|
|
Identification and selection of resistance to Bemisia tabaci among 550 cotton genotypes in the field and greenhouse experiments |
Lizhen ZHU, Jianying LI, Zhongping XU, Hakim MANGHWAR, Sijia LIANG, Suli LI, Muna ALARIQI, Shuangxia JIN( ), Xianlong ZHANG |
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China |
|
|
Abstract Plants have developed sophisticated systems to cope with herbivore challenge, including morphological barriers and secondary metabolites to reduce damage. In this study, 550 Gossypium genotypes were evaluated for whitefly (Bemisia tabaci) resistance in five experiments including two in the field and three in the greenhouse, with 23 resistant and 19 susceptible genotypes selected. Whitefly-resistance index determination showed that a leaf having a high density of hairs had resistance to whitfly egg/nymph production. Longer leaf hairs were also important for resistance. This study revealed that okra shaped leaves reduced adult whitefly oviposition preference, while glabrous leaves and high hair density helped not only in the reduction of the adults but also decreased oviposition preference. Gossypol was also observed to be involved in the reduction of adult whitefly development and/or survival.
|
Keywords
Bemisia tabaci
Gossypium genotypes
gossypol
leaf hair density
leaf hair length
|
Corresponding Author(s):
Shuangxia JIN
|
Just Accepted Date: 19 April 2018
Online First Date: 16 May 2018
Issue Date: 28 May 2018
|
|
1 |
Wendel J F,Cronn R C. Polyploidy and the evolutionary history of cotton. Advances In Agronomy, 2003, 78: 139–186
|
2 |
James C. Global status of commercialized biotech/GM crops. ISAAA IthacaNova Yorque, 2007
|
3 |
Atkinson N J, Urwin P E. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 2012, 63(10): 3523–3543
https://doi.org/10.1093/jxb/ers100
pmid: 22467407
|
4 |
Razaq M, Aslam M, Shad S A, Naeem M. Evaluation of some new promising cotton strains against bollworm complex. Evaluation, 2004, 15(3): 313–318
|
5 |
Dua I, Kumar V, Bhavneet D E A. Genetically modified cotton and its biosafety concerns: a review. Current Concepts in Botany, 2006: 447–459
|
6 |
Klümper W, Qaim M. A meta-analysis of the impacts of genetically modified crops. PLoS One, 2014, 9(11): e111629
https://doi.org/10.1371/journal.pone.0111629
pmid: 25365303
|
7 |
Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 2012, 487(7407): 362–365
https://doi.org/10.1038/nature11153
pmid: 22722864
|
8 |
Wang Q, Zhu Y, Sun L, Li L, Jin S, Zhang X. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds. Science China: Life Sciences, 2016, 59(2): 172–182
https://doi.org/10.1007/s11427-015-4920-6
pmid: 26728504
|
9 |
Tian G, Cheng L, Qi X, Ge Z, Niu C, Zhang X, Jin S. Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. International Journal of Biological Sciences, 2015, 11(11): 1296–1305
https://doi.org/10.7150/ijbs.12463
pmid: 26435695
|
10 |
Tian J C, Yao J, Long L P, Romeis J, Shelton A M. Bt crops benefit natural enemies to control non-target pests. Scientific Reports, 2015, 5(1): 16636
https://doi.org/10.1038/srep16636
pmid: 26559133
|
11 |
Azimi S, Rahmani S, Tohidfar M, Ashouri A, Bandani A, Talaei-Hassanlouei R. Interaction between Bt-transgenic cotton and the whitefly’s parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae). Journal of Plant Protection Research, 2014, 54(3): 272–278
https://doi.org/10.2478/jppr-2014-0041
|
12 |
Naranjo S E, Ruberson J R, Sharma H C, Wilson L, Wu K. The present and future role of insect-resistant genetically modified cotton in IPM, in Integration of insect-resistant genetically modified crops within IPM programs. Springer, 2008, 159–194
|
13 |
Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys K A G, Guo Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 2010, 328(5982): 1151–1154
https://doi.org/10.1126/science.1187881
pmid: 20466880
|
14 |
Lu Y H, Qiu F, Feng H Q, Li H B, Yang Z C, Wyckhuys K A G, Wu K M. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt Cotton in China. Crop Protection, 2008, 27(3–5): 465–472
https://doi.org/10.1016/j.cropro.2007.07.017
|
15 |
Lu Y, Wu K. Mirid bugs in China: pest status and management strategies. Outlooks on Pest Management, 2011, 22(6): 84–88
https://doi.org/10.1564/22dec02
|
16 |
Boykin L M, Shatters R G Jr, Rosell R C, McKenzie C L, Bagnall R A, De Barro P, Frohlich D R. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution, 2007, 44(3): 1306–1319
https://doi.org/10.1016/j.ympev.2007.04.020
pmid: 17627853
|
17 |
Jin S, Kanagaraj A, Verma D, Lange T, Daniell H. Release of hormones from conjugates: chloroplast expression of b-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiology, 2011, 155(1): 222–235
https://doi.org/10.1104/pp.110.160754
pmid: 21068365
|
18 |
Jin S, Zhang X, Daniell H. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnology Journal, 2012, 10(3): 313–327
https://doi.org/10.1111/j.1467-7652.2011.00663.x
pmid: 22077160
|
19 |
Li J, Zhu L, Hull J J, Liang S, Daniell H, Jin S, Zhang X. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnology Journal, 2016, 14(10): 1956–1975
https://doi.org/10.1111/pbi.12554
pmid: 26923339
|
20 |
Moran P J, Thompson G A. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology, 2001, 125(2): 1074–1085
https://doi.org/10.1104/pp.125.2.1074
pmid: 11161062
|
21 |
Jones D R. Plant viruses transmitted by whiteflies. European Journal of Plant Pathology, 2003, 109(3): 195–219
https://doi.org/10.1023/A:1022846630513
|
22 |
Mugiira R, Liu S S, Zhou X. Tomato yellow leaf curl virus and tomato leaf curl Taiwan virus invade South‐east Coast of China. Journal of Phytopathology, 2008, 156(4): 217–221
https://doi.org/10.1111/j.1439-0434.2007.01345.x
|
23 |
Mithöfer A, Boland W. Recognition of herbivory-associated molecular patterns. Plant Physiology, 2008, 146(3): 825–831
https://doi.org/10.1104/pp.107.113118
pmid: 18316636
|
24 |
Gatehouse J A. Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist, 2002, 156(2): 145–169
https://doi.org/10.1046/j.1469-8137.2002.00519.x
|
25 |
Tollrian R, Harvell C D. The ecology and evolution of inducible defenses. New Jersey, USA: Princeton University Press, 1999
|
26 |
Wei J, Wang L, Zhu J, Zhang S, Nandi O I, Kang L. Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol. PLoS One, 2007, 2(9): e852
https://doi.org/10.1371/journal.pone.0000852
pmid: 17786223
|
27 |
Kempema L A, Cui X, Holzer F M, Walling L L. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 2007, 143(2): 849–865
https://doi.org/10.1104/pp.106.090662
pmid: 17189325
|
28 |
Santamaria M E, Martínez M, Cambra I, Grbic V, Diaz I. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Research, 2013, 22(4): 697–708
https://doi.org/10.1007/s11248-013-9725-4
pmid: 23793555
|
29 |
Carmona D, Fornoni J. Herbivores can select for mixed defensive strategies in plants. New Phytologist, 2013, 197(2): 576–585
https://doi.org/10.1111/nph.12023
pmid: 23171270
|
30 |
Hanover J W. Physiology of tree resistance to insects. Annual Review of Entomology, 1975, 20(1): 75–95
https://doi.org/10.1146/annurev.en.20.010175.000451
|
31 |
Poelman E H, Dam N M, Loon J J A, Vet L E M, Dicke M. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology, 2009, 90(7): 1863–1877
https://doi.org/10.1890/08-0977.1
pmid: 19694135
|
32 |
Bennett R N, Wallsgrove R M. Secondary metabolites in plant defence mechanisms. New Phytologist, 1994, 127(4): 617–633
https://doi.org/10.1111/j.1469-8137.1994.tb02968.x
|
33 |
Chiozza M V, O’Neal M E, MacIntosh G C. Constitutive and induced differential accumulation of amino acid in leaves of susceptible and resistant soybean plants in response to the soybean aphid (Hemiptera: Aphididae). Environmental Entomology, 2010, 39(3): 856–864
https://doi.org/10.1603/EN09338
pmid: 20550799
|
34 |
Hanley M E, Lamont B B, Fairbanks M M, Rafferty C M. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8(4): 157–178
https://doi.org/10.1016/j.ppees.2007.01.001
|
35 |
Scriber J, Slansky F Jr. The nutritional ecology of immature insects. Annual Review of Entomology, 1981, 26(1): 183–211
https://doi.org/10.1146/annurev.en.26.010181.001151
|
36 |
Awmack C S, Leather S R. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 2002, 47(1): 817–844
https://doi.org/10.1146/annurev.ento.47.091201.145300
pmid: 11729092
|
37 |
Glas J J, Schimmel B C J, Alba J M, Escobar-Bravo R, Schuurink R C, Kant M R. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 2012, 13(12): 17077–17103
https://doi.org/10.3390/ijms131217077
pmid: 23235331
|
38 |
Maffei M E. Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 2010, 76(4): 612–631
https://doi.org/10.1016/j.sajb.2010.03.003
|
39 |
Tissier A. Glandular trichomes: what comes after expressed sequence tags? Plant Journal, 2012, 70(1): 51–68
https://doi.org/10.1111/j.1365-313X.2012.04913.x
pmid: 22449043
|
40 |
Tian D, Tooker J, Peiffer M, Chung S H, Felton G W. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 2012, 236(4): 1053–1066
https://doi.org/10.1007/s00425-012-1651-9
pmid: 22552638
|
41 |
Butter N, Vir B. Morphological basis of resistance in cotton to the whitefly Bemisia tabaci. Phytoparasitica, 1989, 17(4): 251–261
https://doi.org/10.1007/BF02980754
|
42 |
Miyazaki J, Stiller W N, Wilson L J. Identification of host plant resistance to silverleaf whitefly in cotton: implications for breeding. Field Crops Research, 2013, 154: 145–152
https://doi.org/10.1016/j.fcr.2013.08.001
|
43 |
Walker G, Natwick E. Resistance to silverleaf whitefly, Bemisia argentifolii (Hem., Aleyrodidae), in Gossypium thurberi, a wild cotton species. Journal of Applied Entomology, 2006, 130(8): 429–436
https://doi.org/10.1111/j.1439-0418.2006.01083.x
|
44 |
Butler G Jr, Henneberry T, Wilson F. Bemisia tabaci (Homoptera: Aleyrodidae) on cotton: adult activity and cultivar oviposition preference. Journal of Economic Entomology, 1986, 79(2): 350–354
https://doi.org/10.1093/jee/79.2.350
|
45 |
Sikka S, Sahni V, Butani D K. Studies on jassid resistance in relation to hairiness of cotton leaves. Euphytica, 1966, 15(3): 383–388
https://doi.org/10.1007/BF00022184
|
46 |
Butler G Jr, Rimon D, Henneberry T. Bemisia tabaci (Homoptera: Aleyrodidae): populations on different cotton varieties and cotton stickiness in Israel. Crop Protection, 1988, 7(1): 43–47
https://doi.org/10.1016/0261-2194(88)90037-3
|
47 |
Chu C C, Natwick E T, Henneberry T J. Bemisia tabaci (Homoptera: Aleyrodidae) biotype B colonization on okra- and normal-leaf upland cotton strains and cultivars. Journal of Economic Entomology, 2002, 95(4): 733–738
https://doi.org/10.1603/0022-0493-95.4.733
pmid: 12216814
|
48 |
Lukefahr M, Fryxell P A. Content of gossypol in plants belonging to genera related to cotton. Economic Botany, 1967, 21(2): 128–131
https://doi.org/10.1007/BF02897860
|
49 |
Lukefahr M, Houghtaling J. Resistance of cotton strains with high gossypol content to Heliothis spp. Journal of Economic Entomology, 1969, 62(3): 588–591
https://doi.org/10.1093/jee/62.3.588
|
50 |
Altman D, Stipanovic R, Bell A. Terpenoids in foliar pigment glands of A, D, and AD genome cottons: introgression potential for pest resistance. Journal of Heredity, 1990, 81(6): 447–454 doi:10.1093/oxfordjournals.jhered.a111024
|
51 |
Hedin P, Parrott W, Jenkins J. Relationships of glands, cotton square terpenoid aldehydes, and other allelochemicals to larval growth of Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 1992, 85(2): 359–364
https://doi.org/10.1093/jee/85.2.359
|
52 |
Correa L, Cividanes F, Gontijo L, Santos-Cividanes T. Effects of cotton cultivars differing in gossypol content on the quality of Aphis gossypii as prey for two species of Coccinellidae. Biocontrol Science and Technology, 2014, 24(12): 1439–1450
https://doi.org/10.1080/09583157.2014.945395
|
53 |
Greenberg S M, Showler A T, Liu T X. Effects of neem‐based insecticides on beet armyworm (Lepidoptera: Noctuidae). Insect Science, 2005, 12(1): 17–23
https://doi.org/10.1111/j.1672-9609.2005.00003.x
|
54 |
Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nature Chemical Biology, 2007, 3(7): 408–414
https://doi.org/10.1038/nchembio.2007.5
pmid: 17576428
|
55 |
Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 2006, 9(3): 297–304
https://doi.org/10.1016/j.pbi.2006.03.014
pmid: 16600670
|
56 |
Cheng A X, Lou Y G, Mao Y B, Lu S, Wang L J, Chen X Y. Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology, 2007, 49(2): 179–186
https://doi.org/10.1111/j.1744-7909.2007.00395.x
|
57 |
Wu G, Guo J Y, Wan F H, Xiao N W. Responses of three successive generations of beet armyworm, Spodoptera exigua, fed exclusively on different levels of gossypol in cotton leaves. Journal of Insect Science, 2010, 10(165): 165
https://doi.org/10.1673/031.010.14125
pmid: 21067414
|
58 |
Stipanovic R D, López J D Jr, Dowd M K, Puckhaber L S, Duke S E. Effect of racemic, (+)- and (–)-gossypol on survival and development of Heliothis virescens larvae. Environmental Entomology, 2008, 37(5): 1081–1085
https://doi.org/10.1093/ee/37.5.1081
pmid: 19036185
|
59 |
Kong G C, Daud M K, Zhu S J. Effects of pigment glands and gossypol on growth, development and insecticide-resistance of cotton bollworm (Heliothis armigera (Hubner)). Crop Protection, 2010, 29(8): 813–819
https://doi.org/10.1016/j.cropro.2010.03.016
|
60 |
Barro P J D, Driver F. Use of RAPD PCR to Distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Australian Journal of Entomology, 1997, 36(2): 149–152
https://doi.org/10.1111/j.1440-6055.1997.tb01447.x
|
61 |
Rao Q, Luo C, Zhang H, Guo X, Devine G J. Distribution and dynamics of Bemisia tabaci invasive biotypes in central China. Bulletin of Entomological Research, 2011, 101(1): 81–88
https://doi.org/10.1017/S0007485310000428
pmid: 20822556
|
62 |
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 1994, 87(6): 651–701
https://doi.org/10.1093/aesa/87.6.651
|
63 |
Naranjo S E, Flint H M. Spatial distribution of adult Bemisia tabaci (Homoptera: Aleyrodidae) in cotton and development and validation of fixed-precision sampling plans for estimating population density. Environmental Entomology, 1995, 24(2): 261–270
https://doi.org/10.1093/ee/24.2.261
|
64 |
Miyazaki J, Stiller W N, Wilson L J. Identification of host plant resistance to silverleaf whitefly in cotton: implications for breeding. Field Crops Research, 2013, 154(3): 145–152
https://doi.org/10.1016/j.fcr.2013.08.001
|
65 |
LeBreton J M, Tonidandel S. Multivariate relative importance: extending relative weight analysis to multivariate criterion spaces. Journal of Applied Psychology, 2008, 93(2): 329–345
https://doi.org/10.1037/0021-9010.93.2.329
pmid: 18361636
|
66 |
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K, Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. Cluster: cluster analysis basics and extensions. ResearchGate, 2012
|
74 |
Lumley T, Miller A. Leaps: regression subset selection. Embo Journal, 2004, 12(12): 4657–4666
|
67 |
Karban R, Myers J H. Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 1989, 20(1): 331–348
https://doi.org/10.1146/annurev.es.20.110189.001555
|
68 |
Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiology, 2004, 135(4): 1893–1902
https://doi.org/10.1104/pp.104.049981
pmid: 15326281
|
69 |
Sadras V, Wilson L, Lally D. Water deficit enhanced cotton resistance to spider mite herbivory. Annals of Botany, 1998, 81(2): 273–286
https://doi.org/10.1006/anbo.1997.0551
|
70 |
Miyazaki J, Stiller W N, Wilson L J. Novel cotton germplasm with host plant resistance to twospotted spider mite. Field Crops Research, 2012, 134: 114–121
https://doi.org/10.1016/j.fcr.2012.05.006
|
71 |
Gao F, Zhu S R, Sun Y C, Du L, Parajulee M, Kang L, Ge F. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environmental Entomology, 2008, 37(1): 29–37
https://doi.org/10.1093/ee/37.1.29
pmid: 18348793
|
72 |
Björkman C, Ahrné K. Influence of leaf trichome density on the efficiency of two polyphagous insect predators. Entomologia Experimentalis et Applicata, 2005, 115(1): 179–186
https://doi.org/10.1111/j.1570-7458.2005.00284.x
|
73 |
Naveed M, Anjum Z I, Khan J A, Rafiq M, Hamza A. Cotton genotypes morpho-physical factors affect resistance against Bemisia tabaci in relation to other sucking pests and its associated predators and parasitoids. Pakistan Journal of Zoology, 2011, 43(2): 229–236
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|