|
|
Repeats in the transcribed regions: comprehensive characterization and comparison of Citrus spp. |
Manosh Kumar BISWAS1, Christoph MAYER2, Xiuxin DENG1( ) |
1. Key Laboratory of Horticultural Plant Biology, Ministry of Education/Huazhong Agricultural University, Wuhan 430070, China 2. Center of Molecular Biodiversity, Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn 53113, Germany |
|
|
Abstract A large number of expressed sequences tags are available for Citrus spp., which provides an opportunity to understand genomic organization of the transcribed regions. Here, we report a detailed analysis of repetitive elements including tandem repeats (TRs) and transposable elements (TEs) in the transcribed region of the Citrus spp. On average, 22% of the expressed sequence tags (ESTs) contain TRs. The relative density of TR classes is highly taxon-specific. For instance, Citrus limonia has a high relative density of mononucleotide repeats, whereas dinucleotide repeats are rare. The proportions of 2–6, 7–30 and 31–50 bp repeats were almost identical in all studied species except for C. limonia and C. limettioides. We found that<1% of the citrus ESTs have a similarity with transposable elements. Transcriptional activity of transposable element families varied even within the same class of elements. A high proportion of transcriptional activity was observed for gypsy-like TEs compare to other TE classes. While TEs are relatively rare, TRs are abundant elements in ESTs of citrus. The high proportion of TRs that have a unit size longer than 6 bp raises the question about a possible functional or evolutionary role of these elements.
|
Keywords
Citrus spp.
tandem repeats
transcribed region
transposable elements
|
Corresponding Author(s):
Xiuxin DENG
|
Just Accepted Date: 10 May 2017
Online First Date: 26 May 2017
Issue Date: 10 December 2017
|
|
1 |
Niranjan N, Navajas-Pérez R, Mihai P, Alam M, Ming R, Andrew H P, Steven L S. Genome-wide analysis of repetitive elements in papaya. Tropical Plant Biology, 2008, 1(3): 191–201
|
2 |
Mayer C, Leese F, Tollrian R. Genome-wide analysis of tandem repeats in Daphnia pulex—a comparative approach. BMC Genomics, 2010, 11(1): 277
https://doi.org/10.1186/1471-2164-11-277
pmid: 20433735
|
3 |
Li Y C, Korol A B, Fahima T, Nevo E. Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution, 2004, 21(6): 991–1007
https://doi.org/10.1093/molbev/msh073
pmid: 14963101
|
4 |
Ugarković D, Plohl M. Variation in satellite DNA profiles--causes and effects. EMBO Journal, 2002, 21(22): 5955–5959
https://doi.org/10.1093/emboj/cdf612
pmid: 12426367
|
5 |
Camacho J P, Sharbel T F, Beukeboom L W. B-chromosome evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2000, 355(1394): 163–178
https://doi.org/10.1098/rstb.2000.0556
pmid: 10724453
|
6 |
Buard J, Jeffreys A J. Big, bad minisatellites. Nature Genetics, 1997, 15(4): 327–328
https://doi.org/10.1038/ng0497-327
pmid: 9090372
|
7 |
Kashi Y, King D, Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics, 1997, 13(2): 74–78
https://doi.org/10.1016/S0168-9525(97)01008-1
pmid: 9055609
|
8 |
Schlötterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma, 2000, 109(6): 365–371
https://doi.org/10.1007/s004120000089
pmid: 11072791
|
9 |
Li Y C, Korol A B, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology, 2002, 11(12): 2453–2465
https://doi.org/10.1046/j.1365-294X.2002.01643.x
pmid: 12453231
|
10 |
Riley D E, Krieger J N. Diverse eukaryotic transcripts suggest short tandem repeats have cellular functions. Biochemical and Biophysical Research Communications, 2002, 298(4): 581–586
https://doi.org/10.1016/S0006-291X(02)02509-3
pmid: 12408991
|
11 |
Riley D E, Krieger J N. Short tandem repeats are associated with diverse mRNAs encoding membrane-targeted proteins. BioEssays, 2004, 26(4): 434–444
https://doi.org/10.1002/bies.20001
pmid: 15057941
|
12 |
Kashi Y, King D G. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics , 2006, 22(5): 253–259
https://doi.org/10.1016/j.tig.2006.03.005
pmid: 16567018
|
13 |
Dieringer D, Schlötterer C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Research, 2003, 13(10): 2242–2251
https://doi.org/10.1101/gr.1416703
pmid: 14525926
|
14 |
Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 2004, 5(6): 435–445
https://doi.org/10.1038/nrg1348
pmid: 15153996
|
15 |
Jeffreys A J, Neumann R, Wilson V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell, 1990, 60(3): 473–485
https://doi.org/10.1016/0092-8674(90)90598-9
pmid: 2406022
|
16 |
Bonhomme F, Rivals E, Orth A, Grant G R, Jeffreys A J, Bois P R. Species-wide distribution of highly polymorphic minisatellite markers suggests past and present genetic exchanges among house mouse subspecies. Genome Biology, 2007, 8(5): R80
https://doi.org/10.1186/gb-2007-8-5-r80
pmid: 17501990
|
17 |
Qiu L, Yang C, Tian B, Yang J B, Liu A. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biology, 2010, 10(1): 278
https://doi.org/10.1186/1471-2229-10-278
pmid: 21162723
|
18 |
Studer B, Kölliker R, Muylle H, Asp T, Frei U, Roldán-Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Skøt L, Armstead I P, Dolstra O, Lübberstedt T. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biology, 2010, 10(1): 177
https://doi.org/10.1186/1471-2229-10-177
pmid: 20712870
|
19 |
Vicient C M. Transcriptional activity of transposable elements in maize. BMC Genomics, 2010, 11(1): 601
https://doi.org/10.1186/1471-2164-11-601
pmid: 20973992
|
20 |
Kidwell M G, Lisch D. Transposable elements as sources of variation in animals and plants. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(15): 7704–7711
https://doi.org/10.1073/pnas.94.15.7704
pmid: 9223252
|
21 |
Wicker T, Sabot F, Hua-Van A, Bennetzen J L, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman A H. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8(12): 973–982
https://doi.org/10.1038/nrg2165
pmid: 17984973
|
22 |
Biswas M K, Chai L, Amar M H, Zhang X, Deng X X. Comparative analysis of genetic diversity in Citrus germplasm collection using AFLP, SSAP, SAMPL and SSR markers. Scientia Horticulturae, 2011, 129(4): 798–803
https://doi.org/10.1016/j.scienta.2011.06.015
|
23 |
Biswas M K, Xu Q, Deng X. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Scientia Horticulturae, 2010, 124(2): 254–261
https://doi.org/10.1016/j.scienta.2009.12.013
|
24 |
Talon M, Gmitter Jr. F G.Citrus genomics. International Journal of Plant Genomics, 2008, 2008: 528361
https://doi.org/10.1155/2008/528361
pmid: 18509486
|
25 |
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 1999, 27(2): 573–580
https://doi.org/10.1093/nar/27.2.573
pmid: 9862982
|
26 |
Volfovsky N, Haas B J, Salzberg S L. A clustering method for repeat analysis in DNA sequences. Genome Biology, 2001, 2(8): RESEARCH0027
|
27 |
Macas J, Mészáros T, Nouzová M. PlantSat: a specialized database for plant satellite repeats. Bioinformatics, 2002, 18(1): 28–35
https://doi.org/10.1093/bioinformatics/18.1.28
pmid: 11836208
|
28 |
Wicker T, Matthews D E, Keller B. TREP: a database for Triticeae repetitive elements. Trends in Plant Science, 2002, 7(12): 561–562
https://doi.org/10.1016/S1360-1385(02)02372-5
|
29 |
Messing J, Bharti A K, Karlowski W M, Gundlach H, Kim H R, Yu Y, Wei F, Fuks G, Soderlund C A, Mayer K F, Wing R A. Sequence composition and genome organization of maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40):14349–14354
|
30 |
Jurka J, Kapitonov V V, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 2005, 110(1–4): 462–467
https://doi.org/10.1159/000084979
pmid: 16093699
|
31 |
Meyers B C, Tingey S V, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Research, 2001, 11(10): 1660–1676
https://doi.org/10.1101/gr.188201
pmid: 11591643
|
32 |
Du J, Tian Z, Hans C S, Laten H M, Cannon S B, Jackson S A, Shoemaker R C, Ma J. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant Journal, 2010, 63(4): 584–598
https://doi.org/10.1111/j.1365-313X.2010.04263.x
pmid: 20525006
|
33 |
Chen C, Zhou P, Choi Y A, Huang S, Gmitter F G Jr. Mining and characterizing microsatellites from citrus ESTs. Theoretical and Applied Genetics, 2006, 112(7): 1248–1257
https://doi.org/10.1007/s00122-006-0226-1
pmid: 16474971
|
34 |
Cheng Y, de Vicente M C, Meng H, Guo W, Tao N, Deng X. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiology, 2005, 25(6): 661–672
https://doi.org/10.1093/treephys/25.6.661
pmid: 15805086
|
35 |
Mayer C. Phobos: a tandem repeat search tool. Distributed by the author, 2007
|
36 |
Jurka J, Pethiyagoda C. Simple repetitive DNA sequences from primates: compilation and analysis. Journal of Molecular Evolution, 1995, 40(2): 120–126
https://doi.org/10.1007/BF00167107
pmid: 7699718
|
37 |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731–2739
https://doi.org/10.1093/molbev/msr121
pmid: 21546353
|
38 |
Kim T S, Booth J G, Gauch H G Jr, Sun Q, Park J, Lee Y H, Lee K. Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference. BMC Genomics, 2008, 9(1): 31
https://doi.org/10.1186/1471-2164-9-31
pmid: 18215294
|
39 |
Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 1984, 12(10): 4127–4138
https://doi.org/10.1093/nar/12.10.4127
pmid: 6328411
|
40 |
Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 2000, 10(7): 967–981
https://doi.org/10.1101/gr.10.7.967
pmid: 10899146
|
41 |
Victoria F C, da Maia L C, de Oliveira A C. In silico comparative analysis of SSR markers in plants. BMC Plant Biology, 2011, 11(1): 15
https://doi.org/10.1186/1471-2229-11-15
pmid: 21247422
|
42 |
La Rota M, Kantety R V, Yu J K, Sorrells M E. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics, 2005, 6(1): 23
https://doi.org/10.1186/1471-2164-6-23
pmid: 15720707
|
43 |
Lawson M J, Zhang L. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 2006, 7(2): R14
https://doi.org/10.1186/gb-2006-7-2-r14
pmid: 16507170
|
44 |
Crane C F. Patterned sequence in the transcriptome of vascular plants. BMC Genomics, 2007, 8(1): 173
https://doi.org/10.1186/1471-2164-8-173
pmid: 17573970
|
45 |
Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nature Reviews Genetics, 2002, 3(5): 329–341
https://doi.org/10.1038/nrg793
pmid: 11988759
|
46 |
Tanurdzic M, Vaughn M W, Jiang H, Lee T J, Slotkin R K, Sosinski B, Thompson W F, Doerge R W, Martienssen R A. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biology, 2008, 6(12): 2880–2895
https://doi.org/10.1371/journal.pbio.0060302
pmid: 19071958
|
47 |
Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O. Identification of an active LTR retrotransposon in rice. Plant Journal, 2009, 58(5): 754–765
https://doi.org/10.1111/j.1365-313X.2009.03813.x
pmid: 19187041
|
48 |
Pouteau S, Huttner E, Grandbastien M A, Caboche M. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO Journal, 1991, 10(7): 1911–1918
pmid: 1710981
|
49 |
Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO Journal, 1993, 12(6): 2521–2528
pmid: 8389699
|
50 |
Mhiri C, Morel J B, Vernhettes S, Casacuberta J M, Lucas H, Grandbastien M A. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Molecular Biology, 1997, 33(2): 257–266
https://doi.org/10.1023/A:1005727132202
pmid: 9037144
|
51 |
Ramallo E, Kalendar R, Schulman A H, Martínez-Izquierdo J A. Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Molecular Biology, 2008, 66(1–2): 137–150
https://doi.org/10.1007/s11103-007-9258-4
pmid: 18034313
|
52 |
Asíns M J, Monforte A J, Mestre P F, Carbonell E A. Citrus and Prunuscopia-like retrotransposons. TAG Theoretical and Applied Genetics, 1999, 99(3–4): 503–510
https://doi.org/10.1007/s001220051263
pmid: 22665184
|
53 |
Bernet G P, Asíns M J. Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theoretical and Applied Genetics, 2003, 108(1): 121–130
https://doi.org/10.1007/s00122-003-1382-1
pmid: 12937896
|
54 |
Xu Q, Chen L L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J, Gao S, Xing F, Lan H, Chang J W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas M K, Zeng W, Guo F, Cao H, Yang X, Xu X W, Cheng Y J, Xu J, Liu J H, Luo O J, Tang Z, Guo W W, Kuang H, Zhang H Y, Roose M L, Nagarajan N, Deng X X, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59–66
https://doi.org/10.1038/ng.2472
pmid: 23179022
|
55 |
Rabinowicz P D, Schutz K, Dedhia N, Yordan C, Parnell L D, Stein L, McCombie W R, Martienssen R A. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics, 1999, 23(3): 305–308
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|