Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (4) : 335-345    https://doi.org/10.15302/J-FASE-2016121
RESEARCH ARTICLE
Cold stress responsive microRNAs and their targets in Musa balbisiana
Jingyi WANG1,Juhua LIU1,Caihong JIA1,Hongxia MIAO1,Jianbin ZHANG1,Zhuo WANG1,Biyu XU1(),Zhiqiang JIN1,2()
1. Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture/Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
2. Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China
 Download: PDF(1182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cold stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. Although miRNAs and their targets have been identified in several banana species, their participation during cold accumulation in banana remains unknown. In this study, two small RNA libraries were generated from micropropagated plantlets of Musa balbisiana grown at normal and low temperature (5°C). A total of 69 known miRNAs and 32 putative novel miRNAs were detected in the libraries by Solexa sequencing. Sixty-four cold-inducible miRNAs were identified through differentially expressed miRNAs analysis. Among 43 miRNAs belonging to 26 conserved miRNA families with altered expression, 18 were upregulated and 25 downregulated under cold stress. Of 21 putative novel miRNAs with altered expression, four were downregulated and 17 upregulated. Furthermore, eight miRNAs were validated by stem-loop qRT-PCR and their dynamic differential expression was analyzed. In addition, 393 target genes of 58 identified cold-responsive miRNAs were predicted and categorized by function. These results provide important information for further characterization and functional analysis of cold-responsive miRNAs in banana.

Keywords cold stress      microRNA      Musa balbisiana     
Corresponding Author(s): Biyu XU,Zhiqiang JIN   
Just Accepted Date: 14 December 2016   Online First Date: 04 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Jingyi WANG,Juhua LIU,Caihong JIA, et al. Cold stress responsive microRNAs and their targets in Musa balbisiana[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 335-345.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016121
https://academic.hep.com.cn/fase/EN/Y2016/V3/I4/335
Category CK CS
Total sRNAs Unique sRNAs Total sRNAs Unique sRNAs
Raw reads 13151282 17315104
Clean reads 12198214 16738624
Sequences of 18 to 30 nucleotides 914848 12677356
Sequences mapped to the genome 683275 338261 6615966 63348
Known miRNAs 17912 175 321534 434
Novel miRNAs 510 69   10019 214
Tab.1   Statistics of sRNA sequences for control (CK) and cold-stress (CS) libraries
Fig.1   The size distribution of small RNAs
Fig.2  Unique and overlapping banana miRNAs in control and cold-stress libraries. (a) Known unique and overlapping banana miRNAs; (b) novel unique and overlaping banana miRNAs.
Fig.3  Family size distribution of conserved miRNA in banana
miRNAs Normalized count (TPM) Fold change P-value
Cold stress Control
mba-miR156a 73224.56 22330.05 1.71 0.0000
mba-miR156c-3p 0.00 151.13 - 8.24 0.0000
mba-miR159f 11415.16 2644.85 2.11 0.0000
mba-miR160a-3p 12.02 0.00 4.59 0.0024
mba-miR160a-5p 128.26 831.24 - 2.70 0.0000
mba-miR160e-5p 72.15 415.62 - 2.53 0.0000
mba-miR164a 5066.28 1360.21 1.90 0.0000
mba-miR164c 53227.99 7972.32 2.74 0.0000
mba-miR166b-5p 80.16 340.05 - 2.08 0.0000
mba-miR166d-5p 11920.18 4193.97 1.51 0.0000
mba-miR167d-5p 246997.12 49647.53 2.31 0.0000
mba-miR169e 132.27 0.00 8.05 0.0000
mba-miR169h 16.03 0.00 5.00 0.0003
mba-miR171a 6096.37 869.02 2.81 0.0000
mba-miR171d-5p 20.04 0.00 5.32 0.0000
mba-miR171i-3p 7523.26 2871.55 1.39 0.0000
mba-miR172b 12.02 0.00 4.59 0.0024
mba-miR172c 4.01 37.78 - 3.24 0.0000
mba-miR390-5p 112.23 37.78 1.57 0.0004
mba-miR393a 160.33 0.00 8.32 0.0000
mba-miR394 3138.37 831.24 1.92 0.0000
mba-miR395b 505.02 75.57 2.74 0.0000
mba-miR396a-3p 573.16 264.48 1.12 0.0000
mba-miR396a-5p 10481.26 31851.50 - 1.60 0.0000
mba-miR396c-3p 16.03 37.78 - 1.24 0.0000
mba-miR396e-5p 19359.28 79496.50 - 2.04 0.0000
mba-miR396f-5p 38085.27 83917.17 - 1.14 0.0000
mba-miR396g 1218.47 6989.95 - 2.52 0.0000
mba-miR397a 40.08 113.35 - 1.50 0.0000
mba-miR397b 16.03 113.35 - 2.82 0.0000
mba-miR398a 56.11 0.00 6.81 0.0000
mba-miR398b 132.27 566.75 - 2.10 0.0000
mba-miR399a 124.25 415.62 - 1.74 0.0000
mba-miR399e 52.11 0.00 6.70 0.0000
mba-miR444a-3p.2 8.02 37.78 - 2.24 0.0000
mba-miR444f 16.03 151.13 - 3.24 0.0000
mba-miR5083 168.34 340.05 - 1.01 0.0000
mba-miR5179 24.05 0.00 5.59 0.0000
mba-miR528-5p 13090.56 2758.20 2.25 0.0000
mba-miR529a 68.14 0.00 7.09 0.0000
mba-miR530-5p 52.11 113.35 - 1.12 0.0000
mba-miR535-5p 39764.68 16775.88 1.25 0.0000
mba-miR5538 8.02 0.00 4.00 0.0197
mba-miRn02 76.15 0.00 7.25 0.0000
mba-miRn03 4.01 37.78 - 3.24 0.0000
mba-miRn04 32.07 0.00 6.00 0.0000
mba-miRn05 12.02 37.78 - 1.65 0.0000
mba-miRn06 8.02 0.00 4.00 0.0197
mba-miRn07 8.02 0.00 4.00 0.0197
mba-miRn08 0.00 113.35 - 7.82 0.0000
mba-miRn10 200.41 37.78 2.41 0.0000
mba-miRn11 6352.89 2795.98 1.18 0.0000
mba-miRn14 949.93 113.35 3.07 0.0000
mba-miRn17 424.86 0.00 9.73 0.0000
mba-miRn19 168.34 0.00 8.40 0.0000
mba-miRn20 2288.64 377.84 2.60 0.0000
mba-miRn22 10886.09 1133.51 3.26 0.0000
mba-miRn23 8.02 3400.52 - 8.73 0.0000
mba-miRn25 1551.15 528.97 1.55 0.0000
mba-miRn27 3230.55 75.57 5.42 0.0000
mba-miRn28 16.03 0.00 5.00 0.0003
mba-miRn29 320.65 0.00 9.32 0.0000
mba-miRn30 148.30 37.78 1.97 0.0000
mba-miRn31 88.18 0.00 7.46 0.0000
Tab.2  Identification of differently expressed miRNAs during cold treatment in Musa balbisiana
Fig.4  Real-time RT-PCR validation of the cold-responsive mba-miRNAs
Fig.5  Gene ontology analysis of mba-miRNA target genes
1 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297
https://doi.org/10.1016/S0092-8674(04)00045-5
2 Park M Y, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig R S. Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(10): 3691–3696
https://doi.org/10.1073/pnas.0405570102
3 Papp I, Mette M F, Aufsatz W, Daxinger L, Schauer S E, Ray A, van der Winden J, Matzke M, Matzke A J. Evidence for nuclear processing plant microRNA and short interfering precursors. Plant Physiology, 2003, 132(3): 1382–1390
https://doi.org/10.1104/pp.103.021980
4 Valencia-Sanchez M A, Liu J D, Hannon G J, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 2006, 20(5): 515–524
https://doi.org/10.1101/gad.1399806
5 Dong Q H, Han J, Yu H P, Wang C, Zhao M Z, Liu H, Ge A J, Fang J G. Computational identification of microRNAs in strawberry expressed sequence tags and validation of their precise sequences by miR-RACE. Journal of Heredity, 2012, 103(2): 268–277
https://doi.org/10.1093/jhered/esr127
6 Sunkar R, Li Y F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends in Plant Science, 2012, 17(4): 196–203
https://doi.org/10.1016/j.tplants.2012.01.010
7 Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001–2019
https://doi.org/10.1105/tpc.104.022830
8 Zhou X, Wang G, Sutoh K, Zhu J K, Zhang W. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta, 2008, 1779(11): 780–788
https://doi.org/10.1016/j.bbagrm.2008.04.005
9 Liu H H, Tian X, Li Y J, Wu C A, Zheng C C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA , 2008, 14(5): 836–843
https://doi.org/10.1261/rna.895308
10 Lu S, Sun Y H, Chiang V L. Stress-responsive microRNAs in Populus. Plant Journal, 2008, 55(1): 131–151
https://doi.org/10.1111/j.1365-313X.2008.03497.x
11 Zhang J, Xu Y, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress responses. BMC Genomics, 2009, 10(1): 449–465
https://doi.org/10.1186/1471-2164-10-449
12 Lv D K, Bai X, Li Y, Ding X D, Ge Y, Cai H, Ji W, Wu N, Zhu Y M. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene, 2010, 459(1–2): 39–47
https://doi.org/10.1016/j.gene.2010.03.011
13 Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiology, 2012, 159(2): 721–738
https://doi.org/10.1104/pp.112.196048
14 Thiebaut F, Rojas C A, Almeida K L, Grativol C, Domiciano G C, Lamb C R, De Almeida Engler J, Hemerly A S, Ferreira P C G, De Almeida Engler J, Hemerly A S, Ferreira P C. Regulation of miR319 during cold stress in sugarcane. Plant, Cell & Environment, 2012, 35(3): 502–512
https://doi.org/10.1111/j.1365-3040.2011.02430.x
15 D’Hont A, Denoeud F, Aury J M, Baurens F C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain M R, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci A M, Weissenbach J, Ruiz M, Glaszmann J C, Quétier F, Yahiaoui N, Wincker P. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488(710): 213–217
16 Baurens F C, Bocs S, Rouard M, Matsumoto T, Miller R N, Rodier-Goud M, MBeguie-A-MBeguie D, Yahiaoui N, MBéguié-A-MBéguié D, Yahiaoui N. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana). BMC Plant Biology, 2010, 10(1): 149–165
https://doi.org/10.1186/1471-2229-10-149
17 Subbaraya U. Potential and constraints of using wild Musa. In: Subbaraya U, eds. Farmers’ knowledge of wild Musa in India. Food and Agriculture Organization of the United Nations, 2006, 33–36
18 Ravi I, Uma S, Vaganan M M, Mustaffa M M. Phenotyping bananas for drought resistance. Frontiers in Physiology, 2013, 4: 9
https://doi.org/10.3389/fphys.2013.00009
19 Davey M W, Gudimella R, Harikrishna J A, Sin L W, Khalid N, Keulemans J. A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics, 2013, 14(1): 683–703
https://doi.org/10.1186/1471-2164-14-683
20 Chai J, Feng R J, Shi H R, Ren M Y, Zhang Y D, Wang J Y. Bioinformatic identification and expression analysis of banana microRNAs and their targets. PLoS One, 2015, 10(4): e0123083
https://doi.org/10.1371/journal.pone.0123083
21 Ghag S B, Shekhawat U K S, Ganapathi T R. Small RNA profiling of two important cultivars of banana and overexpression of miRNA156 in transgenic banana plants. PLoS One, 2015, 10(5): e0127179
https://doi.org/10.1371/journal.pone.0127179
22 Bi F C, Meng X C, Ma C, Yi G J. Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics, 2015, 16(1): 776–791
https://doi.org/10.1186/s12864-015-1995-1
23 Lee W S, Gudimella R, Wong G R, Tammi M T, Khalid N, Harikrishna J A. Transcripts and microRNAs responding to salt stress in Musa acuminata colla (AAA group) cv. berangan roots. PLoS One, 2015, 10(5): e0127526
https://doi.org/10.1371/journal.pone.0127526
24 Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 2014, 42(D1): 68–73
https://doi.org/10.1093/nar/gkt1181
25 Wen M, Shen Y, Shi S, Tang T. miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics, 2012, 13(1): 140–150
https://doi.org/10.1186/1471-2105-13-140
26 Friedlander M R, Mackowiak S D, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 2012, 40(1): 37–52
https://doi.org/10.1093/nar/gkr688
27 Meyers B C, Axtell M J, Bartel B, Bartel D P, Baulcombe D, Bowman J L, Cao X, Carrington J C, Chen X, Green P J, Griffiths-Jones S, Jacobsen S E, Mallory A C, Martienssen R A, Poethig R S, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J K. Criteria for annotation of plant MicroRNAs. Plant Cell, 2008, 20(12): 3186–3190
https://doi.org/10.1105/tpc.108.064311
28 Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26(1): 136–138
https://doi.org/10.1093/bioinformatics/btp612
29 Storey J D. The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of Statistics, 2003, 31(6): 2013–2035
https://doi.org/10.1214/aos/1074290335
30 Livak K J, Schmittgen T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−Δ ΔCT method. Methods, 2001, 25(4): 402–408
https://doi.org/10.1006/meth.2001.1262
31 Dai X B, Zhao P X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research, 2011, 39(suppl. 2): W155–W159
https://doi.org/10.1093/nar/gkr319
32 Young M D, Wakefield M J, Smyth G K, Oshlack A.Goseq: gene ontology testing for RNA-seq datasets. ResearchGate, 2012,1–26
33 Bonnet E, Wuyts J, Rouze P, Van de Peer Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics, 2004, 20(17): 2911–2917
https://doi.org/10.1093/bioinformatics/bth374
34 Rajagopalan R, Vaucheret H, Trejo J, Bartel D P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development, 2006, 20(24): 3407–3425
https://doi.org/10.1101/gad.1476406
35 Sunkar R, Zhou X F, Zheng Y, Zhang W X, Zhu J K. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology, 2008, 8(1): 25–42
https://doi.org/10.1186/1471-2229-8-25
36 Xu Q, Liu Y L, Zhu A D, Wu X M, Ye J L, Yu K Q, Guo W W, Deng X X. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics, 2010, 11(1): 246–263
https://doi.org/10.1186/1471-2164-11-246
37 Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 2006, 57(1): 19–53
https://doi.org/10.1146/annurev.arplant.57.032905.105218
38 Wang B, Sun Y F, Song N, Wei J P, Wang X J, Feng H, Yin Z Y, Kang Z S. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiology and Biochemistry, 2014, 80: 90–96
https://doi.org/10.1016/j.plaphy.2014.03.020
39 Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochemical and Biophysical Research Communications, 2012, 417(2): 892–896
https://doi.org/10.1016/j.bbrc.2011.12.070
40 Zhang X N, Li X, Liu J H. Identification of conserved and novel cold-responsive microRNAs in trifoliate orange (Poncirus trifoliata (L.) Raf.) using high-throughput sequencing. Plant Molecular Biology Reporter, 2014, 32(2): 328–341
https://doi.org/10.1007/s11105-013-0649-1
41 Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K A. R2R3type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry, 2006, 281(49): 37636–37645
https://doi.org/10.1074/jbc.M605895200
42 Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235(6): 1157–1169
https://doi.org/10.1007/s00425-011-1564-z
43 Huang X S, Wang W, Zhang Q, Liu J H. A basic helix-loop- helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology, 2013, 162(2): 1178–1194
https://doi.org/10.1104/pp.112.210740
44 Giacomelli J I, Weigel D, Chan R L, Manavella P A. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytologist, 2012, 195(4): 766–773
https://doi.org/10.1111/j.1469-8137.2012.04259.x
45 Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79–87
https://doi.org/10.1016/j.tplants.2004.12.010
46 Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008, 67(1): 169–181
https://doi.org/10.1007/s11103-008-9309-5
47 Kim J S, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsisgrowth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell, 2012, 24(8): 3393–3405
https://doi.org/10.1105/tpc.112.100933
48 Tan Y F, O’Toole N, Taylor N L, Millar A H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiology, 2010, 152(2): 747–761
https://doi.org/10.1104/pp.109.147942
49 Goldgur Y, Rom S, Ghirlando R, Shkolnik D, Shadrin N, Konrad Z, Bar-Zvi D. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress-and salt stress-regulated plant-specific protein, from unfolded to folded state. Plant Physiology, 2007, 143(2): 617–628
https://doi.org/10.1104/pp.106.092965
[1] Xuekun GUO,Wenhai FENG. A brief review of microRNA and its role in PRRSV infection and replication[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed