Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (4) : 448-458    https://doi.org/10.15302/J-FASE-2017172
RESEARCH ARTICLE
ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific
Tongli WANG1,2(), Guangyu WANG2, John L. INNES2, Brad SEELY2, Baozhang CHEN3
1. Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
2. Department of Forest Resource Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
3. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(832 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

While low-to-moderate resolution gridded climate data are suitable for climate-impact modeling at global and ecosystems levels, spatial analyses conducted at local scales require climate data with increased spatial accuracy. This is particularly true for research focused on the evaluation of adaptive forest management strategies. In this study, we developed an application, ClimateAP, to generate scale-free (i.e., specific to point locations) climate data for historical (1901–2015) and future (2011–2100) years and periods. ClimateAP uses the best available interpolated climate data for the reference period 1961–1990 as baseline data. It downscales the baseline data from a moderate spatial resolution to scale-free point data through dynamic local elevation adjustments. It also integrates and downscales the historical and future climate data using a delta approach. In the case of future climate data, two greenhouse gas representative concentration pathways (RCP 4.5 and 8.5) and 15 general circulation models are included to allow for the assessment of alternative climate scenarios. In addition, ClimateAP generates a large number of biologically relevant climate variables derived from primary monthly variables. The effectiveness of the local downscaling was determined based on the strength of the local linear regression for the estimate of lapse rate. The accuracy of the ClimateAP output was evaluated through comparisons of ClimateAP output against observations from 1805 weather stations in the Asia Pacific region. The local linear regression explained 70%–80% and 0%–50% of the total variation in monthly temperatures and precipitation, respectively, in most cases. ClimateAP reduced prediction error by up to 27% and 60% for monthly temperature and precipitation, respectively, relative to the original baselines data. The improvements for baseline portions of historical and future were more substantial. Applications and limitations of the software are discussed.

Keywords biologically relevant climate variables      downscaling      dynamic local regression      future climate      historical climate     
Corresponding Author(s): Tongli WANG   
Just Accepted Date: 30 October 2017   Online First Date: 22 November 2017    Issue Date: 10 December 2017
 Cite this article:   
Tongli WANG,Guangyu WANG,John L. INNES, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 448-458.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017172
https://academic.hep.com.cn/fase/EN/Y2017/V4/I4/448
1 C Daly, M Halbleib, J I Smith, W P Gibson, M K Doggett, G H Taylor, J Curtis, P P Pasteris. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 2008, 28(15): 2031–2064 doi:10.1002/joc.1688
2 R J Hijmans, S E Cameron, J L Parra, P G Jones, A Jarvis. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25(15): 1965–1978 doi:10.1002/joc.1276
3 I Harris, P D Jones, T J Osborn, D H Lister. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. International Journal of Climatology, 2014, 34(3): 623–642 doi:10.1002/joc.3711
4 P E Thornton, M M Thornton, B W Mayer, Y Wei, R Devarakonda, R S Vose, R B Cook. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. ORNL Distributed Active Archive Center; 2016.
5 A Hamann, T L Wang, D L Spittlehouse, T Q Murdock. A comprehensive, high-resolution database of historical and projected climate surfaces for western North America. Bulletin of the American Meteorological Society, 2013, 94(9): 1307–1309 doi:10.1175/BAMS-D-12-00145.1
6 T L Wang, E M Campbell, G A O’Neill, S N Aitken. Projecting future distributions of ecosystem climate niches: uncertainties and management applications. Forest Ecology and Management, 2012, 279: 128–140 doi:10.1016/j.foreco.2012.05.034
7 D W McKenney, M F Hutchinson, P Papadopol, K Lawrence, J Pedlar, K Campbell, E Milewska, R F Hopkinson, D Price, T Owen. Customized spatial climate models for North America. Bulletin of the American Meteorological Society, 2011, 92(12): 1611–1622 doi:10.1175/2011BAMS3132.1
8 T Wang, G A O’Neill, S N Aitken. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecological Applications, 2010, 20(1): 153–163 doi:10.1890/08-2257.1 PMID:20349837
9 G E Rehfeldt, C C Ying, D L Spittlehouse, D A Jr Hamilton. Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecological Monographs, 1999, 69(3): 375–407 doi:10.1890/0012-9615(1999)069[0375:GRTCIP]2.0.CO;2
10 A Hamann, T Wang. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 2006, 87(11): 2773–2786 doi:10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2 PMID:17168022
11 G E Rehfeldt, N L Crookston, C Sáenz-Romero, E M Campbell. North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecological Applications, 2012, 22(1): 119–141 doi:10.1890/11-0495.1 PMID:22471079
12 C Daly, J W Smith, J I Smith, R B McKane. High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States. Journal of Applied Meteorology and Climatology, 2007, 46(10): 1565–1586 doi:10.1175/JAM2548.1
13 C Daly, W P Gibson, G H Taylor, G L Johnson, P Pasteris. A knowledge-based approach to the statistical mapping of climate. Climate Research, 2002, 22: 99–113 doi:10.3354/cr022099
14 G E Rehfeldt, N L Crookston, C Sáenz-Romero, E M Campbell. North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecological Applications, 2012, 22(1): 119–141 doi:10.1890/11-0495.1 PMID:22471079
15 E H Girvetz, C Zganjar, G T Raber, E P Maurer, P Kareiva, J J Lawler. Applied climate-change analysis: the climate wizard tool. PLoS One, 2009, 4(12): e8320 doi:10.1371/journal.pone.0008320 PMID:20016827
16 T Wang, A Hamann, D L Spittlehouse, S N Aitken. Development of scale-free climate data for western Canada for use in resource management. International Journal of Climatology, 2006, 26(3): 383–397 doi:10.1002/joc.1247
17 T Wang, A Hamann, D L Spittlehouse, T Murdock. ClimateWNA—high-resolution spatial climate data for Western North America. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16–29 doi:10.1175/JAMC-D-11-043.1
18 T Wang, A Hamann, D Spittlehouse, C Carroll. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One, 2016, 11(6): e0156720 doi:10.1371/journal.pone.0156720 PMID:27275583
19 T D Mitchell, P D Jones. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 2005, 25(6): 693–712 doi:10.1002/joc.1181
20 IPCC. Climate Change 2014: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2014
21 K E Taylor, R J Stouffer, G A Meehl. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012, 93(4): 485–498 doi:10.1175/BAMS-D-11-00094.1
22 R G Allen, L S Pereira, D Raes, M Smith. Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper FAO56, U.N. Food and Agriculture Organization, Rome, 1998
23 C Daly, W P Gibson, G H Taylor, G L Johnson, P Pasteris. A knowledge-based approach to the statistical mapping of climate. Climate Research, 2002, 22(2): 99–113 doi:10.3354/cr022099
24 T L Wang, A Hamann, D L Spittlehouse, T Q Murdock. ClimateWNA-high-resolution spatial climate data for Western North America. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16–29 doi:10.1175/JAMC-D-11-043.1
25 C Daly, M Halbleib, J I Smith, W P Gibson, M K Doggett, G H Taylor, J Curtis, P A Pasteris. Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. International Journal of Climatology, 2008, 28(15): 2031–2064 doi:10.1002/joc.1688
26 G E Rehfeldt, B C Jaquish, J Lopez-Upton, C Saenz-Romero, J B St Clair, L P Leites, D G Joyce. Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: realized climate niches. Forest Ecology and Management, 2014, 324: 126–137 doi:10.1016/j.foreco.2014.02.035
27 T Wang, A Hamann, A Yanchuk, G A O’Neill, S N Aitken. Use of response functions in selecting lodgepole pine populations for future climates. Global Change Biology, 2006, 12(12): 2404–2416 doi:10.1111/j.1365-2486.2006.01271.x
28 D Chakraborty, T Wang, K Andre, M Konnert, M J Lexer, C Matulla, L Weißenbacher, S Schueler. Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty analysis of a genetically based model. European Journal of Forest Research, 2016, 135(5): 919–936 doi:10.1007/s10342-016-0984-5
29 S Yeaman, K A Hodgins, K E Lotterhos, H Suren, S Nadeau, J C Degner, K A Nurkowski, P Smets, T Wang, L K Gray, K J Liepe, A Hamann, J A Holliday, M C Whitlock, L H Rieseberg, S N Aitken. Convergent local adaptation to climate in distantly related conifers. Science, 2016, 353(6306): 1431–1433 doi:10.1126/science.aaf7812 PMID:27708038
30 H J Fowler, S Blenkinsop, C Tebaldi. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 2007, 27(12): 1547–1578 doi:10.1002/joc.1556
31 T Wang, E M Campbell, G A O’Neill, S N Aitken. Projecting future distributions of ecosystem climate niches: uncertainties and management applications. Forest Ecology and Management, 2012, 279: 128–140 doi:10.1016/j.foreco.2012.05.034
32 D R Roberts, A Hamann. Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective. Global Ecology and Biogeography, 2012, 21(2): 121–133 doi:10.1111/j.1466-8238.2011.00657.x
33 T Wang, G Wang, J Innes, C Nitschke, H Kang. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia–Pacific region. Forest Ecology and Management, 2016, 360: 357–366 doi:10.1016/j.foreco.2015.08.004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed