Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (3) : 353-357    https://doi.org/10.15302/J-FASE-2017157
RESEARCH ARTICLE
Molecular authentication of the traditional Chinese medicine Tongren Dahuoluo Wan and its alternative formulation
Jikun WANG1, Jing DU2, Meng CAO1, Lu YAO2, Suhua XIE2, Jiafu CHEN2, Xingbo ZHAO1()
1. National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
2. Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100079, China
 Download: PDF(808 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tongren Dahuoluo Wan has been a popular traditional Chinese medicine in international pharmaceutical markets for hundreds of years. Leopard bone powder is the key element in its formulation. However, the leopard has been listed for wildlife conservation, which limits the use of the leopard bone supplies. Therefore, an alternative formulation which substitutes leopard bone with zokor bone in the formula of Tongren Dahuoluo Wan is now manufactured. To develop a simple and reliable molecular method for authenticating the two patent medicines, mitochondrial nucleotide polymorphic sites of 12S rRNA, COI and Cytb genes were screened in leopard and zokor bones, and nine pairs of species-specific primers were verified for discriminating the two species. For the patent medicine authentication, we set up a molecular diagnostic assay to resolve the difficulties of low concentration of target DNAs and presence of PCR-inhibitory substances in this complex medicine, and successfully confirmed leopard or zokor content using the nine pairs of species-specific primers. We recommend a common technical strategy for authentication of species origins in traditional Chinese medicine, and discuss the experimental solutions for technical problems of molecular diagnostic assays.

Keywords Tongren Dahuoluo Wan      molecular diagnostic assay      Eospalax baileyi      Panthera pardus      species-specific primers     
Corresponding Author(s): Xingbo ZHAO   
Just Accepted Date: 10 May 2017   Online First Date: 05 June 2017    Issue Date: 12 September 2017
 Cite this article:   
Jikun WANG,Jing DU,Meng CAO, et al. Molecular authentication of the traditional Chinese medicine Tongren Dahuoluo Wan and its alternative formulation[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 353-357.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017157
https://academic.hep.com.cn/fase/EN/Y2017/V4/I3/353
Fig.1  Gel electrophoresis of DNA extracted from Tongren Dahuoluo Wan pills and animal bones. M, 100 bp DNA Ladder marker; 1, Tongren Dahuoluo Wan (original); 2, Tongren Dahuoluo Wan (alternative); 3, zokor bone; 4, leopard bone.
Fig.2  PCR identification of patent medicines of Tongren Dahuoluo Wan original and alternative pills using species-specific mtDNA primers. 1, Tongren Dahuoluo Wan (original with leopard); 2, internal positive control (leopard); 3, Tongren Dahuoluo Wan (alternative with zokor); 4, internal positive control (zokor); 5, leopard bone; 6, zokor bone; 7, blank control. L1–L5, specific primers for leopard; Z1–Z4, specific primers for zokor.
Fig.3  Phylogenetic clustering of the leopard and zokor medicines using the COI sequences. Red circles represent the Eospalax baileyi individuals, the blue triangles represented those from Panthera pardus, and the solid node represents the medicine sequences. The numbers at each node represent the posterior probability support values.
Fig.4  Strategy for molecular authentication of animal products used in Chinese traditional medicines
1 Ping H. Experimental study on anti-inflammatory effect of Sailong Bone. Liaoning Journal of Traditional Chinese Medicine, 2000, 27(11): 524–526 (in Chinese)
2 Zhai J Y, Chen X, Jin R, Yue F, Liu D, Li J S. Effect of Zaizao Wan (Sailong bone replacement of leopard bone) against cerebral ischemia. Chinese Journal of Experimental Traditional Medical Formulae, 2016, 22(6): 124–129 (in Chinese)
3 Lee D G, Kang H W, Park C G, Ahn Y S, Shin Y. Isolation and identification of phytochemicals and biological activities of Hericium ernaceus and their contents in Hericium strains using HPLC/UV analysis. Journal of Ethnopharmacology, 2016, 184: 219–225
https://doi.org/10.1016/j.jep.2016.02.038 pmid: 26924563
4 Shellie R A, Marriott P J, Huie C W. Comprehensive two-dimensional gas chromatography (GC×GC) and GC×GC-quadrupole MS analysis of Asian and American ginseng. Journal of Separation Science, 2003, 26(12–13): 1185–1192
https://doi.org/10.1002/jssc.200301404
5 Puchert T, Lochmann D, Menezes J C, Reich G. Near-infrared chemical imaging (NIR-CI) for counterfeit drug identification—a four-stage concept with a novel approach of data processing (Linear Image Signature). Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(1): 138–145
https://doi.org/10.1016/j.jpba.2009.08.022 pmid: 19766424
6 Cao M, Wang J, Yao L, Xie S, Du J, Zhao X. Authentication of animal signatures in traditional Chinese medicine of Lingyang Qingfei Wan using routine molecular diagnostic assays. Molecular Biology Reports, 2014, 41(4): 2485–2491
https://doi.org/10.1007/s11033-014-3105-x pmid: 24445529
7 Li M, Au K Y, Lam H, Cheng L, Jiang R W, But P P H, Shaw P C. Identification of Baiying (Herba Solani Lyrati) commodity and its toxic substitute Xungufeng (Herba Aristolochiae Mollissimae) using DNA barcoding and chemical profiling techniques. Food Chemistry, 2012, 135(3): 1653–1658
https://doi.org/10.1016/j.foodchem.2012.06.049 pmid: 22953906
8 Xiang H, Gao J, Yu B, Zhou H, Cai D, Zhang Y, Chen X, Wang X, Hofreiter M, Zhao X. Early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17564–17569
https://doi.org/10.1073/pnas.1411882111 pmid: 25422439
9 Kalmár T, Bachrati C Z, Marcsik A, Raskó I. A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acids Research, 2000, 28(12): E67
https://doi.org/10.1093/nar/28.12.e67 pmid: 10871390
10 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725–2729
https://doi.org/10.1093/molbev/mst197 pmid: 24132122
11 Linacre A. The use of DNA from non-human sources. Forensic Science International: Genetics Supplement Series, 2008, 1(1): 605–606
https://doi.org/10.1016/j.fsigss.2007.10.108
12 Whiting M, Williams V, Hibbitts T. In: Alves R R N, Rosa I L, eds. Animals in traditional folk medicine. Springer, 2013, 421–473
13 Coghlan M L, Haile J, Houston J, Murray D C, White N E, Moolhuijzen P, Bellgard M I, Bunce M. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genetics, 2012, 8(4): e1002657
https://doi.org/10.1371/journal.pgen.1002657 pmid: 22511890
14 Rohland N, Hofreiter M. Comparison and optimization of ancient DNA extraction. BioTechniques, 2007, 42(3): 343–352
https://doi.org/10.2144/000112383 pmid: 17390541
15 Leonard J A, Wayne R K, Cooper A. Population genetics of ice age brown bears. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4): 1651–1654
https://doi.org/10.1073/pnas.040453097 pmid: 10677513
16 Hofreiter M, Rabeder G, Jaenicke-Despr�s V, Withalm G, Nagel D, Paunovic M, Jambrĕsić G, Pääbo S. Evidence for reproductive isolation between cave bear populations. Current Biology, 2004, 14(1): 40–43
https://doi.org/10.1016/j.cub.2003.12.035 pmid: 14711412
17 Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C. Pre-PCR processing: strategies to generate PCR-compatible samples. Molecular Biotechnology, 2004, 26(2): 133–146
https://doi.org/10.1385/MB:26:2:133 pmid: 14764939
18 Cheng K T, Tsay H S, Chen C F, Chou T W. Determination of the components in a Chinese prescription, yu-ping-feng san, by RAPD analysis. Planta Medica, 1998, 64(6): 563–565
https://doi.org/10.1055/s-2006-957515 pmid: 9776663
19 Chang S, Kalok W, But P, Su W W, Pangchui S. Molecular authentication of the Chinese herb Huajuhong and related medicinal material by DNA sequencing and ISSR markers. Journal of Food and Drug Analysis, 2010, 18(18): 161–170
20 Reunova G D, Kats I L, Muzarok T I, Zhuravlev IuN. Polymorphism of RAPD, ISSR and AFLP markers of the Panax ginseng C. A. Meyer (Araliaceae) genome. Russian Journal of Genetics, 2010, 46(8): 1057–1066
https://doi.org/10.1134/S1022795410080053 pmid: 20873202
21 Lin T C, Yeh M S, Cheng Y M, Lin L C, Sung J M. Using ITS2 PCR-RFLP to generate molecular markers for authentication of Sophora flavescens Ait. Journal of the Science of Food and Agriculture, 2012, 92(4): 892–898
https://doi.org/10.1002/jsfa.4667 pmid: 22413146
22 Kim J, Jo B H, Lee K L, Yoon E S, Ryu G H, Chung K W. Identification of new microsatellite markers in Panax ginseng. Molecules and Cells, 2007, 24(1): 60–68
pmid: 17846499
23 Hayashi K, Hashimoto N, Daigen M, Ashikawa I. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theoretical and Applied Genetics, 2004, 108(7): 1212–1220
https://doi.org/10.1007/s00122-003-1553-0 pmid: 14740086
24 Cheng X, Su X, Chen X, Zhao H, Bo C, Xu J, Bai H, Ning K. Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang Wan. Scientific Reports, 2014, 4(1): 5147
https://doi.org/10.1038/srep05147 pmid: 24888649
[1] FASE-17157-OF-WJK_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed