Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (1) : 118-128    https://doi.org/10.15302/J-FASE-2018201
RESEARCH ARTICLE
Yield-height correlation and QTL localization for plant height in two lowland switchgrass populations
Shiva O. MAKAJU1, Yanqi WU1(), Michael P. ANDERSON1, Vijaya G. KAKANI1, Michael W. SMITH2, Linglong LIU3, Hongxu DONG4, Dan CHANG1
1. Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
2. Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA
3. National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
4. Department of Crop Sciences, University of Illinois at Urbana–Champaign, IL 61801, USA
 Download: PDF(160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Switchgrass (Panicum virgatum L.), as a model herbaceous crop species for bioenergy production, is targeted to improve biomass yield and feedstock quality. Plant height is a major component contributing to biomass yield. Accordingly, the objectives of this research were to analyze phenotypic variation for biomass and plant height and the association between them and to localize associated plant height QTLs. Two lowland switchgrass mapping populations, one selfed and another hybrid population established in the field at Perkins and Stillwater, Oklahoma, were deployed in the experiment for two years post establishment. Large genetic variation existed for plant biomass and height within the two populations. Plant height was positively correlated with biomass yield in the selfed population (r = 0.39, P<0.0001) and the hybrid population (r = 0.41, P<0.0001). In the selfed population, a joint analysis across all environments revealed 10 QTLs and separate analysis for each environment, collectively revealed 39 QTLs related to plant height. In the hybrid population, the joint analysis across overall environments revealed 35 QTLs and the separate analysis for each environment revealed 38 QTLs. The findings of this research contribute new information about the genetic control for plant height and will be useful for future plant breeding and genetic improvement programs in lowland switchgrass.

Keywords yield-height      QTL localization      lowland switchgrass     
Corresponding Author(s): Yanqi WU   
Just Accepted Date: 27 December 2017   Online First Date: 26 February 2018    Issue Date: 21 March 2018
 Cite this article:   
Shiva O. MAKAJU,Yanqi WU,Michael P. ANDERSON, et al. Yield-height correlation and QTL localization for plant height in two lowland switchgrass populations[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 118-128.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018201
https://academic.hep.com.cn/fase/EN/Y2018/V5/I1/118
Sources of variation Selfed population Hybrid population
df Biomass yield df Plant height df Biomass yield df Plant height
Year 1 **** 1 **** 1 **** 1 ****
Location 1 NS† 1 **** 1 **** 1 ****
Genotype 264 **** 264 **** 175 **** 175 ****
Replication 2 *** 2 **** 2 **** 2 ****
Year×location 1 **** 1 **** 1 **** 1 NS
Year×genotype 264 NS 263 **** 175 NS 175 ***
Location×genotype 258 **** 257 **** 175 **** 175 **
Year×location×genotype 257 NS 251 NS 175 NS 175 NS
Tab.1  ANOVA for the biomass yield (g per plant) and plant height (cm) across all environments for each of the selfed and the hybrid populations using GLM procedure
Parameter Selfed population Hybrid population
Biomass yield Plant height Biomass yield Plant height
NL94 (P1) 980 206 980 206
SL93 (P2) 1259 203
Population mean 401 184 1469 212
LSD (0.05) 211.42 12.73 367.64 13.17
R2 0.53 0.80 0.66 0.84
CV (%) 65.85 8.63 31.26 7.75
Tab.2  Summary of the biomass yield (g per plant) and plant height (cm) across all environments for each of the selfed and the hybrid populations
Sources of variation Selfed population Hybrid population
Biomass yield Plant height Biomass yield Plant height
df 2012 df 2013 df 2012 df 2013 df 2012 df 2013 df 2012 df 2013
PKS
Genotype 258 **** 258 **** 256 **** 254 **** 175 **** 175 **** 175 **** 175 ****
Replication 2 NS† 2 ** 2 **** 2 **** 2 **** 2 **** 2 **** 2 ****
STW
Genotype 263 **** 264 **** 263 **** 262 **** 175 **** 175 **** 175 **** 175 ****
Replication 2 *** 2 * 2 **** 2 ** 2 ** 2 * 2 NS 2 NS
Tab.3  ANOVA for the biomass yield and plant height in Perkins, OK (PKS) and Stillwater, OK (STW) from 2012 to 2013
Location Parameter Selfed population Hybrid population
Biomass yield Plant height Biomass yield Plant height
2012 2013 2012 2013 2012 2013 2012 2013
PKS NL94 (P1) 922.33 1277.00 203.67 225.00 922.33 1277.00 203.67 225.00
SL 93 (P2) 1332.00 1783.33 206.33 242.33
Polulation mean 275.08 538.32 169.57 213.11 1366.98 2028.51 205.70 248080
LSD 419.54 638.64 32.59 24.72 767.84 1018.41 34.67 21.40
R2 0.46 0.46 0.62 0.69 0.60 0.52 0.56 0.63
CV 95.07 73.94 11.98 7.23 34.98 31.26 10.50 5.36
RMSE 261.52 398.05 20.31 15.41 478.15 634.18 21.59 13.32
SE 10.48 16.14 0.99 0.84 26.86 32.35 1.16 0.78
Maximam 3511 3757 313 292 3223 4611 329 312
Minimum 1 12 86 125 4 110 9 179
N 750 732 717 693 528 528 526 521
STW NL94 (P1) 886.67 833.00 181.00 215.67 886.67 833.00 181.00 215.67
SL 93 (P2) 1021.33 897.67 159.67 204.33
Polulation mean 401.32 392.86 162.93 193.14 1398.95 1080.35 175.82 218.89
LSD 299.17 236.36 20.26 18.51 547.11 429.71 23.96 20.49
R2 0.59 0.56 0.63 0.72 0.50 0.51 0.59 0.63
CV 46.47 37.51 7.75 5.98 24.35 24.77 8.49 5.83
RMSE 186.51 147.35 12.63 11.54 340.69 267.59 14.92 12.76
SE 8.43 6.48 0.61 0.64 17.11 13.63 0.83 0.74
Maximam 2226 1351 220 250 2782 3458 220 265
Minimum 3 14 107 130 25 126 115 140
N 781 784 765 767 528 528 526 526
Tab.4  Summary of the biomass yield and plant height at Perkins, OK (PKS) and Stillwater, OK (STW) from 2012 to 2013
Month Perkins, OK Stillwater, OK
2012 2013 30-year mean 2012 2013 30-year mean
January 2.4 4.5 3.4 2.4 2.5 3.4
February 6.1 8.4 4.3 7.4 7.9 4.2
March 11.5 1.4 8.0 10.0 2.8 8.0
April 12.9 13.0 8.8 15.6 13.5 8.9
May 2.8 17.8 13.8 2.8 15.8 13.5
June 7.4 10.5 12.6 5.5 10.0 12.2
July 0.7 15.4 7.4 0.2 14.1 7.7
August 8.6 12.1 7.0 6.7 6.5 7.6
September 3.4 4.9 10.1 2.8 4.3 10.1
October 2.2 6.4 8.4 1.5 4.8 8.2
November 1.7 3.0 6.4 1.1 4.1 6.2
December 1.5 2.2 4.7 1.1 1.6 4.6
Total 61.1 99.5 94.8 57.3 88.0 94.6
Tab.5  Monthly total precipitation (cm) at Perkins and Stillwater, OK from 2012 to 2013 compared with 30-year average (1981 – 2010)
Year Location Selfed population Hybrid population
r N r N
2012 PKS 0.41**** 717 0.38**** 526
2012 STW 0.29**** 765 0.43**** 526
2013 PKS 0.33**** 693 0.20**** 521
2013 STW 0.33**** 767 0.30**** 526
Tab.6  The Pearson correlation coefficient (r) between biomass yield and plant height
Environment† SN Linkage group Position of LOD peak/cM LOD peak Left locus Right locus Phenotypic variance explained (PVE)/%
STW12 1 1b 34.5 7.9 PVGA-1735/1736 sww-2320 8.8
2 1b 48.6 8.1 sww-162 sww-196 9.1
3 2a 47.2 9.6 sww-1805 PVCA-765/766 11.0
4 2a 90.1 5.2 PVAAG-3245/3246 nfsg-129_282 5.3
5 3b 0.0 4.8 PVE-977/978 PVCAG-2393/2394 5.1
6 3b 15.9 5.3 PVCAG-2393/2394 PVGA-2105/2106 5.7
7 3b 50.5 4.4 PVGA-1201/1202 PVGA-1853/1854 4.7
8 4a 3.7 4.8 PVE-425/426 PVCA-219/220 5.0
9 5a 50.9 4.9 PVGA-1357/1358 PVGA-1971/1972 4.4
10 5a 56.2 5.0 PVGA-1971/1972 PVAAG-2861/2862 4.5
11 5b 62.3 7.7 sww-556 PVAAG-3139/3140 8.5
? 12 5b 91.6 6.0 sww-2250 PVE-571/572 6.5
PKS13 1 1b 24.8 5.2 PVGA-1271/1272_345 sww-2115 3.8
2 2a 46.2 10.7 sww-1805 PVCA-765/766 10.2
3 2b 50.4 5.7 PVE-775/776 PVE-413/414 5.0
4 3a 65.2 7.3 PVE-169/170 sww-2503 6.8
5 6b 103.0 6.9 sww-1749 sww-3053_180d 6.1
6 8a 67.8 6.2 5005_B08 PVCA-979/980 5.4
7 8b 49.0 4.8 PVGA-1149/1150 PVCA-541/542 4.1
? 8 9b 87.2 4.5 PVE-613/614 sww-466 3.8
STW13 1 1b 2.0 5.7 PVCAG-2361/2362 PVAAG-2143/2144 2.7
2 1b 18.9 4.7 PVGA-1401/1402 sww-2271 1.9
3 1b 48.6 22.1 sww-162 sww-196 14.5
4 2a 49.3 9.7 sww-938 Millet-MPGD25 5.0
5 3b 103.3 4.6 PVGA-1665/1666 PVAAG-3029/3030 1.9
6 4a 0.6 7.3 PVGA-1135/1136 PVE-425/426 3.7
7 4a 3.7 13.5 PVE-417/418 PVGA-1637/1638 7.9
8 5a 85.1 12.1 PVE-361/362 sww-2387 6.5
9 5b 63.0 10.5 sww-556 PVAAG-3139/3140 5.6
10 5b 80.2 7.1 Millet-MPGD19 sww-2250 3.5
11 9a 66.5 4.5 PVGA-1605/1606_160 sww-463 2.2
12 9a 76.9 5.1 sww-2364 sww-2285 2.5
13 9a 96.8 7.3 sww-651 PVAAG-3091/3092 3.7
14 9a 105.1 5.7 PVCAG-2517/2518 PVCAG-2281/2282 2.8
15 9b 63.8 9.3 nfsg-299 PVGA-1225/1226_168 4.7
16 9b 95.3 6.0 PVGA-1153/1154 5008_B05 2.9
17 9b 99.7 7.5 5008_B05 nfsg-202 3.8
18 9b 119.9 5.0 PVCAG-2487/2488 PVE-219/220 2.4
? 19 9b 147.0 4.4 PVCAG-2615/2616 sww-585 2.1
Allenv 1 1b 48.6 6.0 sww-162 sww-196 6.9
2 2a 55.6 6.2 PVE-625/626 sww-393 7.1
3 2b 11.0 5.3 sww-1534 PVE-831/832 5.9
4 3a 102.1 4.6 PVGA-1387/1388 PVCAG-2239/2240 5.1
5 7a 61.1 5.4 PVGA-1869/1870 sww-2167 6.0
6 7a 73.7 5.8 sww-2876 PVGA-2139/2140 6.5
7 9a 12.0 4.7 PVE-281/282 PVE-1135/1136 5.2
8 9a 28.5 5.5 sww-125_208 PVE-953/954 6.1
9 9b 123.9 5.7 PVE-487/488 PVCA-19/20 6.5
? 10 9b 147.0 4.4 PVCAG-2615/2616 sww-585 4.9
Tab.7  QTLs identified by multiple QTL mapping (MQM) for plant height in a selfed population of NL94 lowland switchgrass.
Environment† SN Linkage group Position of LOD peak/cM LOD peak Left locus Right locus Phenotypic variance explained (PVE)/%
PKS12 1 1a 1.0 5.2 PVCAG-2537/2538 sww-1667 6.4
2 1b 37.3 8.1 PVAAG-2987/2988 PVCA-179/180 10.6
3 2b 24.1 6.4 PVGA-2079/2080 PVCAG-2647/2648 8.1
4 3b 17.2 5.0 PVE-977/978 PVGA-1201/1202 7.0
5 4a-b 63.8 4.4 PVCA-219/220 PVCA-793/794 5.4
? 6 5b 40.2 5.7 PVAAG-3163/3164 PVCAG-2535/2536 7.1
STW12 1 1b 28.9 6.8 PVAAG-2987/2988 PVGA-1401/1402 8.2
2 1b 68.8 8.4 PVCA-179/180 sww-2320 10.3
3 2a 19.4 9.7 sww-532 nfsg-052 12.3
4 7a 0.0 9.6 PVCAG-2503/2504 PVAAG-3051/3052 13.3
? 5 9b 27.4 4.5 sww-2377 nfsg-200 5.2
PKS13 1 1a 3 7.9 PVCAG-2537/2538 sww-1667 3.0
2 1b 1 4.4 sww-2034 sww-2405_160 1.6
3 1b 23.862 6.3 sww-2405_160 PVCAG-2361/2362 2.3
4 1b 43.264 6.2 PVCAG-2361/2362 PVCA-179/180 2.2
5 1b 72.827 9.6 PVCA-179/180 PVAAG-3353/3354 3.6
6 2b 24.082 9.7 PVE-781/782 PVCAG-2647/2648 3.8
7 3a 16.691 19.6 PVAAG-3315/3316 PVCA-55/56 8.7
8 3a 62.485 6.8 PVCA-55/56 PVCAG-2297/2298 2.0
9 3b 5 5.2 PVE-977/978 PVCAG-2393/2394 1.8
10 3b 20.334 14.4 PVCAG-2393/2394 PVGA-1201/1202 6.5
11 3b 87.739 7.8 PVGA-1599/1600 sww-323 2.9
12 4a-b 16.698 9.7 PVAAG-2979/2980 sww-1795 3.8
13 4a-b 65.673 4.8 PVGA-1637/1638 PVCA-793/794 1.7
14 5a 30.874 12.5 PVE-1369/1370 PVGA-1813/1814 5.1
15 5a 44.283 12.9 PVGA-1813/1814 PVCAG-2197/2198 4.9
16 5b 53.701 6.8 PVAAG-3163/3164 PVCAG-2535/2536 2.4
17 6b 11.411 8.2 sww-1889 sww-1749 3.1
18 7a 13.017 17.8 PVAAG-2881/2882 sww-1742 7.9
19 7a 43.418 7.9 sww-2167 sww-348 3.0
20 8b 20.091 5.2 sww-1862 nfsg-219 1.9
21 8b 30.752 5.4 nfsg-219 PVGA-2005/2006 1.9
? 22 9b 0 4.3 PVGA-1663/1664 nfsg-021 1.5
STW13 1 1b 52.964 6.29 PVGA-1401/1402 sww-2320 11.9
2 2b 23.806 4.36 PVGA-2079/2080 sww-573 8.1
3 5b 37.212 7.18 PVAAG-3163/3164 PVCAG-2535/2536 13.7
4 6b 11.411 5.6 PVAAG-3017/3018 sww-1813 10.5
? 5 7a 0 6.78 PVCAG-2503/2504 PVAAG-3253/3254 13.1
Allenv 1 1a 2.0 10.0 PVCAG-2537/2538 sww-1667 1.7
2 1b 0.0 4.2 sww-2034 sww-2405_160 0.6
3 1b 22.9 11.8 sww-2405_160 PVCAG-2361/2362 2.1
4 1b 37.3 20.8 PVCAG-2361/2362 PVCA-179/180 4.5
5 2a 17.4 32.5 sww-532 nfsg-052 8.8
6 2a 50.6 6.6 PVCA-765/766 PVAAG-3245/3246 0.9
7 2b 23.8 29.1 PVE-781/782 PVCAG-2647/2648 7.3
8 3a 9.7 4.1 PVAAG-3315/3316 PVCA-55/56 0.6
9 3b 6.0 16.8 PVE-977/978 PVCAG-2393/2394 3.4
10 3b 17.3 30.0 PVCAG-2393/2394 PVGA-1201/1202 7.7
11 3b 31.4 4.5 PVGA-1201/1202 PVGA-1727/1728 0.6
12 3b 87.7 16.0 PVGA-1599/1600 sww-323 3.1
13 4a-b 10.0 5.7 PVAAG-2979/2980 sww-1795 0.8
14 4a-b 63.8 7.1 PVCA-219/220 PVCA-793/794 0.9
15 5a 30.9 9.5 PVCAG-2167/2168 PVGA-1813/1814 1.7
16 5a 50.8 12.5 PVGA-1649/1650 PVCAG-2197/2198 2.3
17 5a 70.0 5.8 sww-389 sww-2387 1.0
18 5b 2.2 17.4 PVGA-1773/1774 PVGA-1243/1244 3.5
19 5b 39.2 9.5 PVAAG-3163/3164 PVCAG-2535/2536 1.6
20 6b 13.8 14.4 sww-1889 sww-1749 2.7
21 7a 11.0 14.6 PVAAG-3051/3052 PVGA-1869/1870 2.9
22 7a 12.0 14.5 PVGA-1869/1870 sww-1742 2.8
23 7a 37.9 5.6 PVGA-2139/2140 sww-348 0.8
24 8b 0.0 5.7 PVCA-979/980 sww-1862 0.9
25 8b 20.5 16.6 sww-1862 nfsg-219 3.3
26 8b 33.4 6.9 nfsg-219 PVGA-1275/1276 1.1
27 9a 0.0 5.0 sww-463 PVAAG-3091/3092 0.8
28 9a 22.7 9.5 PVGA-1513/1514 PVCA-863/864 1.7
29 9a 26.2 7.1 PVCA-863/864 nfsg-137 1.2
30 9a 45.3 4.9 nfsg-137 PVCA-17/18 0.8
31 9b 0.0 9.4 PVGA-1663/1664 PVCAG-2487/2488 2.0
32 9b 23.6 12.0 PVCAG-2487/2488 sww-2377 2.2
33 9b 26.6 10.1 sww-2377 PVCA-7/8 2.3
34 9b 30.7 20.6 PVCA-7/8 nfsg-202 5.5
? 35 9b 34.6 6.8 nfsg-202 5008_B05 1.1
Tab.8  QTLs identified by multiple QTL mapping (MQM) for plant height in a hybrid population of NL94 × SL93 lowland switchgrass parents
1 Wright L, Turhollow A. Switchgrass selection as a “model” bioenergy crop: a history of the process. Biomass and Bioenergy, 2010, 34(6): 851–868
https://doi.org/10.1016/j.biombioe.2010.01.030
2 Nielsen E L. Analysis of variation in Panicum virgatum. Journal of Agricultural Research, 1944, 69: 327–353
3 Taliaferro C M. Breeding and selection of new switchgrass varieties for increased biomass production.Oak Ridge: Oak Ridge National Laboratory, 2003
4 McLaughlin S B, Kszos L A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 2005, 28(6): 515–535
https://doi.org/10.1016/j.biombioe.2004.05.006
5 Okada M, Lanzatella C, Saha M C, Bouton J, Wu R, Tobias C M. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics, 2010, 185(3): 745–760
https://doi.org/10.1534/genetics.110.113910 pmid: 20407132
6 Liu L, Wu Y. Identification of a selfing compatible genotype and mode of inheritance in switchgrass. BioEnergy Research, 2012, 5(3): 662–668
https://doi.org/10.1007/s12155-011-9173-z
7 Liu L, Wu Y. Switchgrass molecular genetics and molecular breeding for bioenergy traits. In: Compendium of bioenergy plants: switchgrass. Boca Raton:CRC Press, 2014, 189–213
8 Adhikari L, Anderson M P, Klatt A, Wu Y. Testing the efficacy of a polyester bagging method for selfing switchgrass. BioEnergy Research, 2015, 8(1): 380–387
https://doi.org/10.1007/s12155-014-9528-3
9 Zhang Y, Zalapa J E, Jakubowski A R, Price D L, Acharya A, Wei Y, Brummer E C, Kaeppler S M, Casler M D. Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica, 2011, 139(7): 933–948
https://doi.org/10.1007/s10709-011-9597-6 pmid: 21786028
10 Narasimhamoorthy B, Saha M, Swaller T, Bouton J. Genetic diversity in switchgrass collections assessed by EST-SSR markers. BioEnergy Research, 2008, 1(2): 136–146
https://doi.org/10.1007/s12155-008-9011-0
11 Costich D E, Friebe B, Sheehan M J, Casler M D, Buckler E S. Genome-size variation in switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy. Plant Genome, 2010, 3(3): 130–141
https://doi.org/10.3835/plantgenome2010.04.0010
12 Cassida K A, Muir J, Hussey M, Read J, Venuto B, Ocumpaugh W. Biomass yield and stand characteristics of switchgrass in south central US environments. Crop Science, 2005, 45(2): 673–681
https://doi.org/10.2135/cropsci2005.0673
13 Fuentes R G, Taliaferro C M. Biomass yield stability of switchgrass (Panicum virgatum L.) cultivars. Energy Conversion & Management, 2002, 44(18): 2953–2958
14 Lemus R, Brummer E C, Moore K J, Molstad N E, Burras C L, Barker M F. Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass and Bioenergy, 2002, 23(6): 433–442
https://doi.org/10.1016/S0961-9534(02)00073-9
15 Sripathi R, Kakani V G, Wu Y. Genotypic variation and trait relationships for morphological and physiological traits among new switchgrass populations. Euphytica, 2013, 191(3): 437–453
https://doi.org/10.1007/s10681-013-0911-5
16 Bhandari H, Saha M, Fasoula V, Bouton J. Estimation of genetic parameters for biomass yield in lowland switchgrass (Panicum virgatum L.). Crop Science, 2011, 51(4): 1525
https://doi.org/10.2135/cropsci2010.10.0588
17 Missaoui A M, Paterson A H, Bouton J H. Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theoretical and Applied Genetics, 2005, 110(8): 1372–1383
https://doi.org/10.1007/s00122-005-1935-6 pmid: 15841364
18 Liu L, Wu Y, Wang Y, Samuels T. A high-density simple sequence repeat-based genetic linkage map of switchgrass.G3: Genes, Genomes, Genetics, 2012, 2(3): 357–370
https://doi.org/10.1534/g3.111.001503 pmid: 22413090
19 Dong H, Thames S, Liu L, Smith M W, Yan L, Wu Y. QTL mapping for reproductive maturity in lowland switchgrass populations. BioEnergy Research, 2015, 8(4): 1925–1937
https://doi.org/10.1007/s12155-015-9651-9
20 Lowry D B, Taylor S H, Bonnette J, Aspinwall M J, Asmus A L, Keitt T H, Tobias C M, Juenger T E. QTLs for biomass and developmental traits in switchgrass (Panicum virgatum). BioEnergy Research, 2015, 8(4): 1856–1867
https://doi.org/10.1007/s12155-015-9629-7
21 Liu L, Huang Y, Punnuri S, Samuels T, Wu Y, Mahalingam R. Development and integration of EST–SSR markers into an established linkage map in switchgrass. Molecular Breeding, 2013, 32(4): 923–931
https://doi.org/10.1007/s11032-013-9921-1
22 Serba D D, Daverdin G, Bouton J H, Devos K M, Brummer E C, Saha M C. Quantitative trait loci (QTL) underlying biomass yield and plant height in switchgrass. BioEnergy Research, 2015, 8(1): 307–324
https://doi.org/10.1007/s12155-014-9523-8
23 Todd J, Wu Y Q, Wang Z, Samuels T. Genetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms. Genetics and Molecular Research, 2011, 10(4): 2976–2986
https://doi.org/10.4238/2011.November.29.8 pmid: 22180031
24 Wu Y. Classic Genetics and Breeding of Bioenergy Related Traits in Switchgrass. In: Luo H, Wu Y, Kole C, eds. Compendium of Bioenergy Plants: Switchgrass.Boca Raton:CRS Press, 2014, 170
25 SAS Institute. SAS 9.4 for Windows. SAS Institue Inc., Cary, NC, USA, 2012
26 van Ooijen J W. MapQTL 6 Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, The Netherlands: Kyazma BV, 2009
27 van Ooijen J W. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity, 1999, 83(5): 613–624
https://doi.org/10.1038/sj.hdy.6886230 pmid: 10620035
28 Makaju S, Wu Y, Zhang H, Kakani V, Taliaferro C, Anderson M. Switchgrass winter yield, year-round elemental concentrations, and associated soil nutrients in a zero input environment. Agronomy Journal, 2013, 105(2): 463–470
https://doi.org/10.2134/agronj2012.0286
29 McLaughlin S, Bouton J, Bransby D, Conger B, Ocumpaugh W, Parrish D, Taliaferro C, Vogel K, Wullschleger S. Developing switchgrass as a bioenergy crop. Office of Scientific & Technical Information Technical Report,  1999
30 Mesonet, Mesonet Long-Term Averages—Graphs. Mesonet website, available on November 25, 2014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed