Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (2) : 236-252    https://doi.org/10.15302/J-FASE-2018223
RESEARCH ARTICLE
Identification and selection of resistance to Bemisia tabaci among 550 cotton genotypes in the field and greenhouse experiments
Lizhen ZHU, Jianying LI, Zhongping XU, Hakim MANGHWAR, Sijia LIANG, Suli LI, Muna ALARIQI, Shuangxia JIN(), Xianlong ZHANG
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
 Download: PDF(1828 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plants have developed sophisticated systems to cope with herbivore challenge, including morphological barriers and secondary metabolites to reduce damage. In this study, 550 Gossypium genotypes were evaluated for whitefly (Bemisia tabaci) resistance in five experiments including two in the field and three in the greenhouse, with 23 resistant and 19 susceptible genotypes selected. Whitefly-resistance index determination showed that a leaf having a high density of hairs had resistance to whitfly egg/nymph production. Longer leaf hairs were also important for resistance. This study revealed that okra shaped leaves reduced adult whitefly oviposition preference, while glabrous leaves and high hair density helped not only in the reduction of the adults but also decreased oviposition preference. Gossypol was also observed to be involved in the reduction of adult whitefly development and/or survival.

Keywords Bemisia tabaci      Gossypium genotypes      gossypol      leaf hair density      leaf hair length     
Corresponding Author(s): Shuangxia JIN   
Just Accepted Date: 19 April 2018   Online First Date: 16 May 2018    Issue Date: 28 May 2018
 Cite this article:   
Lizhen ZHU,Jianying LI,Zhongping XU, et al. Identification and selection of resistance to Bemisia tabaci among 550 cotton genotypes in the field and greenhouse experiments[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 236-252.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018223
https://academic.hep.com.cn/fase/EN/Y2018/V5/I2/236
Fig.1  Bioassay of 550 cotton genotypes under greenhouse and field conditions. (a) The greenhouse experiments were conducted from August to December 2013 (Exp. 1), March to July 2014 (Exp. 2) and October 2014 to January 2015 (Exp. 3). Each greenhouse had the same experimental treatment. The field experiments were conducted in the 2014–2015 growing season (Exp. 4) and 2015–2016 growing season (Exp. 5), each field plot was given the same treatment; (b) A, G. hirsutum (n = 498); B, G. barbadense (n = 35); C, G. arboreum (n = 12); D, G. herbaceum (n = 5). Red arrows indicate the number of genotypes in common for greenhouse (100) and field (42) experiments.
Fig.2  Cotton leaf morphology related to resistance to whitefly in greenhouse Exps. 6–7. (a–c) Genotypes with different hair densities; (d–f) genotypes with different hair length; (g–i) gland on the leaf surface. All the photographs were taken by scanning electron microscopy.
Genotype Experiment Species Leaf shape Leaf hairs
SM8 1, 2, 3, 4, 5 G. hirsutum Normal Normal
DZMSR1 1, 2, 3, 4, 5 G. hirsutum Normal Normal
JM20 1, 2, 3, 4, 5 G. hirsutum Normal Normal
X16 1, 2, 3, 4, 5 G. hirsutum Normal Normal
ZLZ 1, 2, 3, 4, 5 G. hirsutum Normal Normal
GL1 1, 2, 3, 4, 5 G. hirsutum Normal Normal
Z1-59 1, 2, 3, 4, 5 G. hirsutum Normal Normal
37-30 1, 2, 3, 4, 5 G. hirsutum Normal Normal
38-36 1, 2, 3, 4, 5 G. hirsutum Normal Normal
39-38 1, 2, 3, 4, 5 G. hirsutum Normal Normal
PZYH 1, 2, 3, 4, 5 G. hirsutum Normal Normal
ACS50/2 1, 2, 3, 4, 5 G. hirsutum Normal Normal
3196 1, 2, 3, 4, 5 G. hirsutum Normal Normal
LBM 1, 2, 3, 4, 5 G. hirsutum Normal Hairy
481GZ 1, 2, 3, 4, 5 G. hirsutum Normal Hairy
74s-237 1, 2, 3, 4, 5 G. hirsutum Normal Hairy
L1779 1, 2, 3, 4, 5 G. hirsutum Normal Hairy
LM1 1, 2, 3, 4, 5 G. hirsutum Normal Hairy
ZYZ4 1, 2, 3, 4, 5 G. arboreum Okra Hairy
DH77-116 1, 2, 3, 4, 5 G. hirsutum Normal Hairy
MYm20 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
HM4 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
L901-902 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
YJ2 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
Z161 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
LJM5 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
L96-103 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
13P022 1, 2, 3, 4, 5 G. hirsutum Normal Glabrous
JN804 1, 2, 3, 4, 5 G. hirsutum Normal Normal
HMJw 1, 2, 3, 4, 5 G. hirsutum Normal Normal
GL3 1, 2, 3, 4, 5 G. hirsutum Normal Normal
RO 1, 2, 3, 4, 5 G. herbaceum Okra Normal
39-24 1, 2, 3, 4, 5 G. hirsutum Normal Normal
38-34 1, 2, 3, 4, 5 G. hirsutum Normal Normal
DGZ8-9 1, 2, 3, 4, 5 G. hirsutum Normal Normal
13p027 1, 2, 3, 4, 5 G. hirsutum Normal Normal
ZMS22 1, 2, 3, 4, 5 G. hirsutum Normal Normal
6919 1, 2, 3, 4, 5 G. hirsutum Normal Normal
QM465 1, 2, 3, 4, 5 G. hirsutum Normal Normal
ZM3 1, 2, 3, 4, 5 G. hirsutum Normal Normal
13p023 1, 2, 3, 4, 5 G. hirsutum Normal Normal
HM11046 1, 2, 3, 4, 5 G. hirsutum Normal Normal
Tab.1  Details of genotypes identified and selected in three greenhouse experiments (Exps. 1–3 and two field (Exps. 4–5) experiments
Fig.3  Comparative analysis and Clusplot of adult whitefly populations in Exps. 1–3 in greenhouse and Exps. 4–5 in the field. (a) Clusplot of the first two components of 42 genotypes including susceptible and resistant genotypes with the population assessment of whitefly adults. To further categorize the resistance/susceptibility profiles of these different species of upland cotton, a cluster analysis was performed on the Euclidean distance metric of each species and the cluster results visualized in R with cluster package. The resistant species were clustered in one group and susceptible species in another group; (b) differentiation was supported by the t-test at a significance level of P<0.05.
Phenotype  Genotype  Adults per five leaves  
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Mean
Susceptible MYm20 443.667 f 415.667 ab 288.333 b 5.333 cd 18 d 181.833 d
JN804 641.667 d 480 a 213.333 cd 10.667 bc 34.333 bc 276 cd
3196 256.333 h 224 bc 81.333 e 7.667 cd 22.667 cd 118.5 ef
DH77-116 1277 a 470 ab 420 a 17.333 a 51.333 a 447.133 a
X16 355.333 g 97.333 d 118.333 de 3.333 d 13.7 d 117.606 ef
HMJw 364.667 g 130 bc 120.667 de 7.333 cd 21 cd 128.733 ef
LBM 504 ef 177 bc 171.667 de 6.333 cd 19.7 cd 175.74 de
GL3 885.667 c 213 bc 293.667 b 7 cd 27 c 285.267 c
38-34 1081 b 243 bc 360 ab 11.333 bc 35 bc 346.067 b
39-24 479 ef 232 bc 159.667 de 6.333 cd 20 cd 179.4 de
DGZ8-9 255.667 h 93.3 d 85 e 4.333 d 10.667 d 89.793 f
13p027 316.667 gh 116 c 105.333 e 4 d 12.667 d 110.933 ef
ZMS22 880.667 c 240 bc 293.3 b 13 b 42.7 b 293.933 bc
481GZ 481.667 ef 207 bc 160 de 5.667 cd 20.333 cd 174.933 de
74s-237 589.333 de 301 b 195.333 cd 8.667 c 26.333 cd 224.133 d
6919 420.333 fg 155 bc 140.333 de 5.667 cd 16 d 147.467 e
HM4 521.667 e 185 bc 174 d 5.667 cd 19.333 cd 181.133 de
L901-902 644 d 224 bc 214.333 c 6.667 cd 24.333 cd 222.667 d
QM465 611.667 d 203 bc 204 cd 6.333 cd 20.333 cd 209.067 d
LSD 5%
Resistant ZM3 92.667 c 131 ab 30.667 b 5.667 a 17.333 a 55.467 b
ZLZ 61.667 de 33.667 cd 20.333 bc 3.667 bc 10.667 bc 26 de
13p023 35.333 ef 47.667 c 11.667 c 2.333 c 7 bc 20.8 ef
HM11046 26.333 fg 78.667 bc 8.667 c 0.3 d 1 d 22.993 de
L1779 154.333 a 141 a 51.333 a 2 cd 14.333 ab 72.6 a
YJ2 34.667 ef 3 d 11.667 c 1.333 cd 3.333 cd 10.8 f
SM8 31.333 f 25.333 cd 10.333 c 1 cd 2.667 cd 14.133 f
DZMSR1 62.333 de 18 cd 19.333 bc 1.667 cd 5.333 cd 21.333 ef
Z161 47.667 e 25.333 cd 18.667 bc 2 cd 6 cd 19.933 ef
JM20 37.667 ef 62.667 bc 12.667 c 1.667 cd 5 cd 23.934 de
RO 7.667 g 36 cd 2.667 c 0 d 0.333 d 9.333 f
LJM5 21.667 fg 12 cd 7 c 0.667 d 2.333 cd 8.733 f
GL1 35.333 ef 93.333 b 10.333 c 4.333 ab 11.667 b 31 d
ZYZ 24.667 fg 35 cd 8.333 c 0 d 0 d 13.6 f
L96-103 46.333 ef 66.667 bc 15.667 bc 3 bc 8.333 bc 28 de
Z1-59 86.667 c 15.667 cd 29.667 b 4 b 11.333 bc 29.467 de
13P022 33.333 ef 17.667 cd 12.667 c 2.333 c 6.333 c 14.467 f
LM1 66.333 d 97.333 b 22.333 bc 2.667 bc 9.667 bc 39.667 c
37-30 116.333 b 42.667 c 37.667 a 5.667 a 17.333 a 43.933 c
38-36 15 g 20.667 cd 5.667 c 0.667 d 2 cd 8.8 f
39-38 56.333 de 25.333 cd 19 bc 3.333 bc 10.333 bc 22.866 e
PZYH 59.667 de 30.667 cd 19.667 bc 4 b 12.333 ab 25.267 de
ACS50/2 51.667 de 118 ab 13 c 1.889 cd 7.667 bc 38.445 cd
  LSD 5%                        
Tab.2  Mean number of adult whiteflies per five leaves on susceptible and resistant genotypes in greenhouse (Exps. 1–3) and field (Exps. 4–5) experiments
Fig.4  Nymph densities on the leaves of 25 genotypes. (a) Nymphs on each leaf were counted using a Leica stereo microscope, samples were photographed from three positions to form a triangle. Vernier calipers were used to measure area of the leaves in the photographs with nymphs. Bars= 400 um in A–F; (b, c) Mean number of whitefly eggs and nymphs per cm2 on susceptible genotypes (10 genotypes) (b) and resistant (15 genotypes) (c) on the fifth leaf from the terminal in greenhouse exps. 2–3. Back transformed means are plotted.
Phenotype  Genotype  Leaf hairs per cm2
Exp. 2 Exp. 3 Mean
Susceptible 3196 322.66 e 66.904 d 194.782 e
6919 799.022 de 207.286 cd 503.154 de
HM4 0 0 0
LBM 1451.129 d 357.899 c 904.514 d
X16 213.788 e 12.437 d 113.113 e
MYm20 0 0 0
DH77-116 4202.675 b 1088.381 b 2645.528 b
L901-902 0 0 0
481GZ 6681.782 a 1595.488 a 4138.635 a
74s-237 3211.371 c 854.999 b 2033.185 c
LSD 5%
Resistant 13p022 0 0 0
38-36 397.428 ef 97.199 cd 247.314 e
DZMSR1 305.419 f 64.654 cd 185.037 ef
HM11046 529.32 e 116.943 cd 323.131 de
GL1 412.304 ef 91.487 cd 251.895 e
JM20 977.039 d 104.227 cd 540.633 d
L96-103 0 101.587 cd 50.793 ef
L1779 10000 a 4744.234 a 7372.117 a
LJM5 0 0 0
SM8 31.665 g 8.555 d 20.11 f
YJ2 0 0 0
ZM3 314.944 f 115.256 cd 215.1 ef
Z161 0 0 0
ZLZ 1485.31 c 471.308 c 978.309 c
ZYZ4 5018.715 b 1396.312 b 3207.514 b
  LSD 5%            
Tab.3  Mean leaf hair density of susceptible and resistant genotypes in the greenhouse Exps. 2– 3
Phenotype  Genotype  ??Mean leaf hair length/um
Exp. 2 Exp. 3 Mean
Susceptible 3196 34.444 ab 59.305 ab 46.874 ab
6919 34.154 b 55.516 ab 44.835 b
HM4 0 0 0
LBM 34.097 b 55.332 ab 44.715 b
X16 37.954 ab 41.882 b 39.918 b
MYm20 0 0 0
DH77-116 44.435 a 68.372 a 56.403 a
L901-902 0 0 0
481GZ 36.953 ab 56.823 ab 46.888 ab
74s-237 42.568 ab 65.49 a 54.029 ab
LSD 5%
Resistant 13p022 0 0 0
38-36 39.201 ab 55.815 ab 47.508 a
DZMSR1 34.023 b 60.196 ab 47.11 a
HM11046 0 63.796 a 31.898 b
GL1 32.533 b 54.542 ab 43.538 ab
JM20 23.745 c 51.039 ab 37.392 ab
L96-103 0 48.715 ab 24.357 b
L1779 45.555 a 42.95 ab 44.253 a
LJM5 0 0 0
SM8 36.917 b 44.177 ab 40.547 ab
YJ2 0 0 0
ZM3 36.979 b 52.584 ab 44.782 a
Z161 0 0 0
ZLZ 39.11 ab 57.174 ab 48.142 a
ZYZ4 21.047 c 41.852 b 31.45 b
  LSD 5%            
Tab.4  Mean leaf hair length of susceptible and resistant genotypes in greenhouse Exps. 2–3
Fig.5  Gossypol concentrations in the leaves of 25 genotypes quantified HPLC. (a) Six gossypol concentrations from 2.8 to 14.0 ug/g were used to establish the standard curve; (b, c) gossypol concentration of 25 genotypes susceptible (b) and resistant genotypes (c) in greenhouse exps. 2–3.
Phenotype  Genotype  Gland density per cm2
Exp. 2 Exp. 3 Mean
Susceptible 3196 57 c 56 c 56.5 c
6919 72.3 bc 84 b 78.2 bc
HM4 75.3 b 84 b 79.7 bc
LBM 32.3 d 24 d 28.2 d
X16 0 0 0
MYm20 0 0 0
DH77-116 98 a 102 a 100 a
L901-902 0 0 0
481GZ 90 ab 79 b 79.5 b
74s-237 66 bc 52 c 59 c
LSD 5%
Resistant 13p022 139.3 a 166 a 152.7 a
38-36 52.3 d 48 d 50.2 cd
DZMSR1 100.7 bc 104 b 102.4 bc
HM11046 77 c 86 bc 81.5 bc
GL1 102.7 bc 108 b 105.4 b
JM20 81 c 87 bc 84 bc
L96-103 29 d 28 d 28.5 d
L1779 81.3 c 64 cd 72.7 c
LJM5 109 b 99 b 104 b
SM8 81 c 99 bc 90 bc
YJ2 32 d 70.3 c 51.2 cd
ZM3 86 bc 70 c 78 c
Z161 129.3 ab 159 a 144.2 a
ZLZ 31 d 30 d 30.5 d
ZYZ4 86.3 bc 90 bc 88.2 bc
  LSD 5%            
Tab.5  Mean number of glands on susceptible and resistant genotypes in greenhouse Exps. 2–3
Fig.6  Gossypol concentration and trichome density were negatively correlated with the population of whitefly per five leaves for glabrous genotypes. (a, b) Gossypol concentration (mg·g-1) (a) and glands per cm2 (b) in greenhouse exp. 2; (c, d) gossypol concentration (mg/g) (c) and glands per cm2 (d) in greenhouse exp. 3.
Fig.7  Leaf hair density and hair length were positively correlated with the density of whitefly nymphs in genotypes with low concentrations of gossypol. (a, b) Leaf hairs per cm2 (a) and leaf hair length (cm) (b) in greenhouse Exp. 2; (c, d) leaf hairs per cm2 (c) and leaf hair length (cm) (d) in greenhouse Exp. 3.
Fig.8  Relative weight of predictor variables with number of adult whiteflies per five leaves (a) and whitefly nymphs per cm2 (b). C, leaf hair number per cm2; D, leaf hair length (cm); E, gland number per cm2; G: gossypol concentration (mg·g1). A multiple linear regression model was fitted and the all-subsets regression analysis in R with the regsubsets function from the leaps package[74] was used to choose an optimal combination of the influence factors. Finally, the relative weight of each influence factor was calculated to define their contribution to adult whiteflies per five leaves (a) and whitefly nymphs per cm2 (b).
1 Wendel J F,Cronn R C. Polyploidy and the evolutionary history of cotton. Advances In Agronomy, 2003, 78: 139–186
2 James C. Global status of commercialized biotech/GM crops. ISAAA IthacaNova Yorque, 2007
3 Atkinson N J, Urwin P E. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 2012, 63(10): 3523–3543
https://doi.org/10.1093/jxb/ers100 pmid: 22467407
4 Razaq M, Aslam M, Shad S A, Naeem M. Evaluation of some new promising cotton strains against bollworm complex. Evaluation, 2004, 15(3): 313–318
5 Dua I, Kumar V, Bhavneet D E A. Genetically modified cotton and its biosafety concerns: a review. Current Concepts in Botany, 2006: 447–459
6 Klümper W, Qaim M. A meta-analysis of the impacts of genetically modified crops. PLoS One, 2014, 9(11): e111629
https://doi.org/10.1371/journal.pone.0111629 pmid: 25365303
7 Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 2012, 487(7407): 362–365
https://doi.org/10.1038/nature11153 pmid: 22722864
8 Wang Q, Zhu Y, Sun L, Li L, Jin S, Zhang X. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds. Science China: Life Sciences, 2016, 59(2): 172–182
https://doi.org/10.1007/s11427-015-4920-6 pmid: 26728504
9 Tian G, Cheng L, Qi X, Ge Z, Niu C, Zhang X, Jin S. Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. International Journal of Biological Sciences, 2015, 11(11): 1296–1305
https://doi.org/10.7150/ijbs.12463 pmid: 26435695
10 Tian J C, Yao J, Long L P, Romeis J, Shelton A M. Bt crops benefit natural enemies to control non-target pests. Scientific Reports, 2015, 5(1): 16636
https://doi.org/10.1038/srep16636 pmid: 26559133
11 Azimi S, Rahmani S, Tohidfar M, Ashouri A, Bandani A, Talaei-Hassanlouei R. Interaction between Bt-transgenic cotton and the whitefly’s parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae). Journal of Plant Protection Research, 2014, 54(3): 272–278
https://doi.org/10.2478/jppr-2014-0041
12 Naranjo S E, Ruberson J R, Sharma H C, Wilson L, Wu K. The present and future role of insect-resistant genetically modified cotton in IPM, in Integration of insect-resistant genetically modified crops within IPM programs. Springer, 2008, 159–194
13 Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys K A G, Guo Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 2010, 328(5982): 1151–1154
https://doi.org/10.1126/science.1187881 pmid: 20466880
14 Lu Y H, Qiu F, Feng H Q, Li H B, Yang Z C, Wyckhuys K A G, Wu K M. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt Cotton in China. Crop Protection, 2008, 27(3–5): 465–472
https://doi.org/10.1016/j.cropro.2007.07.017
15 Lu Y, Wu K. Mirid bugs in China: pest status and management strategies. Outlooks on Pest Management, 2011, 22(6): 84–88
https://doi.org/10.1564/22dec02
16 Boykin L M, Shatters R G Jr, Rosell R C, McKenzie C L, Bagnall R A, De Barro P, Frohlich D R. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution, 2007, 44(3): 1306–1319
https://doi.org/10.1016/j.ympev.2007.04.020 pmid: 17627853
17 Jin S, Kanagaraj A, Verma D, Lange T, Daniell H. Release of hormones from conjugates: chloroplast expression of b-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiology, 2011, 155(1): 222–235
https://doi.org/10.1104/pp.110.160754 pmid: 21068365
18 Jin S, Zhang X, Daniell H. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnology Journal, 2012, 10(3): 313–327
https://doi.org/10.1111/j.1467-7652.2011.00663.x pmid: 22077160
19 Li J, Zhu L, Hull J J, Liang S, Daniell H, Jin S, Zhang X. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnology Journal, 2016, 14(10): 1956–1975
https://doi.org/10.1111/pbi.12554 pmid: 26923339
20 Moran P J, Thompson G A. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology, 2001, 125(2): 1074–1085
https://doi.org/10.1104/pp.125.2.1074 pmid: 11161062
21 Jones D R. Plant viruses transmitted by whiteflies. European Journal of Plant Pathology, 2003, 109(3): 195–219
https://doi.org/10.1023/A:1022846630513
22 Mugiira R, Liu S S, Zhou X. Tomato yellow leaf curl virus and tomato leaf curl Taiwan virus invade South‐east Coast of China. Journal of Phytopathology, 2008, 156(4): 217–221
https://doi.org/10.1111/j.1439-0434.2007.01345.x
23 Mithöfer A, Boland W. Recognition of herbivory-associated molecular patterns. Plant Physiology, 2008, 146(3): 825–831
https://doi.org/10.1104/pp.107.113118 pmid: 18316636
24 Gatehouse J A. Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist, 2002, 156(2): 145–169
https://doi.org/10.1046/j.1469-8137.2002.00519.x
25 Tollrian R, Harvell C D. The ecology and evolution of inducible defenses. New Jersey, USA: Princeton University Press, 1999
26 Wei J, Wang L, Zhu J, Zhang S, Nandi O I, Kang L. Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol. PLoS One, 2007, 2(9): e852
https://doi.org/10.1371/journal.pone.0000852 pmid: 17786223
27 Kempema L A, Cui X, Holzer F M, Walling L L. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 2007, 143(2): 849–865
https://doi.org/10.1104/pp.106.090662 pmid: 17189325
28 Santamaria M E, Martínez M, Cambra I, Grbic V, Diaz I. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Research, 2013, 22(4): 697–708
https://doi.org/10.1007/s11248-013-9725-4 pmid: 23793555
29 Carmona D, Fornoni J. Herbivores can select for mixed defensive strategies in plants. New Phytologist, 2013, 197(2): 576–585
https://doi.org/10.1111/nph.12023 pmid: 23171270
30 Hanover J W. Physiology of tree resistance to insects. Annual Review of Entomology, 1975, 20(1): 75–95
https://doi.org/10.1146/annurev.en.20.010175.000451
31 Poelman E H, Dam N M, Loon J J A, Vet L E M, Dicke M. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology, 2009, 90(7): 1863–1877
https://doi.org/10.1890/08-0977.1 pmid: 19694135
32 Bennett R N, Wallsgrove R M. Secondary metabolites in plant defence mechanisms. New Phytologist, 1994, 127(4): 617–633
https://doi.org/10.1111/j.1469-8137.1994.tb02968.x
33 Chiozza M V, O’Neal M E, MacIntosh G C. Constitutive and induced differential accumulation of amino acid in leaves of susceptible and resistant soybean plants in response to the soybean aphid (Hemiptera: Aphididae). Environmental Entomology, 2010, 39(3): 856–864
https://doi.org/10.1603/EN09338 pmid: 20550799
34 Hanley M E, Lamont B B, Fairbanks M M, Rafferty C M. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8(4): 157–178
https://doi.org/10.1016/j.ppees.2007.01.001
35 Scriber J, Slansky F Jr. The nutritional ecology of immature insects. Annual Review of Entomology, 1981, 26(1): 183–211
https://doi.org/10.1146/annurev.en.26.010181.001151
36 Awmack C S, Leather S R. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 2002, 47(1): 817–844
https://doi.org/10.1146/annurev.ento.47.091201.145300 pmid: 11729092
37 Glas J J, Schimmel B C J, Alba J M, Escobar-Bravo R, Schuurink R C, Kant M R. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 2012, 13(12): 17077–17103
https://doi.org/10.3390/ijms131217077 pmid: 23235331
38 Maffei M E. Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 2010, 76(4): 612–631
https://doi.org/10.1016/j.sajb.2010.03.003
39 Tissier A. Glandular trichomes: what comes after expressed sequence tags? Plant Journal, 2012, 70(1): 51–68
https://doi.org/10.1111/j.1365-313X.2012.04913.x pmid: 22449043
40 Tian D, Tooker J, Peiffer M, Chung S H, Felton G W. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 2012, 236(4): 1053–1066
https://doi.org/10.1007/s00425-012-1651-9 pmid: 22552638
41 Butter N, Vir B. Morphological basis of resistance in cotton to the whitefly Bemisia tabaci. Phytoparasitica, 1989, 17(4): 251–261
https://doi.org/10.1007/BF02980754
42 Miyazaki J, Stiller W N, Wilson L J. Identification of host plant resistance to silverleaf whitefly in cotton: implications for breeding. Field Crops Research, 2013, 154: 145–152
https://doi.org/10.1016/j.fcr.2013.08.001
43 Walker G, Natwick E. Resistance to silverleaf whitefly, Bemisia argentifolii (Hem., Aleyrodidae), in Gossypium thurberi, a wild cotton species. Journal of Applied Entomology, 2006, 130(8): 429–436
https://doi.org/10.1111/j.1439-0418.2006.01083.x
44 Butler G Jr, Henneberry T, Wilson F. Bemisia tabaci (Homoptera: Aleyrodidae) on cotton: adult activity and cultivar oviposition preference. Journal of Economic Entomology, 1986, 79(2): 350–354
https://doi.org/10.1093/jee/79.2.350
45 Sikka S, Sahni V, Butani D K. Studies on jassid resistance in relation to hairiness of cotton leaves. Euphytica, 1966, 15(3): 383–388
https://doi.org/10.1007/BF00022184
46 Butler G Jr, Rimon D, Henneberry T. Bemisia tabaci (Homoptera: Aleyrodidae): populations on different cotton varieties and cotton stickiness in Israel. Crop Protection, 1988, 7(1): 43–47
https://doi.org/10.1016/0261-2194(88)90037-3
47 Chu C C, Natwick E T, Henneberry T J. Bemisia tabaci (Homoptera: Aleyrodidae) biotype B colonization on okra- and normal-leaf upland cotton strains and cultivars. Journal of Economic Entomology, 2002, 95(4): 733–738
https://doi.org/10.1603/0022-0493-95.4.733 pmid: 12216814
48 Lukefahr M, Fryxell P A. Content of gossypol in plants belonging to genera related to cotton. Economic Botany, 1967, 21(2): 128–131
https://doi.org/10.1007/BF02897860
49 Lukefahr M, Houghtaling J. Resistance of cotton strains with high gossypol content to Heliothis spp. Journal of Economic Entomology, 1969, 62(3): 588–591
https://doi.org/10.1093/jee/62.3.588
50 Altman D, Stipanovic R, Bell A. Terpenoids in foliar pigment glands of A, D, and AD genome cottons: introgression potential for pest resistance. Journal of Heredity, 1990, 81(6): 447–454 doi:10.1093/oxfordjournals.jhered.a111024
51 Hedin P, Parrott W, Jenkins J. Relationships of glands, cotton square terpenoid aldehydes, and other allelochemicals to larval growth of Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 1992, 85(2): 359–364
https://doi.org/10.1093/jee/85.2.359
52 Correa L, Cividanes F, Gontijo L, Santos-Cividanes T. Effects of cotton cultivars differing in gossypol content on the quality of Aphis gossypii as prey for two species of Coccinellidae. Biocontrol Science and Technology, 2014, 24(12): 1439–1450
https://doi.org/10.1080/09583157.2014.945395
53 Greenberg S M, Showler A T, Liu T X. Effects of neem‐based insecticides on beet armyworm (Lepidoptera: Noctuidae). Insect Science, 2005, 12(1): 17–23
https://doi.org/10.1111/j.1672-9609.2005.00003.x
54 Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nature Chemical Biology, 2007, 3(7): 408–414
https://doi.org/10.1038/nchembio.2007.5 pmid: 17576428
55 Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 2006, 9(3): 297–304
https://doi.org/10.1016/j.pbi.2006.03.014 pmid: 16600670
56 Cheng A X, Lou Y G, Mao Y B, Lu S, Wang L J, Chen X Y. Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology, 2007, 49(2): 179–186
https://doi.org/10.1111/j.1744-7909.2007.00395.x
57 Wu G, Guo J Y, Wan F H, Xiao N W. Responses of three successive generations of beet armyworm, Spodoptera exigua, fed exclusively on different levels of gossypol in cotton leaves. Journal of Insect Science, 2010, 10(165): 165
https://doi.org/10.1673/031.010.14125 pmid: 21067414
58 Stipanovic R D, López J D Jr, Dowd M K, Puckhaber L S, Duke S E. Effect of racemic, (+)- and (–)-gossypol on survival and development of Heliothis virescens larvae. Environmental Entomology, 2008, 37(5): 1081–1085
https://doi.org/10.1093/ee/37.5.1081 pmid: 19036185
59 Kong G C, Daud M K, Zhu S J. Effects of pigment glands and gossypol on growth, development and insecticide-resistance of cotton bollworm (Heliothis armigera (Hubner)). Crop Protection, 2010, 29(8): 813–819
https://doi.org/10.1016/j.cropro.2010.03.016
60 Barro P J D, Driver F. Use of RAPD PCR to Distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Australian Journal of Entomology, 1997, 36(2): 149–152
https://doi.org/10.1111/j.1440-6055.1997.tb01447.x
61 Rao Q, Luo C, Zhang H, Guo X, Devine G J. Distribution and dynamics of Bemisia tabaci invasive biotypes in central China. Bulletin of Entomological Research, 2011, 101(1): 81–88
https://doi.org/10.1017/S0007485310000428 pmid: 20822556
62 Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 1994, 87(6): 651–701
https://doi.org/10.1093/aesa/87.6.651
63 Naranjo S E, Flint H M. Spatial distribution of adult Bemisia tabaci (Homoptera: Aleyrodidae) in cotton and development and validation of fixed-precision sampling plans for estimating population density. Environmental Entomology, 1995, 24(2): 261–270
https://doi.org/10.1093/ee/24.2.261
64 Miyazaki J, Stiller W N, Wilson L J. Identification of host plant resistance to silverleaf whitefly in cotton: implications for breeding. Field Crops Research, 2013, 154(3): 145–152
https://doi.org/10.1016/j.fcr.2013.08.001
65 LeBreton J M, Tonidandel S. Multivariate relative importance: extending relative weight analysis to multivariate criterion spaces. Journal of Applied Psychology, 2008, 93(2): 329–345
https://doi.org/10.1037/0021-9010.93.2.329 pmid: 18361636
66 Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K, Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. Cluster: cluster analysis basics and extensions. ResearchGate, 2012
74 Lumley T, Miller A. Leaps: regression subset selection. Embo Journal, 2004, 12(12): 4657–4666
67 Karban R, Myers J H. Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 1989, 20(1): 331–348
https://doi.org/10.1146/annurev.es.20.110189.001555
68 Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiology, 2004, 135(4): 1893–1902
https://doi.org/10.1104/pp.104.049981 pmid: 15326281
69 Sadras V, Wilson L, Lally D. Water deficit enhanced cotton resistance to spider mite herbivory. Annals of Botany, 1998, 81(2): 273–286
https://doi.org/10.1006/anbo.1997.0551
70 Miyazaki J, Stiller W N, Wilson L J. Novel cotton germplasm with host plant resistance to twospotted spider mite. Field Crops Research, 2012, 134: 114–121
https://doi.org/10.1016/j.fcr.2012.05.006
71 Gao F, Zhu S R, Sun Y C, Du L, Parajulee M, Kang L, Ge F. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environmental Entomology, 2008, 37(1): 29–37
https://doi.org/10.1093/ee/37.1.29 pmid: 18348793
72 Björkman C, Ahrné K. Influence of leaf trichome density on the efficiency of two polyphagous insect predators. Entomologia Experimentalis et Applicata, 2005, 115(1): 179–186
https://doi.org/10.1111/j.1570-7458.2005.00284.x
73 Naveed M, Anjum Z I, Khan J A, Rafiq M, Hamza A. Cotton genotypes morpho-physical factors affect resistance against Bemisia tabaci in relation to other sucking pests and its associated predators and parasitoids. Pakistan Journal of Zoology, 2011, 43(2): 229–236
[1] FASE-18223-OF-ZLZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed