabolism and photosynthesis were identified and five of them were selected to compare their expression level between Arg7 and W14. Notably, Arg7 has a higher net photosynthesis rate in leaves, higher ribulose-1,5-bisphosphate carboxy-lase oxygenase activities in leaves, and higher AGPase activity in roots. This resource is the first EST collection from wild cassava and should be of value for gene discovery, genome annotation and studies of Manihot evolution.

Keywords Manihot esculenta      expressed sequence tag      unigene      pathway      expression pattern     
Corresponding Author(s): Wenquan WANG   
Just Accepted Date: 25 October 2016   Online First Date: 09 November 2016    Issue Date: 22 January 2017
 Cite this article:   
Yang ZHANG,Xin CHEN,Haiyan WANG, et al. Annotation and validation of genes involved in photosynthesis and starch synthesis from a Manihot full-length cDNA library[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 308-320.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016113
https://academic.hep.com.cn/fase/EN/Y2016/V3/I4/308
Gene cellular activity Abbreviation EST sequence source Forward/Reverse primer Amplicon size/bp
RuBisco (Ribulose-1,5-bisphosphate carboxylase oxygenase) MerbcS Arg7 5′-TGGCAGCTTCCACATTGTC-3′
5′-CTCATACCTTCCACCACTCTCA-3′
175
Ferredoxin:NADP+ oxidoreductase MeFNR Arg7 5′-CGCTCTCTAGTGCCATGTTTAG-3′
5′-GCACTCTATTTCCACTTCACCC-3′
185
NADH dehydrogenase (quinone reductase) Mendh Arg7 5′-ATTCCAGCCAAGATGACGG-3′
5′-ACAGAATTTAGTGAGCGGCG-3′
151
PEPC (Phophoenolpyruvate carboxylase) Meppc Arg7/W14 5′-CGGATCAACGGGAAGCAAGA-3′
5′-GCAAGATGAGTGGGTCCTCC-3′
196
AGPase (adenosine 5′-diphosphate glucose pyrophosphorylase) MeLSU W14 5′- AATCCAGATAATCCATTCGG-3′
5′- TAGCAGCAACTCAAACGCCT-3′
165
UGPase (UDPglucose pyrophosphorylase) MeUGP Jatropha curcas (GenBank: GT973508.1) 5′- GGCTTGTAGAATCCGACGCA-3′
5′- AGTTGCCTTCACTGGAAGGA-3′
170
SAI (soluble acid inverse) MeInv Provided by Dr. Peng Zhang# 5′-ATCTACGACACCGAGGACTTCAT-3′
5′-CTGTTCAATTCATCGTAAGTTCCA-3′
151
Constitutive control gene
Actin MeAct 5′-CGATGGTCGTACAACTGGTAT-3′
5′-ATCCTCCAATCCAGACACTGT-3′
450
Tab.1  Genes of interest, primers and size of amplification products
Category Library Sub-library
Arg7 leaf Arg7 root W14 leaf W14 root
No. of clones sequenced 6176 1082 2413 615 2066
EST 5593 1038 2197 438 1920
Analyzed EST>100 bp 5067 964 1995 391 1717
Cluster 1153 195 746 157 322
Contig 476 62 256 47 143
Singlet 783 145 538 114 213
Unigene 1259 207 749 161 356
ORF prediction 1093 188 658 133 336
Tab.2  Summary of library properties and assembly results after sequencing the clones and their distributions among cDNA sub-libraries
Fig.1  Analysis of cassava ESTs assembled in terms of the number of ESTs per unigene. A total of 783 unigenes were represented by a single EST.
KEGG pathway No. of pathways mapped No. of genes Total genes mapped/%
Metabolism 69 176 54.49
Amino acid metabolism 8 12 3.72
Biosynthesis of secondary metabolites 6 8 2.48
Carbohydrate metabolism 15 51 15.79
Energy metabolism 8 52 16.10
Glycan biosynthesis and metabolism 5 6 1.86
Lipid metabolism 8 13 4.02
Metabolism of cofactors and vitamins 7 11 3.41
Metabolism of other amino acids 3 4 1.24
Nucleotide metabolism 2 11 3.41
Xenobiotics biodegradation and metabolism 7 8 2.48
Genetic information processing 8 48 14.86
Folding, sorting and degradation 4 8 2.48
Replication and repair 2 2 0.62
Transcription 4 38 11.76
Environmental information processing 8 16 4.95
Membrane transport 2 2 0.62
Signal transduction 6 14 4.33
Cellular processes 13 25 7.74
Cell communication 2 3 0.93
Cell growth and death 3 7 2.17
Cell motility 1 3 0.93
Endocrine system 4 9 2.79
Nervous system 2 2 0.62
Sensory system 1 1 0.31
Human diseases 14 58 17.96
Cancers 6 8 2.48
Immune disorders 1 9 2.79
Infectious diseases 2 8 2.48
Metabolic disorders 1 4 1.24
Neurodegenerative diseases 4 29 8.98
Tab.3  The 323 unigenes mapped to KEGG pathways
Fig.2  The differential distribution of annotated unigenes in different pathways related to carbohydrate and energy metabolism among the four sub-libraries.
Fig.3  Net photosynthetic rates in the leaves of Arg7 and W14 during the growing period 120, 160, and 200 d after planting. All measurements were made at 10:00 am. Each data point represents the mean±SD of three replicates.
Fig.4  Diurnal fluctuations in the expression of selected genes in cassava leaves measured using real-time PCR, with variations in transcript levels associated with changes in light intensity between 8:00 h and 18:00 h. (a) MerbcS; (b) MeFNR; (c) Mendh; (d) Meppc; (e) MeLSU; (f) MeInv. Each data point represents the mean±SD of nine replicates, with values indicating fold-changes in relative gene expression following normalization relative to the actin cassava gene. Asterisks above each bar indicate the degree of significance differences in the expression levels between the Arg7 cultivar of Manihot esculenta and the W14 variety of Manihot flabellifolia (*, P<0.05; **, P<0.01).
Fig.5  Expression levels of selected genes implicated in photosynthesis and carbohydrate metabolism in cassava, using real-time PCR. (a) MeFNR; (b) Mendh; (c) Meppc; (d) MeLSU; (e) MeUGP; (f) MeInv. Each data point represents the mean±SD of nine replicates, with values indicating fold-changes in relative gene expression following normalization relative to the actin cassava gene. AR 120 d, AR 160 d and AR 200 d are levels in Arg7 storage roots 120, 160, and 200 d after planting, respectively.
1 Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P. Development and application of transgenic technologies in cassava. Plant Molecular Biology, 2004, 56(4): 671–688
https://doi.org/10.1007/s11103-004-4872-x
2 de Souza C R B, Carvalho L J C B, de Mattos Cascardo J C. Comparative gene expression study to identify genes possibly related to storage root formation in cassava. Protein and Peptide Letters, 2004, 11(6): 577–582
https://doi.org/10.2174/0929866043406319
3 Koch B, Sibbesen O, Swain E, Kahn R, Liangcheng D, Bak S, Halkier B, Møller B. Possible use of a biotechnological approach to optimize and regulate the content and distribution of cyanogenic glycosides in cassava to increase food safety. Acta Horticulturae, 1994, (375): 45–60
https://doi.org/10.17660/ActaHortic.1994.375.2
4 Siritunga D, Sayre R T. Domestication of cassava: generation of cyanogen-free cassava. Planta, 2003, 217(3): 367–373
https://doi.org/10.1007/s00425-003-1005-8
5 Jansson C, Westerbergh A, Zhang J, Hu X W, Sun C. Cassava, a potential biofuel crop in the People’s Republic of China. Applied Energy, 2009, 86(S1): S95–S99
https://doi.org/10.1016/j.apenergy.2009.05.011
6 Ziska L H, Runion G B, Tomecek M, Prior S A, Torbet H A, Sicher R. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bio-ethanol production in Alabama and Maryland. Biomass and Bioenergy, 2009, 33(11): 1503–1508
https://doi.org/10.1016/j.biombioe.2009.07.014
7 Hunt C A, Wholey D M, Cock J H. Growth physiology of cassava (Manihot esculenta Crantz). Field Crop Abstracts, 1977, 30: 77–89
8 Edwards G E, Sheta E, Moore B D, Dai Z, Fransceschi V R, Cheng S H, Lin C H, Ku M S B. Photosynthetic characteristics of cassava (Manihot esculenta), a C3 species with chlorenchymatous bundle sheath cells. Plant & Cell Physiology, 1990, 31(8): 1199–1206
9 Angelov M N, Sun J, Byrd G T, Brown R H, Black C C. Novel characteristics of cassava, Manihot esculenta Crantz, a reputed C3–C4 intermediate photosynthesis species. Photosynthesis Research, 1993, 38(1): 61–72
https://doi.org/10.1007/BF00015062
10 EI-Sharkawy M A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica, 2006, 44(4): 481–512
11 Osunsami A T, Akingbala J O, Oguntimein G B. Effect of storage on starch content and modification of cassava starch. Starch, 1989, 41(2): 54–57
https://doi.org/10.1002/star.19890410205
12 Lopez C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V. An unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology, 2004, 56(4): 541–554
https://doi.org/10.1007/s11103-004-0123-4
13 Lokko Y, Anderson J V, Rudd S, Raji A, Horvath D, Mikel M A, Kim R, Liu L, Hernandez A, Dixon A G, Ingelbrecht I L. Characterization of an 18166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Reports, 2007, 26(9): 1605–1618
https://doi.org/10.1007/s00299-007-0378-8
14 Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biology, 2007, 7: 66
https://doi.org/10.1186/1471-2229-7-66
15 Li Y Z, Pan Y H, Sun C B, Dong H T, Luo X L, Wang Z Q, Tang J L, Chen B. An ordered EST catalogue and gene expression profiles of cassava (Manihot esculenta) at key growth stages. Plant Molecular Biology, 2010, 74(6): 573–590
https://doi.org/10.1007/s11103-010-9698-0
16 Robert J S, Michael E S. RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annual Review of Plant Biology, 2002, 53(4): 449–475
17 Allen J F. Oxygen reduction and optimum production of ATP in photosynthesis. Nature, 1975, 256(5518): 599–600
https://doi.org/10.1038/256599a0
18 Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Science, 2007, 172(6): 1204–1209
https://doi.org/10.1016/j.plantsci.2007.02.016
19 Chollet R, Vidal J, O’Leary M H. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47(1): 273–298
https://doi.org/10.1146/annurev.arplant.47.1.273
20 Yoshihara N, Imayama T, Fukuchi-Mizutani M, Okuhara H, Tanaka Y, Ino I, Yabuya T. cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Iris hollandica. Plant Science, 2005, 169(3): 496–501
https://doi.org/10.1016/j.plantsci.2005.04.007
21 Tomlinson P T, Duke E R, Nolte K D, Koch K E. Sucrose synthase and invertase in isolated vascular bundles. Plant Physiology, 1991, 97(3): 1249–1252
https://doi.org/10.1104/pp.97.3.1249
22 Fernie A R, Willmitzer L, Trethewey R N. Sucrose to starch: a transition in molecular plant physiology. Trends in Plant Science, 2002, 7(1): 35–41
https://doi.org/10.1016/S1360-1385(01)02183-5
23 Kleczkowski L A. Is leaf ADP-glucose pyrophosphorylase an allosteric enzyme? Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2000, 1476(1): 103–108
https://doi.org/10.1016/S0167-4838(99)00229-0
24 Kleczkowski L A. A new player in the starch field. Plant Physiology and Biochemistry, 2001, 39(9): 759–761
https://doi.org/10.1016/S0981-9428(01)01294-3
25 Stam M, Mol J N M, Kooter J M. The silence of genes in transgenic plants. Annals of Botany, 1997, 79(1): 3–12
https://doi.org/10.1006/anbo.1996.0295
26 Zhu Y Y, Machleder E M, Chenchik A, Li R, Siebert P D. Reverse transcriptase template switching: a SMARTTM approach for full-length cDNA library construction. BioTechniques, 2001, 30(4): 892–897
27 Ewing B, Green P. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Research, 1998, 8(3): 186–194
https://doi.org/10.1101/gr.8.3.186
28 Ewing B, Hillier L D, Wendl M C, Green P. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Research, 1998, 8(3): 175–185
https://doi.org/10.1101/gr.8.3.175
29 Zhang Z, Schwartz S, Wagner L, Miller W.A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 2000, 7(1–2): 203–214
30 Huang X, Madan A. CAP3: a DNA sequence assembly program. Genome Research, 1999, 9(9): 868–877
https://doi.org/10.1101/gr.9.9.868
31 Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 2003, 19(5): 651–652
https://doi.org/10.1093/bioinformatics/btg034
32 Camon E, Barrell D, Lee V, Dimmer E, Apweiler R. The gene ontology annotation (GOA) database-an integrated resource of GO annotations to the UniProt knowledgebase. In Silico Biology, 2004, 4(4): 5–6
33 El-Sharkawy M A, Cock J H, de Cadena G. Influence of differences in leaf anatomy on net photosynthetic rates of some cultivars of cassava. Photosynthesis Research, 1984, 5(3): 235–242
https://doi.org/10.1007/BF00030024
34 Mullikin J C, McMurray A A. Sequencing the genome, fast. Science, 1999, 283(5409): 1867–1868
https://doi.org/10.1126/science.283.5409.1867
35 Angelov M N, Sun J, Byrd G T, Brown R H, Black C C. Novel characteristics of cassava, Manihot esculenta Crantz, a reputed C3–C4 intermediate photosynthesis species. Photosynthesis Research, 1993, 38(1): 61–72
https://doi.org/10.1007/BF00015062
36 Zeeman S C, Smith S M, Smith A M. The diurnal metabolism of leaf starch. Biochemical Journal, 2007, 401(1): 13–28
https://doi.org/10.1042/BJ20061393
37 Zeeman S C, Kossmann J, Smith A M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 2010, 61(1): 209–234
https://doi.org/10.1146/annurev-arplant-042809-112301
38 Estruch J J, Beltrán J P. Change in invertase activities precede ovary growth induced by gibberellic acid in Pisum sativum. Physiologia Plantarum, 1991, 81(3): 319–326
https://doi.org/10.1111/j.1399-3054.1991.tb08739.x
39 Geigenberger P, Stitt M. Diurnal changes in sucrose, nucleotides, starch synthesis and AGPs transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. Plant Journal, 2000, 23(6): 795–806
https://doi.org/10.1046/j.1365-313x.2000.00848.x
40 Gerhardt R, Stitt M, Heldt H W. Subcellular metabolite levels in spinach leaves. Plant Physiology, 1987, 83(2): 399–407
https://doi.org/10.1104/pp.83.2.399
41 Ying W H. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxidants & Redox Signalling, 2008, 10(2): 179–206
https://doi.org/10.1089/ars.2007.1672
42 Schulze J, Shi L F, Blumenthal J, Samac D A, Gantt J S, Vance C P. Inhibition of alfalfa root nodule phosphoenolpyruvate carboxylase through an antisense strategy impacts nitrogen fixation and plant growth. Phytochemistry, 1998, 49(2): 341–346
https://doi.org/10.1016/S0031-9422(98)00221-0
43 Begum H H, Osaki M, Shinano T, Miyatake H, Wasaki J, Yamamura T, Watanabe T. The function of a maize-derived phosphoenol pyruvate carboxylase (PEPC) in phosphorus-deficient transgenic rice. Soil Science and Plant Nutrition, 2005, 51(4): 497–506
https://doi.org/10.1111/j.1747-0765.2005.tb00058.x
44 Munyikwa T, Kreuze J, Fregene M, Suurs L, Jacobsen E, Visser R. Isolation and characterisation of cDNAs encoding the large and small subunits of ADP-glucose pyrophosphorylase from cassava (Manihot esculenta Crantz). Euphytica, 2001, 120(1): 71–83
https://doi.org/10.1023/A:1017551520240
45 Ihemere U, Arias-Garzon D, Lawrence S, Sayre R. Genetic modification of cassava for enhanced starch production. Plant Biotechnology, 2006, 4(4): 453–465
https://doi.org/10.1111/j.1467-7652.2006.00195.x
46 Ausubel F M. Are innate immune signaling pathways in plants and animals conserved? Nature Immunology, 2005, 6(10): 973–979
https://doi.org/10.1038/ni1253
47 Oh C S, Pedley K F, Martin G B. Tomato 14–3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK a. Plant Cell, 2010, 22(1): 260–272
https://doi.org/10.1105/tpc.109.070664
48 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57–63
https://doi.org/10.1038/nrg2484
49 Azcón-Bieto J, Lambers H, Day D A. Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. Plant Physiology, 1983, 72(3): 598–603
https://doi.org/10.1104/pp.72.3.598
50 El-Sharkawy M A, Cock J H, Held A A. Photosynthetic responses of cassava cultivars (Manihot esculenta Crantz) from different habitats to temperature. Photosynthesis Research, 1984, 5(3): 243–250
https://doi.org/10.1007/BF00030025
51 Tiessen A, Hendriks J H M, Stitt M, Branscheid A, Gibon Y, Farré E M, Geigenberger P. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP–Glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 2002, 14(9): 2191–2213
https://doi.org/10.1105/tpc.003640
52 Calatayud P A, Barón C H, Velásquez H, Arroyave J A, Lamaze T. Wild Manihot species do not possess C4 photosynthesis. Annals of Botany, 2002, 89(1): 125–127
https://doi.org/10.1093/aob/mcf016
53 Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13(1): 61–72
https://doi.org/10.1105/tpc.13.1.61
[1] FASE-16113-ZY-Supplementary Material 1 Download
[1] Antonius G.T. SCHUT, Ken E. GILLER. Sustainable intensification of agriculture in Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 371-375.
[2] Mengjie LI, Chunbao LI, Shangxin SONG, Xinglian XU, Guanghong ZHOU. Proteome comparisons reveal influence of different dietary proteins on the development of rat jejunum[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 362-372.
[3] Maliwan NACONSIE,Peng ZHANG. Transgenic technologies in cassava for nutritional improvement and viral disease resistance: a key strategy for food security in Africa[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 285-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed