Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (3) : 366-372    https://doi.org/10.15302/J-FASE-2017132
RESEARCH ARTICLE
Synthesis of haptens and production of antibodies to bisphenol A
Xiya ZHANG1, Xiaoyun DONG2, Sijun ZHAO3, Yuebin KE4, Kai WEN1,2, Suxia ZHANG1,5, Zhanhui WANG1,2,5, Jianzhong SHEN1,2,5()
1. Beijing Advanced Innovation Center for Food Nutrition and Human Health/College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
2. Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, China
3. Department for Safety Supervision of Animal Products, China Animal Health and Epidemiology Center, Qingdao 266032, China
4. Department of Genetic Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518020, China
5. Beijing Laboratory for Food Quality and Safety/National Reference Laboratory for Veterinary Drug Residues, Beijing 100193, China
 Download: PDF(337 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three immunizing haptens of bisphenol A (BPA), including two new haptens, were used to produce highly sensitive and specific polyclonal antibodies. The spacer arms of haptens for coupling to the protein carrier were located at different positions in BPA, and different length spacer arms were tested. Highly sensitive polyclonal antibodies were obtained and characterized using indirect competitive enzyme-linked immunosorbent assay (icELISA). Under optimized conditions, the half maximal inhibitory concentration (IC50) value of the best polyclonal antibody was 2.1 mg·L1, based on coating heterogeneous antigens, and this optimal polyclonal antibody was highly sensitive toward BPA and displayed negligible cross-reactivity with bisphenol B and bisphenol E. A sensitive icELISA method utilizing the polyclonal antibody was developed for the determination of BPA in milk. In spiked samples (5, 10 and 20 mg·L1), the recovery ranged from 80% to 102% with a coefficient of variation (CV) value below 15.8%. The limit of detection of icELISA was 1.95 mg·L1. These results indicate that the icELISA method is suitable for the detection of BPA in milk.

Keywords bisphenol A      cross-reactivity      hapten      indirect competitive ELISA      polyclonal antibody     
Corresponding Author(s): Jianzhong SHEN   
Just Accepted Date: 20 January 2017   Online First Date: 17 February 2017    Issue Date: 12 September 2017
 Cite this article:   
Xiya ZHANG,Xiaoyun DONG,Sijun ZHAO, et al. Synthesis of haptens and production of antibodies to bisphenol A[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 366-372.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017132
https://academic.hep.com.cn/fase/EN/Y2017/V4/I3/366
Fig.1  Haptens from the literature (a) and the synthesis of haptens and antigens (b)
CodeOYPPP-BSA/OVAHHPBA-BSA/OVABHPVA-BSA/OVA
OD450IC50/(ng·mL-1)OD450IC50/(ng·mL-1)OD450IC50/(ng·mL-1)
11.25137.41.64336.3
21.86738.21.48745.51.58940.2
31.94823.11.248126.2
Tab.1  Optical density (OD450) and IC50 of polyclonal antibodiesa
Fig.2  Standard curves. (a) The comparison of homogeneous and heterogeneous icELISA; (b) the standard curve of BPA in PBS and milk. n = 3.
FactorB0 (OD450)IC50/(ng·mL-1)
Coating buffer0.01 mol·L-1 PBS, pH 7.41.7966.4
0.05 mol·L-1 CB, pH 9.62.0583.1
Temperature/℃41.9895.6
252.0125.4
372.1035.2
pH6.01.5843.2
7.42.0832.1
8.02.3072.7
NaCl concentration/( mol·L-1)0.11.9802.2
0.21.6822.4
0.41.4892.9
Tab.2  Effects of various factors on the sensitivity of the icELISA
CompoundIC50/(ng·mL-1)CR/%
BPA2.1100
Bisphenol B27.57.6
BHPVA12.716.5
Bisphenol E80.72.6
17b-estradiol>1000<0.2
Diethylstilbestrol>1000<0.1
Nonylphenol>1000<0.1
Tab.3  The IC50 values and cross-reactivity (CR) of the polyclonal antibody
Antibody nameHaptenIC50/(mg·L-1)
Polyclonal antibody (this study)BPA-AMA2.1
Polyclonal antibody[29]BPA-CME1.25
Polyclonal antibody[16]BPA-CME5.4
Monoclonal antibody BBA-2187[20]BPA-CPE0.59
Monoclonal antibody[30]BHPVA2.2
Monoclonal antibody[31]BHPVA140
Polyclonal antibody[18]BHPVA200
Polyclonal antibody[1]BHPVA1100
Polyclonal antibody[13]BPA-GA1.2
Monoclonal antibody BPAB-11[15]BPA-GA230
Chicken immunoglobulins[12]BPA-GA570
Tab.4  Comparison of IC50 values reported in the literature and in this study
Added/(ng·mL-1)Observed/(ng·mL-1)Recovery/%CV/%
55.1±0.75102.0±15.015.8
108.0±0.1280.0±11.213.0
2016.7±0.1983.5±9.59.8
Tab.5  Recoveries and coefficient of variation (CV) values for BPA in milk by the icELISA (n = 3)
1 Kim A, Li C R, Jin C F, Lee K W, Lee S H, Shon K J, Park N G, Kim D K, Kang S W, Shim Y B, Park J S. A sensitive and reliable quantification method for bisphenol A based on modified competitive ELISA method. Chemosphere, 2007, 68(7): 1204–1209
https://doi.org/10.1016/j.chemosphere.2007.01.079
2 Choi K C, Jeung E B. The biomarker and endocrine disruptors in mammals. Journal of Reproduction and Development, 2003, 49(5): 337–345
https://doi.org/10.1262/jrd.49.337
3 Iso T, Watanabe T, Iwamoto T, Shimamoto A, Furuichi Y. DNA damage caused by bisphenol A and estradiol through estrogenic activity. Biological & Pharmaceutical Bulletin, 2006, 29(2): 206–210
https://doi.org/10.1248/bpb.29.206
4 Diel P, Schulz T, Smolnikar K, Strunck E, Vollmer G, Michna H. Ability of xeno- and phytoestrogens to modulate expression of estrogen-sensitive genes in rat uterus: estrogenicity profiles and uterotropic activity. Journal of Steroid Biochemistry, 2000, 73(1–2): 1–10
https://doi.org/10.1016/S0960-0760(00)00051-0
5 Steinmetz R, Mitchner N A, Grant A, Allen D L, Bigsby R M, Ben-Jonathan N. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology, 1998, 139(6): 2741–2747 
https://doi.org/10.1210/en.139.6.2741
6 Markey C M, Rubin B S, Soto A M, Sonnenschein C. Endocrine disruptors: from Wingspread to environmental developmental biology. Journal of Steroid Biochemistry, 2002, 83(1–5): 235–244
https://doi.org/10.1016/S0960-0760(02)00272-8
7 Rudel R A, Brody J G, Spengler J C, Vallarino J, Geno P W, Sun G, Yau A. Identification of selected hormonally active agents and animal mammary carcinogens in commercial and residential air and dust samples. Journal of the Air & Waste Management Association, 2001, 51(4): 499–513
https://doi.org/10.1080/10473289.2001.10464292
8 Behnisch P A, Fujii K, Shiozaki K, Kawakami I, Sakai S. Estrogenic and dioxin-like potency in each step of a controlled landfill leachate treatment plant in Japan. Chemosphere, 2001, 43(4–7): 977–984
https://doi.org/10.1016/S0045-6535(00)00458-6
9 Fürhacker M, Scharf S, Weber H. Bisphenol A: emissions from point sources. Chemosphere, 2000, 41(5): 751–756
https://doi.org/10.1016/S0045-6535(99)00466-X
10 Meesters R J W, Schroder H F. Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Analytical Chemistry, 2002, 74(14): 3566–3574
https://doi.org/10.1021/ac011258q
11 Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H. Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. Journal of Chromatography. B, Biomedical Sciences and Applications, 2000, 749(1): 17–23
https://doi.org/10.1016/S0378-4347(00)00351-0
12 De Meulenaer B, Baert K, Lanckriet H, Van Hoed V, Huyghebaert A. Development of an enzyme-linked immunosorbent assay for bisphenol A using chicken immunoglobulins. Journal of Agricultural and Food Chemistry, 2002, 50(19): 5273–5282
https://doi.org/10.1021/jf0202739
13 Lu Y, Peterson J R, Gooding J J, Lee N A. Development of sensitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol A in canned foods and beverages. Analytical and Bioanalytical Chemistry, 2012, 403(6): 1607–1618
https://doi.org/10.1007/s00216-012-5969-8
14 Maiolini E, Ferri E, Pitasi A L, Montoya A, Di Giovanni M, Errani E, Girotti S. Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry. Analyst (London), 2014, 139(1): 318–324
https://doi.org/10.1039/C3AN00552F
15 Moreno M J, D’Arienzo P, Manclus J J, Montoya A. Development of monoclonal antibody-based immunoassays for the analysis of bisphenol A in canned vegetables. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2011, 46(6): 509–517
16 Ohkuma H, Abe K, Ito M, Kokado A, Kambegawa A, Maeda M. Development of a highly sensitive enzyme-linked immunosorbent assay for bisphenol A in serum. Analyst, 2002, 127(1): 93–97
https://doi.org/10.1039/b103515k
17 Wu X L, Wang L B, Ma W, Zhu Y Y, Xu L G, Kuang H, Xu C L. A simple, sensitive, rapid and specific detection method for bisphenol A based on fluorescence polarization immunoassay. Immunological Investigations, 2012, 41(1): 38–50
https://doi.org/10.3109/08820139.2011.579671
18 Zhao M P, Li Y Z, Guo Z Q, Zhang X X, Chang W B. A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols. Talanta, 2002, 57(6): 1205–1210
19 Wang Z H, Liu M X, Shi W M, Li C L, Zhang S X, Shen J Z. New haptens and antibodies for ractopamine. Food Chemistry, 2015, 183: 111–114
https://doi.org/10.1016/j.foodchem.2015.03.043
20 Nishi K, Takai M, Morimune K, Ohkawa H. Molecular and immunochemical characteristics of monoclonal and recombinant antibodies specific to bisphenol A. Bioscience, Biotechnology, and Biochemistry, 2003, 67(6): 1358–1367
https://doi.org/10.1271/bbb.67.1358
21 O’Keeffe M, Crabbe P, Salden M, Wichers J, Van Peteghem C, Kohen F, Pieraccini G, Moneti G. Preliminary evaluation of a lateral flow immunoassay device for screening urine samples for the presence of sulphamethazine. Journal of Immunological Methods, 2003, 278(1–2): 117–126
https://doi.org/10.1016/S0022-1759(03)00207-2
22 Jiang W X, Luo P J, Wang X, Chen X, Zhao Y F, Shi W, Wu X P, Wu Y N, Shen J Z. Development of an enzyme-linked immunosorbent assay for the detection of nitrofurantoin metabolite, 1-amino-hydantoin, in animal tissues. Food Control, 2012, 23(1): 20–25
https://doi.org/10.1016/j.foodcont.2011.05.014
23 Wang J J, Liu B H, Hsu Y T, Yu F Y. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control, 2011, 22(6): 964–969
https://doi.org/10.1016/j.foodcont.2010.12.003
24 Zhang X, Wen K, Wang Z, Jiang H, Beier R C, Shen J. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk. Food Control, 2016, 60(2): 588–595
https://doi.org/10.1016/j.foodcont.2015.08.040
25 Goodrow M H, Hammock B D, Goodrow M H, Hammock B D. Hapten design for compound-selective antibodies: ELISAs for environmentally deleterious small molecules. Analytica Chimica Acta, 1998, 376(1): 83–91
https://doi.org/10.1016/S0003-2670(98)00433-4
26 Goodrow M H, Sanborn J R, Stoutamire D W, Gee S J, Hammock B D. Strategies for immunoassay hapten design. ACS Symposium Series, 1995, 586: 119–139
27 Lei H T, Shen Y D, Song L J, Yang J Y, Chevallier O P, Haughey S A, Wang H, Sun Y M, Elliott C T. Hapten synthesis and antibody production for the development of a melamine immunoassay. Analytica Chimica Acta, 2010, 665(1): 84–90
https://doi.org/10.1016/j.aca.2010.03.007
28 Kim Y J, Cho Y A, Lee H S, Lee Y T, Gee S J, Hammock B D. Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Analytica Chimica Acta, 2003, 475(1–2): 85–96
https://doi.org/10.1016/S0003-2670(02)01037-1
29 Kaddar N, Bendridi N, Harthé C, de Ravel M R, Bienvenu A L, Cuilleron C Y, Mappus E, Pugeat M, Déchaud H. Development of a radioimmunoassay for the measurement of Bisphenol A in biological samples. Analytica Chimica Acta, 2009, 645(1–2): 1–4
https://doi.org/10.1016/j.aca.2009.04.036
30 Yang F, Xu L, Zhu L, Zhang Y, Meng W, Liu R. Competitive immunoassay for analysis of bisphenol A in children’s sera using a specific antibody. Environmental Science and Pollution Research International, 2016, 23(11): 10714–10721
https://doi.org/10.1007/s11356-016-6231-2
31 Huang P, Zhao S, Eremin S A, Zheng S, Lai D, Chen Y, Guo B. Fluorescence polarization immunoassay method for bisphenol A residue in environmental water samples based on monoclonal antibody and 4′-(aminomethyl) fluorescein. Analytical Methods, 2015, 7(10): 4246–4251
https://doi.org/10.1039/C5AY00818B
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed