Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (4) : 357-362    https://doi.org/10.15302/J-FASE-2016125
RESEARCH ARTICLE
The secondary laticifer differentiation in rubber tree is induced by trichostatin A, an inhibitor of histone acetylation
Shixin ZHANG1,2,Shaohua WU1,2,Weimin TIAN1,2()
1. Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou 571737, China
2. State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
 Download: PDF(5896 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The secondary laticifer, a specific tissue in the secondary phloem of rubber tree, is differentiated from the vascular cambia. The number of the secondary laticifer in the trunk bark of rubber tree is positively correlated with rubber yield. Although jasmonates have been demonstrated to be crucial in the regulation of secondary laticifer differentiation, the mechanism for the jasmonate-induced secondary laticifer differentiation remains to be elucidated. By using an experimental morphological technique, the present study revealed that trichostatin A (TSA), an inhibitor of histone deacetylation, could induce the secondary laticifer differentiation in a concentration-dependent manner. The results suggest that histone acetylation is essential for the secondary laticifer differentiation in rubber tree.

Keywords Hevea brasiliensis      histone acetylation      laticifer differentiation      trichostatin      vascular cambia     
Corresponding Author(s): Weimin TIAN   
Just Accepted Date: 26 December 2016   Online First Date: 12 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Shixin ZHANG,Shaohua WU,Weimin TIAN. The secondary laticifer differentiation in rubber tree is induced by trichostatin A, an inhibitor of histone acetylation[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 357-362.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016125
https://academic.hep.com.cn/fase/EN/Y2016/V3/I4/357
Fig.1  Light microscopic photos of the bark cross sections. The stem of epicormic shoots was respectively treated with water (a), mechanic wounding (b), 0.07% methyl jasmonate (c) and coronatine at different concentrations (d–h). White arrow, the primary laticifer; black arrow, the secondary laticifers; Ca, cambium; ST, sieve tube; V, vessel. Scale bar= 100 mm.
Fig.2  Light microscopic photos of the bark cross sections. The stem of epicormic shoots was respectively treated with 5% dimethyl sulfoxide (a) and TSA at different concentrations (b–f). White arrow, the primary laticifer; black arrow, the secondary laticifers; Ca, cambium; ST, sieve tube; V, vessel. Scale bar= 100 mm.
Representative photo in Fig. 1 Representative photo in Fig. 2
No. Treatment Number of laticifer cells No. Treatment Number of laticifer cells
a Water 0d a 5% DMSO 0d
b Wounding 1.005±0.005a b 1 nmol·L-1 TSA 0d
c 0.07% MeJA 0.988±0.005a c 10 nmol·L-1 TSA 0.032±0.003c
d 100 nmol·L-1 COR 0d d 100 nmol·L-1 TSA 0.32±0.006b
e 1 mmol·L-1 COR 0.092±0.002c e 1 mmol·L-1 TSA 0.983±0.005a
f 2.5 mmol·L-1 COR 0.234±0.006b f 10 mmol·L-1 TSA 0.999±0.005a
g 10 mmol·L-1 COR 0.996±0.006a
h 20 mmol·L-1 COR 0.995±0.005a
Tab.1  Statistics of the secondary laticifer cells induced by different factors
1 Lau N S, Makita Y, Kawashima M, Taylor T D, Kondo S, Othman A S, Shu-Chien A C, Matsui M. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Scientific Reports, 2016, 6: 28594
https://doi.org/10.1038/srep28594
2 Gomez J.Anatomy of hevea and its influence on latex production. Malaysian Rubber Research & Development Board Monography, 1982
3 Dooner H, Kermicle J. Displaced and tandem duplications in the long arm of chromosome 10 in maize. Genetics, 1976, 82(2): 309–322
4 Hao B Z, Wu J L. Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Annals of Botany, 2000, 85(1): 37–43
https://doi.org/10.1006/anbo.1999.0995
5 Tian W M, Shi M J, Yu F Y, Wu J L, Hao B Z, Cui K M. Localized effects of mechanical wounding and exogenous jasmonic acid on the induction of secondary laticifer differentiation in relation to the distribution of jasmonic acid in Hevea brasiliensis. Acta Botanica Sinica, 2003, 45(11): 1366–1372
6 Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusak A, Matsumoto T. The structure of coronatine. Journal of the American Chemical Society, 1977, 99(2): 636–637
https://doi.org/10.1021/ja00444a067
7 Tian W M, Yang S G, Shi M J, Zhang S X, Wu J L. Mechanical wounding-induced laticifer differentiation in rubber tree: an indicative role of dehydration, hydrogen peroxide, and jasmonates. Journal of Plant Physiology, 2015, 182: 95–103
https://doi.org/10.1016/j.jplph.2015.04.010
8 Fonseca S, Chico J M, Solano R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 2009, 12(5): 539–547
https://doi.org/10.1016/j.pbi.2009.07.013
9 Benedetti C E, Xie D, Turner J G. COI1-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate. Plant Physiology, 1995, 109(2): 567–572
https://doi.org/10.1104/pp.109.2.567
10 Zhang S X, Tian W M. Cross talk between cytokinin and jasmonates in regulating the secondary laticifer differentiation in rubber tree (Hevea brasiliensis Muell. Arg.). Journal of Rubber Research, 2015, 18(1): 38–48
11 Wasternack C, Xie D. The genuine ligand of a jasmonic acid receptor: improved analysis of jasmonates is now required. Plant Signaling & Behavior, 2010, 5(4): 337–340
https://doi.org/10.4161/psb.5.4.11574
12 Katsir L, Schilmiller A L, Staswick P E, He S Y, Howe G A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19): 7100–7105
https://doi.org/10.1073/pnas.0802332105
13 Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology, 2009, 5(5): 344–350
https://doi.org/10.1038/nchembio.161
14 Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021–1058
https://doi.org/10.1093/aob/mct067
15 Geng X, Jin L, Shimada M, Kim M G, Mackey D. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 2014, 240(6): 1149–1165
https://doi.org/10.1007/s00425-014-2151-x
16 Zhang S, Liu S, Tian W. Effect of vascular cambia activity on secondary laticifer differentation induced by mechanical wounding in rubber tree (Hevea brasiliensis Muell. Arg.). Chinese Journal of Tropical Crops, 2011, 32(6): 1037–1041 (in Chinese)
17 Kinzler K W, Vogelstein B.Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 1997, 386(6627): 761–763
18 Bartlett T E, Chindera K, McDermott J, Breeze C E, Cooke W R, Jones A, Reisel D, Karegodar S T, Arora R, Beck S, Menon U, Dubeau L, Widschwendter M. Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution. Nature Communications, 2016, 7: 11620
https://doi.org/10.1038/ncomms11620
19 Peitzsch C, Cojoc M, Hein L, Kurth I, Mabert K, Trautmann F, Klink B, Schrock E, Wirth M P, Krause M, Stakhovsky E A, Telegeev G D, Novotny V, Toma M, Muders M, Baretton G B, Frame F M, Maitland N J, Baumann M, Dubrovska A. An epigenetic reprogramming strategyto resensitize radioresistant prostate cancer cells. Cancer Research, 2016, 76(9): 2637–2651
https://doi.org/10.1158/0008-5472.CAN-15-2116
20 Suva M L, Riggi N, Bernstein B E. Epigenetic reprogramming in cancer. Science, 2013, 339(6127): 1567–1570
https://doi.org/10.1126/science.1230184
21 Buurman R, Sandbothe M, Schlegelberger B, Skawran B. HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma. European Journal of Medical Research, 2016, 21(1): 26
https://doi.org/10.1186/s40001-016-0217-x
22 Heim C, Binder E B. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Experimental Neurology, 2012, 233(1): 102–111
https://doi.org/10.1016/j.expneurol.2011.10.032
23 Wilson A J, Byun D S, Popova N, Murray L B, L’Italien K, Sowa Y, Arango D, Velcich A, Augenlicht L H, Mariadason J M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. Journal of Biological Chemistry, 2006, 281(19): 13548–13558
https://doi.org/10.1074/jbc.M510023200
24 Chistiakov D A, Myasoedova V A, Orekhov A N, Bobryshev Y V. Epigenetically active drugs inhibiting DNA methylation and histone deacetylation. Current Pharmaceutical Design, 2016, 22(999): 1
https://doi.org/10.2174/1381612822666161021110827
25 Wu K, Zhang L, Zhou C, Yu C W, Chaikam V. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. Journal of Experimental Botany, 2008, 59(2): 225–234
https://doi.org/10.1093/jxb/erm300
26 Hrgovic I, Doll M, Kleemann J, Wang X F, Zoeller N, Pinter A, Kippenberger S, Kaufmann R, Meissner M. The histone deacetylase inhibitor trichostatin a decreases lymphangio genesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer, 2016, 16(1): 763
https://doi.org/10.1186/s12885-016-2807-y
27 Almeida V R, Vieira I A, Buendia M, Brunetto A T, Gregianin L J, Brunetto A L, Klamt F, de Farias C B, Abujamra A L, Lopez P L, Roesler R. Combined treatments with a retinoid receptor agonist and epigenetic modulators in human neuroblastoma cells. Molecular Neurobiology, 2016: 1–10
https://doi.org/10.1007/s12035-016-0250-3
28 Jenuwein T, Allis C D. Translating the histone code. Science, 2001, 293(5532): 1074–1080
https://doi.org/10.1126/science.1063127
29 Wager A, Browse J. Social Network: JAZ protein interactions expand our knowledge of jasmonate signaling. Frontiers in Plant Science, 2012, 3: 41
https://doi.org/10.3389/fpls.2012.00041
30 Zhu Z, An F, Feng Y, Li P, Xue L, A M, Jiang Z, Kim J M, To T K, Li W, Zhang X, Yu Q, Dong Z, Chen W Q, Seki M, Zhou J M, Guo H, A M, Jiang Z, Kim J M, To T K, Li W, Zhang X, Yu Q, Dong Z, Chen W Q, Seki M, Zhou J M,Guo H. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12539–12544
https://doi.org/10.1073/pnas.1103959108
31 Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J G. COI1 links jasmonate signalling and fertility to the SCF ubiquitin–ligase complex in Arabidopsis. Plant Journal, 2002, 32(4): 457–466
https://doi.org/10.1046/j.1365-313X.2002.01432.x
[1] Yueyi CHEN,Xinsheng GAO,Xiaofei ZHANG,Weimin TIAN. Relationship between the number of tapping-induced secondary laticifer lines and rubber yield among Hevea germplasm[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 363-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed