Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (4) : 465-472    https://doi.org/10.15302/J-FASE-2017181
RESEARCH ARTICLE
Extraction and biodegradation of ginkgolic acids from Ginkgo biloba sarcotestae
Qi LI1,2, Wei SUN1, Yan JIANG1, Fuliang CAO1,3(), Guibin WANG1,3, Linguo ZHAO1,2()
1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
2. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
3. College of Forestry, Nanjing Forestry University, Nanjing 210037, China
 Download: PDF(383 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ginkgolic acids are unwanted constituents in standard Ginkgo biloba leaves extracts. Thus, for the quality control of ginkgo extracts, it is important to establish an effective degradation method, with high catalytic efficiency and safety, to remove ginkgolic acids. Laccases are oxidases with potential for application in elimination of hazardous phenolic compounds. In this study, single-factor and orthogonal experiments were used to optimize extraction of ginkgolic acid from G. biloba sarcotestae. The results showed that ethanol was the best solvent, with the highest extraction rate for ginkgolic acid at 85% ethanol. On this basis, we measured ethanol volume fraction, extraction time, temperature and solid-liquid ratio using an orthogonal experiment. By using absorbance of 310 nm as standard, the optimal extraction conditions were 85% ethanol with, solid-liquid ratio of 1:14 at 40°C for 12 h. These conditions gave a ginkgolic acid yield of 73.1 mg·g1. Subsequently, recombinant laccase was used to degrade the ginkgolic acid in several laccase/mediator systems, of which LacC was the best. At 50°C, pH 4.5, enzyme concentration of 0.01 U·mL1, 0.5 mmol·L−1 mediator ABTS and reaction time of 3 h, the degradation rate of ginkgolic acid reached 100%. These results lay the foundation for research on and application of biological enzymes for detoxification of G. biloba extracts.

Keywords biodegradation      extraction      ginkgolic acid      laccase      orthogonal method     
Corresponding Author(s): Fuliang CAO,Linguo ZHAO   
Just Accepted Date: 24 November 2017   Online First Date: 14 December 2017    Issue Date: 10 December 2017
 Cite this article:   
Qi LI,Wei SUN,Yan JIANG, et al. Extraction and biodegradation of ginkgolic acids from Ginkgo biloba sarcotestae[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 465-472.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017181
https://academic.hep.com.cn/fase/EN/Y2017/V4/I4/465
Fig.1  Effect of different organic solvents (a) and ethanol volume (b) fractions on extraction of ginkgolic acid from Ginkgo biloba sarcotestae
Fig.2  Effect of different extraction temperatures (a), time (b), and solid-liquid ratios (c) on extraction of ginkgolic acid from Ginkgo biloba sarcotestae
No. Ethanol/% Time/h Solid-liquid ratio /(g·mL-1) Temperature/°C Ginkgolic acid/(mg·g-1)
1 1 (80) 1 (10) 1 (1:10) 1 (30) 41.325
2 1 (80) 2 (12) 2 (1:12) 2 (40) 48.357
3 1 (80) 3 (14) 3 (1:14) 3 (50) 40.635
4 2 (85) 1 (10) 2 (1:12) 3 (50) 56.265
5 2 (85) 2 (12) 3 (1:14) 1 (30) 68.649
6 2 (85) 3 (14) 1 (1:10) 2 (40) 71.112
7 3 (90) 1 (10) 3 (1:14) 2 (40) 55.728
8 3 (90) 2 (12) 1 (1:10) 3 (50) 48.909
9 3 (90) 3 (14) 2 (1:12) 1 (30) 48.192
K1 144.970 170.353 179.273 175.740
K2 217.807 184.350 169.793 194.663
K3 169.810 177.710 183.347 162.010
R 73.010 13.997 13.554 32.650
Tab.1  Orthogonal experiment on extraction of ginkgolic acids
Fig.3  HPLC analysis of ginkgolic acid extracts; crude extract from Ginkgo biloba sarcotestae (a) and a total ginkgolic acid standard (b). The hydrocarbon side chains 1 to 5 are C13:0, C15:1, C17:2, C15:0 and C17:1, respectively.
Fig.4  Effect of different laccase isoenzymes (a) and small-molecule mediators (b) on degradation of ginkgolic acid in extracts from Ginkgo biloba sarcotestae.
Fig.5  Optimization of degradation conditions of ginkgolic acid in extracts from Ginkgo biloba sarcotestae. (a) enzyme concentration; (b) pH; (c) temperature; (d) time.
1 Cao F L. Ginkgo. Beijing: Chinese Forestry Publishing House, 2007 (in Chinese)
2 Sierpina V S, Wollschlaeger  B, Blumenthal M. Ginkgo biloba. American Family Physician, 2003, 68(5): 923–926
pmid: 13678141
3 Wang F, Li  W H, Li  D W, Mao  X G, Gao  L Y. A study on the technical process for extracting and identifying active compounds from the testa of Ginkgo biloba L. Journal of Northwest University: Natural Science Edition, 2003, 33(6): 689–692 (in Chinese)
4 Yang L Q, Wu  X Y, Wu  J B, Chen  J. Progress in research on constituents and pharmacological activities of sarcotestas of Ginkgo bilobaChina Journal of Chinese Materia Medica, 2004, 29(2): 111–115 (in Chinese)
pmid: 15719673
5 Ni X W, Yang  Z J, Wu  M C. Separation and antifungal activity of ginkgolic acids from exopleura of ginkgo biloba. Natural Product Research and Development, 2001, 13(6): 30–32 (in Chinese)
6 Yang J T, Wu  C E. Advance in allergic composition and mechanism of allergy of ginkgo biloba seeds. Food Science and Technology (Campinas), 2009, 34(6): 282–286 (in Chinese)
7 Zang L, Yi  Y H, Ni  L J, Zhang  L. Basic properties and latent applications of ginkgolic phenols and acids. Chinese Journal of Pharmaceuticals, 2000, 31(7): 331–334 (in Chinese)
8 Klaus-Peter S.Extracts from Ginkgo biloba leaves-with high content of flavone glycoside(s) and ginkgolide(s) but with low alkyl phenol(s) content. DE3940095, 1991
9 Cheng L, Lou  F C. Studies on longchain phenolic acids from exopleura of ginkgo biloba. Progress in Pharmaceutical Sciences, 2004, 28(5): 209–213 (in Chinese)
10 Ren J M. Study on the effects of removaling ginkgo biloba acid by fermentation. Shaanxi, Shaanxi University of Science and Technology, 2015 (in Chinese)
11 Yang S L, Huang  C L, Tang  Y, Xu L,  Jiang G B,  Cao F L,  Lei M, Chen  Y, Wan Y Q. Study on removing ginkgolic acids from  EGb by coordination-organic solvent method. Journal of Nanjing Forestry University: Natural Sciences Edition, 2015(2):7–13 (in Chinese)
12 Jin D Q. Determination of ginkgolic acids in the epicarp of ginkgo biloba by supercritical CO2 extraction–HPLC. Chinese Journal of Analysis Laboratory, 2013, 32(6): 97–99 (in Chinese)
13 Cabana H, Alexandre  C, Agathos S N,  Jones J P. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresource Technology, 2009, 100(14): 3447–3458
https://doi.org/10.1016/j.biortech.2009.02.052 pmid: 19329308
14 Xie H, Li  Q, Wang M,  Zhao L. Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a laccase/vanillin system. Journal of Microbiology and Biotechnology, 2013, 23(6): 864–871
https://doi.org/10.4014/jmb.1212.12057 pmid: 23676909
15 Díaz González M,  Vidal T,  Tzanov T, 0. Vidal T, Tzanov T. Electrochemical study of phenolic compounds as enhancers in laccase-catalyzed oxidative reactions. Electroanalysis, 2009, 21(20): 2249–2257
https://doi.org/10.1002/elan.200904678
16 Li Q, Ge  L, Cai J,  Pei J, Xie  J, Zhao L. Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes. Journal of Microbiology and Biotechnology, 2014, 24(4): 545–555
https://doi.org/10.4014/jmb.1310.10079 pmid: 24448164
17 Li Q, Xie  J C, Zhao  L G, Xue  Q X, Pei  J J. Optimization of fermentation conditions for laccase production by recombinant Pichia pastoris GS115-LCCA using response surface methodology and its application to dye decolorization. BioResources, 2013, 8(3): 4072–4087
https://doi.org/10.15376/biores.8.3.4072-4087
18 He L Y, Wang  G B, Cao  F L, Zhao  L G, Ji  Y X. Cloning of laccase gene from Coriolus versicolor and optimization of culture conditions for Lcc1 expression in Pichia pastoris. Advanced Materials Research, 2011, 236–238: 1039–1044
https://doi.org/10.4028/www.scientific.net/AMR.236-238.1039
19 Childs R E, Bardsley  W G. The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochemical Journal, 1975, 145(1): 93–103
https://doi.org/10.1042/bj1450093 pmid: 1191252
20 Zhao S, Yang  F, Kong F,  Li B, Xue  Z, Wang T. Decolorization of azo-type dye direct orange S catalyzed by laccase/mediator system. Chinese Journal of Environmental Engineering, 2016, 10(7)
21 Zhao S Q, Cai  Y F, Zhang  H R, Li  D P, Cai  A H, Wen  Y X. Toxicities of extract from exotesta of Ginkgo biloba L. against insects of vegetable. Chemistry and Industry of Forest Products, 2003, 23(4): 51–53 (in Chinese)
22 Guo C X, Fu  D X, Zhou  T S, Li  B, Dong H Q. Ginkgolic acids from ginkgo exocarp and their toxicity to the diamondback moth, Plutella xylostella. Journal of Fudan University: Natural Science, 2004, 43(2): 255–259 (in Chinese)
23 Li X L, Deng  F, Shan X M,  Pan J H,  Yu P Z,  Mao Z H. Effects of the molluscicidal agent GA-C 13:0, a natural occurring ginkgolic acid, on snail mitochondria. Pesticide Biochemistry and Physiology, 2012, 103(2): 115–120
https://doi.org/10.1016/j.pestbp.2012.04.006
24 Zhang H Y, Zhao  M J, Zhou  Z, Wang G X,  Xia L. Research advance on extraction technology of exopleura of Ginkgo biloba L. Guangzhou Chemical Industry, 2010, 38(11): 3–5 (in Chinese)
25 Ni X W, Wu  M C. The extraction and application of ginkgolic acids from exopleura of Ginkgo biloba. Journal of Hubei College of TCM, 200, 3(4): 22–24 (in Chinese)
26 Fuzzati N, Pace  R, Villa F. A simple HPLC-UV method for the assay of ginkgolic acids in Ginkgo biloba extracts. Fitoterapia, 2003, 74(3): 247–256
https://doi.org/10.1016/S0367-326X(03)00040-6 pmid: 12727489
27 Pan H M, Wu  C, Cao F L,  Fan G J,  Yang J T,  Jiao S Q,  Li T T. Study on extraction and compositions of ginkgolic acids in ginkgo seeds. Journal of Nanjing Forestry University: Natural Sciences Edition, 2011, 35(6): 29–33
28 Jaggy H, Koch  E. Chemistry and biology of alkylphenols from Ginkgo biloba L. Die Pharmazie, 1997, 52(10): 735–738
pmid: 9362086
29 Ahlemeyer B, Selke  D, Schaper C,  Klumpp S,  Krieglstein J. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C. European Journal of Pharmacology, 2001, 430(1): 1–7
https://doi.org/10.1016/S0014-2999(01)01237-7 pmid: 11698056
30 Xin Y H. Studied on chemical constituents and removal technique of ginkgolic acids from leaves of Ginkgo biloba. Guangxi: Guangxi Normal University, 2007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed