Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (4) : 442-454    https://doi.org/10.15302/J-FASE-2017169
RESEARCH ARTICLE
Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles
Qing TANG1,2,3, Liping CHEN1,2,3(), Ruirui ZHANG1,2,3, Min XU1,2,3, Gang XU1,2,3, Tongchuan YI1,2,3, Bin ZHANG1,2,3
1. Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2. National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China
3. Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
 Download: PDF(1668 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of air induction nozzles were tested in a high-speed wind tunnel. Droplet size spectra were measured for four air induction nozzles (IDK-120-01, IDK-120-02, IDK-120-03 and IDK-120-04) each at three spray pressures (0.3, 0.4 and 0.5 MPa) and seven different air velocities (121.7, 153.4, 185.5, 218.4, 253.5, 277.5 and 305.5 km·h1). The measurement distance (0.15, 0.25 and 0.35 m) from the nozzle orifice was found to be important for the atomization of the droplets. The response surface method was used to analyze the experimental data. The results indicated that Dv0.1 and Dv0.5 of the droplets decreased quasi-linearly with increased wind speed, while Dv0.9 was affected by the quadratic of wind speed. Dv0.1, Dv0.5 and Dv0.9 of the droplets were all proportional to the orifice size, and were not markedly influenced by the spray pressure. The percentage of the spray volume consisting of droplets with a diameter below 100 mm (%<100 mm) was found to be quadratically related to wind speed, and was not markedly influenced by the spray pressure and orifice size. However, the effect of the orifice size on the %< 200 mm could not be ignored.

Keywords air induction nozzle      wind tunnel      aerial spray      droplet size spectra     
Corresponding Author(s): Liping CHEN   
Just Accepted Date: 30 October 2017   Online First Date: 14 November 2017    Issue Date: 19 November 2018
 Cite this article:   
Qing TANG,Liping CHEN,Ruirui ZHANG, et al. Droplet spectra and high-speed wind tunnel evaluation of air induction nozzles[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 442-454.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017169
https://academic.hep.com.cn/fase/EN/Y2018/V5/I4/442
Fig.1  The IDK nozzles with different orifice sizes
Nozzle type Spray pressure/MPa Flow rate/(L·min-1)
IDK-120-01 0.3 0.39
0.4 0.45
0.5 0.51
IDK-120-02 0.3 0.80
0.4 0.92
0.5 1.03
IDK-120-03 0.3 1.19
0.4 1.37
0.5 1.53
IDK-120-04 0.3 1.58
0.4 1.82
0.5 2.04
Tab.1  The flow rate of the nozzles at different spray pressures
Fig.2  Structure diagram of the IEA-I high-speed wind tunnel[26]. 1, Adapter; 2, shock absorber; 3, diffuser; 4, settling chamber 5, contraction section; 6, rail; 7, honey comb; 8, fixed support; 9, Screen meshes.
Parameter Technical index
Form of structure Open-circuit blow-down wind tunnel
Test section diameter 300 mm
Wind speed 24–350 km·h-1
Turbulent intensity <1.0%
Coefficient of variation <0.5%
Dynamic pressure stability coefficient <2.0%
Inclined angle <0.5 deg
Normalized axial static pressure gradient 0.02 (0–0.46 m outside the exit)
Tab.2  Parameters of the IEA-I high-speed wind tunnel.
Fig.3  Schematic diagram of the spray control system
Fig.4  Schematic diagram of the spray measurement from the leeward view
Distance from the orifice/m Wind speed/(km·h1) Dv0.5/mm Dv0.1/mm Dv0.9/mm RS %<100 mm %<200 mm
0.15 121.7 426.8 210.5 740.5 1.242 1.56 8.62
153.4 403.6 195.1 722.8 1.308 1.70 10.74
185.5 367.6 172.5 692.0 1.414 2.28 14.89
218.4 312.6 141.7 636.6 1.583 3.75 23.23
253.5 257.2 115.9 555.5 1.709 6.68 34.13
277.5 212.7 95.0 477.6 1.797 11.42 46.05
305.5 175.7 78.1 402 1.843 18.32 58.17
0.25 121.7 428.6 215.3 740.7 1.226 1.44 7.98
153.4 401.3 196.1 719.2 1.303 1.72 10.60
185.5 354.2 167.0 676.6 1.439 2.39 16.28
218.4 292.2 136.3 595.6 1.572 4.16 25.98
253.5 234.1 110.4 477.5 1.568 7.58 39.14
277.5 188.4 87.4 375.4 1.528 14.13 54.21
305.5 157.6 73.3 307.7 1.487 21.39 66.88
0.35 121.7 424.3 213.3 737.0 1.234 1.49 8.19
153.4 397.5 195.0 714.6 1.307 1.79 10.76
185.5 348.6 168.5 663.5 1.420 2.47 16.09
218.4 282.4 136.1 558.2 1.495 4.35 26.69
253.5 225.8 110.1 428.3 1.410 7.69 40.96
277.5 184.7 87.9 343.0 1.381 13.85 56.05
305.5 154.9 72.6 290.3 1.405 21.69 68.87
Tab.3  Droplet size data measured using the Malvern laser diffraction system for IDK120-03 nozzle operating at 0.4 MPa
Fig.5  Dv0.5 (a), RS (b), Dv0.1 (c), Dv0.9 (d), %<100 mm (e) and %<200 mm (f) measured at 0.15, 0.25 and 0.35 m from the nozzle orifice
Spray pressure/MPa Nozzle type Wind speed/(km·h1) Dv0.5/mm Dv0.1/mm Dv0.9/mm RS %<100 mm %<200 mm
0.3 IDK-120-01 121.7 414.2 205.7 728.7 1.263 1.53 9.193
153.4 373.6 185.6 687.0 1.343 1.97 12.51
185.5 315.8 159.2 603.3 1.406 2.68 19.36
218.4 255.2 131.6 471.9 1.334 4.32 31.43
253.5 209.0 107.2 375.0 1.282 8.12 46.44
277.5 175.3 88.5 317.5 1.307 14.16 60.61
305.5 151.4 76.4 285.5 1.381 21.17 71.09
IDK-120-02 121.7 408.2 204.3 722.4 1.270 1.48 9.37
153.4 375.6 185.3 690.5 1.345 1.92 12.52
185.5 322.9 160.4 618.7 1.419 2.69 18.69
218.4 265.2 135.8 498.7 1.369 3.92 29.03
253.5 214.2 106.8 393.3 1.337 8.27 44.66
277.5 178.7 87.9 330.5 1.357 14.16 58.78
305.5 154.1 74.3 306.0 1.504 21.43 68.90
IDK-120-03 121.7 442.9 233.7 746.4 1.158 0.99 5.73
153.4 408.1 203.3 723.6 1.275 1.71 9.52
185.5 350.7 169.8 666.7 1.417 2.42 15.83
218.4 280.4 136.9 552.8 1.483 4.07 26.89
253.5 221.3 107.9 419.6 1.408 8.07 42.46
277.5 181.9 87.4 338.0 1.378 14.25 57.18
305.5 152.8 71.5 286.3 1.406 22.44 69.73
IDK-120-04 121.7 471.6 257.9 767.5 1.081 0.87 3.74
153.4 434.1 221.7 743.8 1.203 1.49 7.23
185.5 367.9 181.4 682.2 1.362 2.17 13.29
218.4 293.8 144.1 574.2 1.464 3.67 23.98
253.5 234.4 114.3 451.1 1.437 6.95 38.30
277.5 190.6 92.1 359.5 1.404 12.43 53.68
305.5 160.5 76.7 308.2 1.443 19.60 66.30
0.4 IDK-120-01 121.7 383.1 186.6 703.0 1.348 1.47 12.30
153.4 350.3 171.9 663.9 1.405 1.84 15.59
185.5 303.5 153.6 583.5 1.417 2.50 21.49
218.4 251.7 129.6 472.6 1.363 4.24 32.62
253.5 208.2 105.0 384.0 1.341 8.64 46.88
277.5 177.3 90.3 325.0 1.324 13.59 59.52
305.5 151.2 75.7 283.1 1.372 21.59 71.04
IDK-120-02 121.7 389.9 196.6 704.3 1.306 1.519 10.81
153.4 359.2 177.0 671.6 1.377 2.01 14.28
185.5 317.2 157.0 611.4 1.433 2.74 19.74
218.4 263.4 132.0 500.7 1.401 4.46 29.97
253.5 215.7 108.0 395.4 1.332 8.01 44.11
277.5 180.4 89.2 330.1 1.336 13.69 58.14
305.5 153.8 74.8 287.7 1.385 21.17 69.81
IDK-120-03 121.7 424.3 213.3 737.0 1.234 1.49 8.19
153.4 397.5 195.0 714.6 1.307 1.79 10.76
185.5 348.6 168.5 663.5 1.420 2.47 16.09
218.4 282.4 136.1 558.2 1.495 4.35 26.69
253.5 225.8 110.1 428.3 1.410 7.69 40.96
277.5 184.7 87.9 343.0 1.381 13.85 56.05
305.5 154.9 72.6 290.3 1.405 21.69 68.87
IDK-120-04 121.7 445.3 235.3 749.2 1.155 1.09 5.66
153.4 414.5 209.0 727.0 1.249 1.51 8.67
185.5 360.8 178.7 672.5 1.369 2.15 13.93
218.4 290.2 143.6 560.3 1.436 3.70 24.38
253.5 230.9 114.1 428.1 1.360 6.97 39.08
277.5 190.4 95.2 349.4 1.343 11.96 53.86
305.5 160.1 77.0 295.9 1.368 19.46 66.95
0.5 IDK-120-01 121.7 361.8 173.6 683.0 1.408 1.85 14.94
153.4 330.0 161.2 634.1 1.433 2.50 18.25
185.5 289.2 145.2 554.0 1.414 3.29 24.25
218.4 248.9 128.6 465.9 1.356 4.23 33.39
253.5 207.8 108.0 375.2 1.286 7.76 46.93
277.5 176.6 90.2 320.8 1.307 13.66 59.96
305.5 151.6 76.6 282.2 1.356 21.21 71.00
IDK-120-02 121.7 367.2 182.4 680.9 1.358 1.70 13.19
153.4 348.4 170.3 659.9 1.406 2.20 15.80
185.5 314.8 154.1 612.2 1.456 2.88 20.49
218.4 269.6 132.5 530.4 1.476 4.35 29.12
253.5 220.3 109.2 413.9 1.383 7.76 42.64
277.5 184.6 90.6 347.3 1.390 13.10 56.15
305.5 157.6 76.3 308.2 1.472 20.27 67.43
IDK-120-03 121.7 423.2 210.3 736.3 1.243 1.83 8.64
153.4 403.5 196.8 720.3 1.298 2.03 10.47
185.5 359.5 169.2 679.1 1.418 2.88 15.50
218.4 295.2 136.9 591.6 1.540 4.55 25.09
253.5 233.1 108.9 460.4 1.509 8.02 39.22
277.5 185.8 85.9 353.4 1.440 14.48 55.41
305.5 154.2 71.2 293.8 1.440 22.44 68.73
IDK-120-04 121.7 429.2 222.3 736.3 1.198 0.99 6.96
153.4 409.2 206.8 720.6 1.408 1.85 14.94
185.5 364.0 175.2 684.8 1.433 2.50 18.25
218.4 300.2 144.9 597.9 1.414 3.29 24.25
253.5 236.1 116.2 447.4 1.356 4.23 33.39
277.5 193.2 93.8 357.4 1.286 7.76 46.93
305.5 162.0 77.6 300.1 1.307 13.66 59.96
Tab.4  Droplet sizes data measured using Malvern laser diffraction system at 0.35 m
IDK nozzle Factors Quadratic Modified
Dv0.5/mm Intercept + 667.33268 + 566.90032
X1 -1.54002 -1.48646
X2 -548.47754 NA
X3 + 313.86764 + 143.31905
X1X2 + 1.11966 NA
X1X3 -1.30482 NA
X2X3 + 201.14286 NA
X12 -0.00016 NA
X22 + 268.92857 NA
X32 + 62.97619 NA
R2 0.9892 0.9747
Dv0.1/mm Intercept + 349.79038 + 287.18927
X1 -0.90314 -0.76261
X2 -287.04831 NA
X3 + 173.97654 + 69.10476
X1X2 + 0.74849 NA
X1X3 -0.98485 NA
X2X3 + 47.35714 NA
X12 + 0.00020 NA
X22 + 98.39286 NA
X32 + 178.80952 NA
R2 0.9926 0.9621
Dv0.9/mm Intercept + 8.09386 + 829.71053
X1 -0.25499 -0.62237
X2 + 73.32265 NA
X3 -16.54223 + 220.55714
X1X2 -0.15258 NA
X1X3 + 0.040531 NA
X2X3 -35.50786 NA
X12 + 0.00150 -0.00455
X22 -34.67321 NA
X32 -4.02024 NA
R2 0.9955 0.9738
%<100 mm Intercept + 19.89198 + 23.28981
X1 -0.26713 -0.28134
X2 + 3.77809 NA
X3 + 14.73769 NA
X1X2 -0.025250 NA
X1X3 -0.016430 NA
X2X3 -3.17857 NA
X12 + 0.00089 + 0.00089
X22 + 2.87857 NA
X32 -26.12976 NA
R2 0.9828 0.9780
%<200 mm Intercept + 8.09386 + 29.6513
X1 -0.25499 -0.30589
X2 + 73.32265 NA
X3 -16.54223 -23.98043
X1X2 -0.15258 NA
X1X3 + 0.040531 NA
X2X3 -35.50786 NA
X12 + 0.00150 + 0.00150
X22 -34.67321 NA
X32 -4.02024 NA
R2 0.9955 0.9936
Tab.5  Coefficients of the response surface equations for IDK nozzle
Fig.6  3D response surface of Dv0.5 related to the wind speed and orifice size (a) and the effect of the spray pressure and wind speed on Dv0.5 (b)
Fig.7  3D response surface of Dv0.1 related to the wind speed and orifice size (a) and the effect of the spray pressure and wind speed on Dv0.1 (b)
Fig.8  3D response surface of Dv0.9 related to the wind speed and orifice size (a) and the effect of the spray pressure and wind speed on Dv0.9 (b)
Fig.9  The 3D response surface of the %<100 mm related to the wind speed and orifice size (a) and the effect of the spray pressure and wind speed on the %<100 mm (b)
Fig.10  The 3D response surface of the %<200 mm related to the wind speed and orifice size (a) and the effect of the spray pressure and wind speed on the %<200 mm (b)
1 Zhou Z, Zang Y, Luo X, Lan Y, Xue X. Technology innovation development strategy on agricultural aviation industry for plant protection in China.   Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 1–10 (in Chinese)
2 Metcalf R L. Changing role of insecticides in crop protection. Annual Review of Entomology, 1980, 25(1): 219–256
https://doi.org/10.1146/annurev.en.25.010180.001251
3 Rice P J, Rice P J, Arthur E L, Barefoot A C. Advances in pesticide environmental fate and exposure assessments. Journal of Agricultural and Food Chemistry, 2007, 55(14): 5367–5376
https://doi.org/10.1021/jf063764s pmid: 17552539
4 Yates W E, Cowden R E, Akesson N B. Drop size spectra from nozzles in high-speed airstreams. Transactions of the ASAE: American Society of Agricultural Engineers, 1985, 28(2): 405–410
https://doi.org/10.13031/2013.32268
5 Akesson N B, Gibbs R E. Pesticide drop size as a function of spray atomizers and liquid formulations. In: Bode L E, Hazen J L, Chasin D G, eds. Pesticide formulations and application systems: tenth volume. Philadelphia: ASTM, 1990, 170–183
6 Bouse L F. Effect of nozzle type and operation on spray droplet size. Transactions of the ASAE: American Society of Agricultural Engineers, 1994, 37(5): 1389–1400
https://doi.org/10.13031/2013.28219
7 Standards A S A E. S572. Spray nozzle classification by droplet spectra. St. Joseph: ASAE, 2004
8 Kirk I W. Measurement and prediction of atomization parameters from fixed-wing aircraft spray nozzles. Transactions of the ASABE, 2007, 50(3): 693–703
https://doi.org/10.13031/2013.23123
9 Miller P C H, Butler Ellis M C. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Protection, 2000, 19(8–10): 609–615
https://doi.org/10.1016/S0261-2194(00)00080-6
10 Nuyttens D, Baetens K, De Schampheleire M, Sonck B. Effect of nozzle type, size, and pressure on spray droplet characteristics. Biosystems Engineering, 2007, 97(3): 333–345
https://doi.org/10.1016/j.biosystemseng.2007.03.001
11 Hewitt A J, Johnson D R, Fish J D, Hermansky C G, Valcore D L. Development of the spray drift task force database for aerial applications. Environmental Toxicology and Chemistry, 2002, 21(3): 648–658
https://doi.org/10.1002/etc.5620210326 pmid: 11878479
12 Hewitt A J. Droplet size spectra classification categories in aerial application scenarios. Crop Protection, 2008, 27(9): 1284–1288
https://doi.org/10.1016/j.cropro.2008.03.010
13 Hoffmann W C, Fritz B K, Lan Y, Zollinger R, Rhode A, Dean S W. Evaluation of a proposed drift reduction technology high-speed wind tunnel testing protocol. Journal of ASTM International, 2009, 6(4): 1–10
https://doi.org/10.1520/JAI102122
14 Fritz B K, Hoffmann W C, Bagley W E. Effects of spray mixtures on droplet size under aerial application conditions and implications on drift.Transactions of the ASAE: American Society of Agricultural Engineers , 2009, 26(1): 21–29
https://doi.org/10.13031/2013.29467
15 Fritz B K, Hoffmann W C, Kruger G R, Henry R S, Hewitt A J, Czaczyk Z. Comparison of drop size data from ground and aerial nozzles at three testing laboratories. Atomization and Sprays, 2014, 24(2): 181–192
https://doi.org/10.1615/AtomizSpr.2013009668
16 Fritz B K, Hoffmann W C. Update to the USDA-ARS fixed-wing spray nozzle models. Transactions of the ASABE, 2015, 58(2): 281–295
17 Derksen R C, Ozkan H E, Fox R D, Brazee R D. Droplet spectra and wind tunnel evaluation of venturi and pre-orifice nozzles. Transactions of the ASAE: American Society of Agricultural Engineers, 1999, 42(6): 1573–1580
https://doi.org/10.13031/2013.13322
18 Powell E S, Orson J H, Miller P C H, Kudsk P, Mathiassen S. Defining the size of target for air induction nozzles. In: BCPC International Congress- Crop Science & Technology 2003, Glasgow. Hampshire: BCPC, 2003, 267–272
19 Lafferty C L, Tian L F. The impacts of pre-orifice and air-inlet design features on nozzle performance. In: ASAE Annual International Meeting 2001, Sacramento. St. Joseph: ASAE, 2001, No. 011079
20 Ellis M C B, Swan T, Miller P C H, Waddelow S, Bradley A, Tuck C R. Design factors affecting spray characteristics and drift performance of air induction nozzles. Biosystems Engineering, 2002, 82(3): 289–296
21 Vallet A, Tinet C. Characteristics of droplets from single and twin jet air induction nozzles: a preliminary investigation. Crop Protection, 2013, 48(2): 63–68
https://doi.org/10.1016/j.cropro.2013.02.010
22 Berger-Neto A, Jaccoud-Filho D D S, Wutzki C R, Tullio H E, Pierre M L C, Manfron F, Justino A. Effect of spray droplet size, spray volume and fungicide on the control of white mold in soybeans. Crop Protection, 2017, 92: 190–197
https://doi.org/10.1016/j.cropro.2016.10.016
23 Guler H, Zhu H, Ozkan H E, Derksen R C, Yu Y, Krause C R. Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Transactions of the ASABE, 2007, 50(3): 745–754
https://doi.org/10.13031/2013.23129
24 Dorr G J, Hewitt A J, Adkins S W, Hanan J, Zhang H, Noller B. A comparison of initial spray characteristics produced by agricultural nozzles. Crop Protection, 2013, 53(11): 109–117
https://doi.org/10.1016/j.cropro.2013.06.017
25 Tang Q, Chen L, Zhang R, Zhang B, Yi T, Xu M, Xu G. Atomization characteristics of normal flat fan nozzle and air induction nozzle under high speed airflow conditions. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 121–128 (in Chinese)
26 Tang Q, Chen L, Zhang R, Xu M, Xu G, Zhang B. Design and test of IEA I high speed wind tunnel for aerial plant protection. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 73–81 (in Chinese)
27 Dodge L G, Rhodes D J, Reitz R D. Drop-size measurement techniques for sprays: comparison of Malvern laser-diffraction and Aerometrics phase/Doppler. Applied Optics, 1987, 26(11): 2144–2154
https://doi.org/10.1364/AO.26.002144 pmid: 20489835
28 Hoffmann W C, Fritz B K, Bagley W E, Lan Y, Devisetty B, Dean S W. Effects of air speed and liquid temperature on droplet size. Journal of ASTM International, 2011, 8(4): 103461
https://doi.org/10.1520/JAI103461
29 ISO 10625.Equipment for Crop Protection. Sprayer Nozzles. Colour Coding for Identification. Geneva: International Organization for Standardization, 2005
30 Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets. Chemical Engineering Science, 1963, 18(3): 203–214
https://doi.org/10.1016/0009-2509(63)85005-8
31 Dombrowski N, Hooper P C. The effect of ambient density on drop formation in sprays. Chemical Engineering Science, 1962, 17(4): 291–305
https://doi.org/10.1016/0009-2509(62)85008-8
32 Fraser R P, Eisenklam P, Dombrowski N, Hasson D. Drop formation from rapidly moving liquid sheets. AIChE Journal: American Institute of Chemical Engineers, 1962, 8(5): 672–680
https://doi.org/10.1002/aic.690080522
33 Ashgriz N. Handbook of atomization and sprays: theory and applications. Berlin: Springer, 2011
34 Guildenbecher D R, López-Rivera C, Sojka P E. Secondary atomization. Experiments in Fluids, 2009, 46(3): 371–402
https://doi.org/10.1007/s00348-008-0593-2
[1] Weixiang YAO, Xianju WANG, Yubin LAN, Ji JIN. Effect of UAV prewetting application during the flowering period of cotton on pesticide droplet deposition[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 455-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed