Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (4) : 432-441    https://doi.org/10.15302/J-FASE-2018230
RESEARCH ARTICLE
An integrated approach to site-specific management zone delineation
Yuxin MIAO(), David J. MULLA, Pierre C. ROBERT
Precision Agriculture Center, Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN 55108, USA
 Download: PDF(700 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dividing fields into a few relatively homogeneous management zones (MZs) is a practical and cost-effective approach to precision agriculture. There are three basic approaches to MZ delineation using soil and/or landscape properties, yield information, and both sources of information. The objective of this study is to propose an integrated approach to delineating site-specific MZ using relative elevation, organic matter, slope, electrical conductivity, yield spatial trend map, and yield temporal stability map (ROSE-YSTTS) and evaluate it against two other approaches using only soil and landscape information (ROSE) or clustering multiple year yield maps (CMYYM). The study was carried out on two no-till corn-soybean rotation fields in eastern Illinois, USA. Two years of nitrogen (N) rate experiments were conducted in Field B to evaluate the delineated MZs for site-specific N management. It was found that in general the ROSE approach was least effective in accounting for crop yield variability (8.0%–9.8%), while the CMYYM approach was least effective in accounting for soil and landscape (8.9%–38.1%), and soil nutrient and pH variability (9.4%–14.5%). The integrated ROSE-YSTTS approach was reasonably effective in accounting for the three sources of variability (38.6%–48.9%, 16.1%–17.3% and 13.2%–18.7% for soil and landscape, nutrient and pH, and yield variability, respectively), being either the best or second best approach. It was also found that the ROSE-YSTTS approach was effective in defining zones with high, medium and low economically optimum N rates. It is concluded that the integrated ROSE-YSTTS approach combining soil, landscape and yield spatial-temporal variability information can overcome the weaknesses of approaches using only soil, landscape or yield information, and is more robust for MZ delineation. It also has the potential for site-specific N management for improved economic returns. More studies are needed to further evaluate their appropriateness for precision N and crop management.

Keywords economically optimum nitrogen rate      fuzzy cluster analysis      precision nitrogen management      site-specific management      soil landscape property      yield map     
Corresponding Author(s): Yuxin MIAO   
Just Accepted Date: 18 May 2018   Online First Date: 25 June 2018    Issue Date: 19 November 2018
 Cite this article:   
Yuxin MIAO,David J. MULLA,Pierre C. ROBERT. An integrated approach to site-specific management zone delineation[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 432-441.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018230
https://academic.hep.com.cn/fase/EN/Y2018/V5/I4/432
Fig.1  Order 1 soil survey maps (1:8000) conducted by the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) in Illinois and field history information of Fields A (a) and B (b).
Fig.2  Management zones delineated with different approaches [ROSE (a); CMYYM (b); ROSE-YSTTS (c)] in Field A
Fig.3  Management zones delineated with different approaches [ROSE (a); CMYYM (b); ROSE-YSTTS (c)] in Field B
Field Variability MZ approach R-Ele. Slope CEC EC OM Average
A CV 44.0 52.0 23.6 12.6 30.8
RV ROSE 65.2 31.3 62.3 53.7 54.7 53.4
ROSE-YSTTS 64.9 8.4 55.0 52.0 69.1 49.9
CMYYM 42.0 6.5 52.8 31.6 57.8 38.1
B CV 56.1 53.2 19.4 10.7 22.8
RV ROSE 65.7 25.2 20.6 53.5 13.9 35.8
ROSE-YSTTS 65.9 7.8 38.9 32.2 47.9 38.6
CMYYM 5.0 21.7 6.3 3.3 8.2 8.9
Tab.1  Soil and landscape variation from CV and RV as explained by different MZ approaches in Fields A and B %
Field Variability MZ approach P K S Zn pH Average
A CV 50.7 31.4 9.1 9.9 5.4
RV ROSE 7.9 16.9 11.2 26.1 15.8 15.6
ROSE-YSTTS 8.8 12.4 16.4 20.7 22.3 16.1
CMYYM 17.1 6.1 11.1 18.1 20.2 14.5
B CV 33.4 15.4 7.8 39.1 3.0
RV ROSE 10.2 7.1 24.5 17.9 39.0 19.7
ROSE-YSTTS 5.8 7.0 13.7 7.5 52.3 17.3
CMYYM 4.4 12.0 15.1 1.5 14.2 9.4
Tab.2  Soil nutrients and pH variation from CV and RV as explained by different MZ approaches in Fields A and B %
Field MZ† 95 97 98 99 00(a)§ 00(b) 01 Average
SB SB C SB C C SB
A CV 15.3 15.7 12.3 11.5 4.7 4.8 7.8
RV 10.3 10.9 12.0 6.0
Y 14.2 17.8 20.0 11.4 10.5 1.8 16.7 13.2
Z 29.7 33.1 24.3 20.2 5.2 16.5 23.7 21.8
Field MZ 95 96 97 98 99 00 Average
C SB C SB C SB
B CV 10.4 11.7 5.3 8.6 7.4 10.2
RV X 23.0 12.3 1.5 9.8 5.6 6.7 9.8
Y 30.0 25.6 18.3 8.1 22.9 7.3 18.7
Z 60.0 44.0 25.6 9.7 36.6 11.0 31.2
Tab.3  Normalized crop yield variation indicated by CV for different years and RV as explained by different MZ approaches in Fields A and B %
Fig.4  Average economically optimum nitrogen rates (EONR) across years and hybrids for field B in different management zones defined by ROSE, ROSE-YSTTS and CMYYM approaches.
MZ Approach MZ 2001 2003 Average
33G26 33J24 33G26 33J24 2001 2003
ROSE 1 133.3 219.7 178.0 220.9 176.5 199.5
2 113.4 165.1 159.8 162.0 139.3 160.9
3 166.8 229.4 149.6 172.7 198.1 161.2
4 137.0 238.6 254.4 190.5 187.8 222. 5
ROSE-YSTTS 1 127.8 231.2 212.5 255.6 179.5 234.1
2 116.1 152.4 145.0 155.3 134.3 150.2
3 174.2 224.5 133.0 158.7 199.4 145.9
4 129.5 229.6 213.5 173.4 179.6 193.5
CMYYM 1 165.3 216.5 182.3 223.6 190.9 203.0
2 145.7 233.7 141.3 162.4 189.7 151.9
3 119.3 183.5 183.5 169.1 151.4 176.3
Field Average 139.7 208.0 169.8 181.3 173.9 175.6
Tab.4  Economically optimum nitrogen rates in MZ for two hybrids defined by different approaches in 2001 and 2003, Field B kg·hm-2
Fig.5  Profitability of applying hybrid-specific, year-specific, and zone-specific economically optimum nitrogen rates in comparison to a uniform N application rate of 168 kg·hm-2 in each zone in 2001 and 2003, Field B.
1 Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337–342
https://doi.org/10.1038/nature10452
2 Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260–20264
https://doi.org/10.1073/pnas.1116437108
3 West P C, Gerber J S, Engstrom P M, Mueller N D, Brauman K A, Carlson K M, Cassidy E S, Johnston M, Macdonald G K, Ray D K, Siebert S. Leverage points for improving global food security and the environment. Science, 2014, 345(6194): 325–328
https://doi.org/10.1126/science.1246067
4 Gebbers R, Adamchuk V I. Precision agriculture and food security. Science, 2010, 327(5967): 828–831
https://doi.org/10.1126/science.1183899
5 Bongiovanni R, Lowenberg-Deboer J. Precision agriculture and sustainability. Precision Agriculture, 2004, 5(4): 359–387
https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
6 Zhao G, Miao Y, Wang H, Su M, Fan M, Zhang F, Jiang R, Zhang Z, Liu C, Liu P, Ma D. A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency. Field Crops Research, 2013, 154: 23–30
https://doi.org/10.1016/j.fcr.2013.07.019
7 Robert P C. Precision agriculture: a challenge for crop nutrition management. Plant and Soil, 2002, 247(1): 143–149
https://doi.org/10.1023/A:1021171514148
8 Mulla D J. Mapping and managing spatial patterns in soil fertility and crop yield. In: Robert P C, Rust R H, Larson W E, eds. Soil Specific Crop Management. Madison: ASA/CSSA/SSSA, 1993, 15–26
9 Doerge T. Defining management zones for precision farming. Crop Insights, 1999, 8(21): 1–5
10 Nawar S, Corstanje R, Halcro G, Mulla D, Mouazen A M. Delineation of soil management zones for variable rate fertilization: a review. Advances in Agronomy, 2017, 143: 175–245
https://doi.org/10.1016/bs.agron.2017.01.003
11 Delgado J A, Khosla R, Wausch W C, Westfall D G, Inman D J. Nitrogen fertilizer management based on site-specific management zones reduces potential for nitrate leaching. Journal of Soil and Water Conservation, 2005, 60(6): 402–410
12 Mulla D, Miao Y. Precision farming. In: Thenkabail PS, ed. Land Resources Monitoring, Modeling, and Mapping with Remote Sensing.Boca Raton: CRC Press, Taylor & Francis Group, LLC,2016, 161–178
13 Booltink H W G, van Alphen B J, Batchelor W D, Paz J O, Stoorvogel J J, Vargas R. Tools for optimizing management of spatially-variable fields. Agricultural Systems, 2001, 70(2–3): 445–476
https://doi.org/10.1016/S0308-521X(01)00055-5
14 Guo C, Zhang L, Zhou X, Zhu Y, Cao W, Qiu X, Cheng T, Tian Y. Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precision Agriculture, 2018, 19(1): 55–78 doi:10.1007/s11119-017-9498-5
15 Miao Y, Mulla D J, Batchelor W D, Paz J O, Robert P C, Wiebers M. Evaluating management zone optimal nitrogen rates with a crop growth model. Agronomy Journal, 2006, 98(3): 545–553
https://doi.org/10.2134/agronj2005.0153
16 Franzen D W, Hopkins D H, Sweeney M D, Ulmer M K, Halvorson A D. Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agronomy Journal, 2002, 94(2): 381–389
https://doi.org/10.2134/agronj2002.0381
17 Mulla D J. Using geostatistics and GIS to manage spatial patterns in soil fertility. In: Kranzler G, ed. Automated Agriculture for the 21st Century, St.Joseph: ASAE, 1991, 336–345
18 Davatgar N, Neishabouri M R, Sepaskhah A R. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma, 2012, 173–174: 111–118
https://doi.org/10.1016/j.geoderma.2011.12.005
19 Johnson C K, Mortensen D A, Wienhold B J, Shanahan J F, Doran J W. Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agronomy Journal, 2003, 95(2): 303–315
https://doi.org/10.2134/agronj2003.0303
20 Bhatti A U, Mulla D J, Frazier B E. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and Thematic Mapper images. Remote Sensing of Environment, 1991, 37(3): 181–191
https://doi.org/10.1016/0034-4257(91)90080-P
21 Fraisse C W, Sudduth K A, Kitchen N R, 0, 0, 0. Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Transactions of the ASAE (American Society of Agricultural Engineers), 2001, 44(1): 155–166
https://doi.org/10.13031/2013.2296
22 Schepers A R, Shanahan J F, Liebig M A, Schepers J S, Johnson S H, Luchiari A Jr. Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agronomy Journal, 2004, 96(1): 195–203
https://doi.org/10.2134/agronj2004.0195
23 Vitharana U W A, Van Meirvenne M, Simpson D, Cockx L, De Baerdemaeker J. Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma, 2008, 143(1–2): 206–215
https://doi.org/10.1016/j.geoderma.2007.11.003
24 Blackmore S. The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture, 2000, 26(1): 37–51
https://doi.org/10.1016/S0168-1699(99)00075-7
25 Lark R M, Stafford J V. Classification as a first step in the interpretation of temporal and spatial variability of crop yield. Aspects of Applied Biology, 1997, 130(1): 111–121
https://doi.org/10.1111/j.1744-7348.1997.tb05787.x
26 Jaynes D B, Kaspar T C, Colvin T S, James D E. Cluster analysis of spatiotemporal corn yield patterns in an Iowa field. Agronomy Journal, 2003, 95(3): 574–586
https://doi.org/10.2134/agronj2003.0574
27 Dobermann A, Ping J L, Adamchuk V I, Simbahan G C, Ferguson R B. Classification of crop yield variability in irrigated production fields. Agronomy Journal, 2003, 95(5): 1105–1120
https://doi.org/10.2134/agronj2003.1105
28 Taylor J A, McBratney A B, Whelan B M. Establishing management classes for broadacre agriculture production. Agronomy Journal, 2007, 99(5): 1366–1376
https://doi.org/10.2134/agronj2007.0070
29 Hornung A, Khosla R, Reich R, Inman D, Westfall D G. Comparison of site-specific management zones. Agronomy Journal, 2006, 98(2): 407–415 doi:10.2134/agronj2005.0240
30 Fridgen J J, Kitchen N R, Sudduth K A, Drummond S T, Wiebold W J, Fraisse C W. Management zone analyst (MZA). Agronomy Journal, 2004, 96(1): 100–108
https://doi.org/10.2134/agronj2004.0100
31 Miao Y, Mulla D J, Robert P C. Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision Agriculture, 2006, 7(2): 117–135
https://doi.org/10.1007/s11119-006-9004-y
32 Miao Y, Mulla D J, Hernandez J A, Wiebers M, Robert P C. Potential impact of precision nitrogen management on corn yield, protein content and test weight. Soil Science Society of America Journal, 2007, 71(5): 1490–1499
https://doi.org/10.2136/sssaj2005.0396
33 Fernandez F G, Hoeft R G. Managing soil pH and crop nutrients. In: Nafziger E D, ed. Illinois Agronomy Handbook (24th ed.), Urbana-Champaign: University of Illinois Extension, 2009, 91–112
34 Chang J, Clay D E, Carlson C G, Reese C L, Clay S A, Ellsbury M K. Defining yield goals and management zones to minimize yield and nitrogen and phosphorus fertilizer recommendation errors. Agronomy Journal, 2004, 96(3): 825–831
https://doi.org/10.2134/agronj2004.0825
35 Mulla D J, Bhatti A U. An evaluation of indicator properties affecting spatial patterns in N and P requirements for winter wheat yield. In: Stafford JV, ed. Precision Agriculture’97: Proceedings of the 1st European Conference on Precision Agriculture. Vol.1. Spatial Variability in Soil and Crop, Oxford: BIOS Scientific Publishers, 1997, 145–154
36 Jaynes D B, Colvin T S. Spatiotemporal variability of corn and soybean yield. Agronomy Journal, 1997, 89(1): 30–37
https://doi.org/10.2134/agronj1997.00021962008900010005x
37 Boydell B, McBratney A B. Identifying potential within-field management zones from cotton-yield estimates. Precision Agriculture, 2002, 3(1): 9–23
https://doi.org/10.1023/A:1013318002609
38 Wang Y P, Chen S H, Chang K W, Shen Y. Identifying and characterizing yield limiting factors in paddy rice using remote sensing yield maps. Precision Agriculture, 2012, 13(5): 553–567
https://doi.org/10.1007/s11119-012-9266-5
39 Burke M, Lobell D B. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2189–2194
https://doi.org/10.1073/pnas.1616919114
40 Jin Z, Azzari G, Lobell D B. Improving the accuracy of satellite-based high-resolution yield estimation: a test of multiple scalable approaches. Agricultural and Forest Meteorology, 2017, 247: 207–220
https://doi.org/10.1016/j.agrformet.2017.08.001
41 Azzari G, Jain M, Lobell D B. Towards fine resolution global maps of crop yields: testing multiple methods and satellites in three countries. Remote Sensing of Environment, 2017, 202: 129–141
https://doi.org/10.1016/j.rse.2017.04.014
42 Ladoni M, Bahrami H A, Alavipanah S K, Norouzi A K. Estimating soil organic carbon from soil reflectance: a review. Precision Agriculture, 2010, 11(1): 82–99
https://doi.org/10.1007/s11119-009-9123-3
43 Adamchuk V I, Hummel J W, Morgan M T, Upadhyaya S K. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 2004, 44(1): 71–91
https://doi.org/10.1016/j.compag.2004.03.002
44 Roberts D F, Adamchuk V I, Shanahan J F, Ferguson R B, Schepers J S. Estimation of surface soil organic matter using a ground-based active sensor and aerial imagery. Precision Agriculture, 2011, 12(1): 82–102
https://doi.org/10.1007/s11119-010-9158-5
45 Zhang S, Huang Y, Shen C, Ye H, Du Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma, 2012, 171–172: 35–43
https://doi.org/10.1016/j.geoderma.2011.07.012
46 Corwin D L, Lesch S M. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 2005, 46(1–3): 11–43
https://doi.org/10.1016/j.compag.2004.10.005
47 Farahani H J, Buchleiter G W. Temporal stability of soil electrical conductivity in irrigated sandy fields in Colorado. Transactions of the ASAE. American Society of Agricultural Engineers, 2004, 47(1): 79–90
https://doi.org/10.13031/2013.15873
48 Liao K, Zhu Q, Doolittle J. Temporal stability of apparent soil electrical conductivity measured by electromagnetic induction techniques. Journal of Mountain Science, 2014, 11(1): 98–109 doi:10.1007/s11629-012-2630-0
49 Batchelor W D, Basso B, Paz J O. Examples of strategies to analyze spatial and temporal yield variability using crop models. European Journal of Agronomy, 2002, 18(1–2): 141–158
https://doi.org/10.1016/S1161-0301(02)00101-6
50 Yao Y, Miao Y, Huang S, Gao L, Ma X, Zhao G, Jiang R, Chen X, Zhang F, Yu K, Gnyp M L, Bareth G, Liu C, Zhao L, Yang W, Zhu H. Active crop sensor-based precision nitrogen management strategy for rice. Agronomy for Sustainable Development, 2012, 32(4): 925–933
https://doi.org/10.1007/s13593-012-0094-9
51 Cao Q, Miao Y, Li F, Gao X, Liu B, Lu D, Chen X. Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precision Agriculture, 2017, 18(1): 2–18
https://doi.org/10.1007/s11119-016-9456-7
52 Xia T, Miao Y, Wu D, Shao H, Khosla R, Mi G. Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sensing, 2016, 8(7): 605
https://doi.org/10.3390/rs8070605
53 Zhang C, Kovacs J M. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 2012, 13(6): 693–712
https://doi.org/10.1007/s11119-012-9274-5
54 Huang S, Miao Y, Zhao G, Yuan F, Ma X, Tan C, Yu W, Gnyp M, Lenz-Wiedemann V, Rascher U, Bareth G. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sensing, 2015, 7(8): 10646–10667
https://doi.org/10.3390/rs70810646
[1] Yongjun DING, Won Suk LEE, Minzan LI. Feature extraction of hyperspectral images for detecting immature green citrus fruit[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 475-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed