Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2018, Vol. 5 Issue (4) : 406-419    https://doi.org/10.15302/J-FASE-2018242
REVIEW
Imaging technologies for plant high-throughput phenotyping: a review
Yong ZHANG1, Naiqian ZHANG2()
1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
 Download: PDF(234 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phenomics studies a variety of phenotypic plant traits and is the key to understanding genetic functions and environmental effects on plants. With the rapid development of genomics, many plant phenotyping platforms have been developed to study complex traits related to the growth, yield, and adaptation to biotic or abiotic stress, but the ability to acquire high-throughput phenotypic data has become the bottleneck in the study of plant genomics. In recent years, researchers around the world have conducted extensive experiments and research on high-throughput, image-based phenotyping techniques, including visible light imaging, fluorescence imaging, thermal imaging, spectral imaging, stereo imaging, and tomographic imaging. This paper considers imaging technologies developed in recent years for high-throughput phenotyping, reviews applications of these technologies in detecting and measuring plant morphological, physiological, and pathological traits, and compares their advantages and limitations.

Keywords high-throughput phenotyping      imaging technology      morphological traits      pathological traits      physiological traits     
Corresponding Author(s): Naiqian ZHANG   
Online First Date: 31 October 2018    Issue Date: 19 November 2018
 Cite this article:   
Yong ZHANG,Naiqian ZHANG. Imaging technologies for plant high-throughput phenotyping: a review[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 406-419.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018242
https://academic.hep.com.cn/fase/EN/Y2018/V5/I4/406
1 United Nations Department of Economic and Social Affairs Population Division. World population projected to reach 9.7 billion 2050. Available at the United Nations website on Oct. 2, 2018
2 Alston J M, Beddow J M, Pardey P G. Agricultural research, productivity, and food prices in the long run. Science, 2009, 325(5945): 1209–1210
https://doi.org/10.1126/science.1170451 pmid: 19729642
3 Garrett K A, Dendy S P, Frank E E, Rouse M N, Travers S E. Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 2006, 44(1): 489–509
https://doi.org/10.1146/annurev.phyto.44.070505.143420 pmid: 16722808
4 Phillips R L, Godshalk B. Mobilizing science to break yield barriers. Crop Science, 2010, 50(S1): S99–S108
https://doi.org/10.2135/cropsci2009.09.0525
5 Araus J L, Cairns J E. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 2014, 19(1): 52–61
https://doi.org/10.1016/j.tplants.2013.09.008 pmid: 24139902
6 McMullen M D, Kresovich S, Villeda H S, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, Romero S, Rosas M O, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325(5941): 737–740
https://doi.org/10.1126/science.1174320 pmid: 19661427
7 Furbank R T, Tester M. Phenomics—technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 2011, 16(12): 635–644
https://doi.org/10.1016/j.tplants.2011.09.005 pmid: 22074787
8 Sankaran S, Khot L R, Espinoza C Z, Jarolmasjed S, Sathuvalli V R, Vandemark G J, Miklas P N, Carter A H, Pumphrey M O, Knowles N R, Pavek M J. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. European Journal of Agronomy, 2015, 70: 112–123
https://doi.org/10.1016/j.eja.2015.07.004
9 Munns R, James R A, Sirault X R, Furbank R T, Jones H G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 2010, 61(13): 3499–3507
https://doi.org/10.1093/jxb/erq199 pmid: 20605897
10 Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer H P, Reif J C, Würschum T, Müller J, Rahe F, Ruckelshausen A. BreedVision—a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors, 2013, 13(3): 2830–2847
https://doi.org/10.3390/s130302830 pmid: 23447014
11 Barker J, Zhang N Q, Sharon J, Steeve R, Wang X, Wei Y, Poland J. Development of a field-based high-throughput mobile phenotyping platform. Computers and Electronics in Agriculture, 2016, 122: 74–85
https://doi.org/10.1016/j.compag.2016.01.017
12 Crain J, Wei Y, Barker J, Thompson S M, Alderman P D, Reynolds M, Zhang N Q, Poland J. Development and deployment of a portable field phenotyping platform. Crop Science, 2016, 56(3): 965–975
https://doi.org/10.2135/cropsci2015.05.0290
13 Kumar J, Pratap A, Kumar S. Phenomics in Crop Plants: Trends, Options and Limitations. New Delhi: Springer International, 2015
14 Sui R X, Wilkerson J B, Wilhelm L R, Tompkins F D. A microcomputer-based morphometer for bush-type plants. Computers and Electronics in Agriculture, 1989, 4(1): 43–58
https://doi.org/10.1016/0168-1699(89)90013-6
15 Montes J M, Melchinger A E, Reif J C. Novel throughput phenotyping platforms in plant genetic studies. Trends in Plant Science, 2007, 12(10): 433–436
https://doi.org/10.1016/j.tplants.2007.08.006 pmid: 17719833
16 McCarthy C, Hancock N, Raine S. Apparatus and infield evaluations of a prototype machine vision system for cotton plant internode length measurement. Journal of Cotton Science, 2010, 14(4): 221–232
17 Lan Y, Zhang H, Lacey R, Hoffman W, Wu W. Development of an integration sensor and instrumentation system for measuring crop conditions. Development,  2009,  126(9): 1869–1878
18 Comar A, Burger P, de Solan B D, Ferderic B, Daumard F, Hanocq J F. A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results. Functional Plant Biology, 2012, 39(10–11): 914–924
https://doi.org/10.1071/FP12065
19 White J W, Conley M M. A flexible, low-cost cart for proximal sensing. Crop Science, 2013, 53(4): 1646–1649
https://doi.org/10.2135/cropsci2013.01.0054
20 Andrade-Sanchez P, Gore M A, Heun J T, Thorp K R, Carmo-Silva A E, French A N, Salvucci M E, White J W. Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 2014, 41(1): 68–79
https://doi.org/10.1071/FP13126
21 Pask A, Pietragalla J, Mullan D, Reynolds M Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico: CIMMYT, 2012
22 Gao M, Heijden G V D, Vos J, Eveleens B A, Marcelis L F M. Estimation of leaf area for large scale phenotyping and modeling of rose genotypes. Scientia Horticulturae, 2012, 138: 227–234
https://doi.org/10.1016/j.scienta.2012.02.014
23 Wu C Y, Niu Z, Tang Q, Huang W. Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agricultural and Forest Meteorology, 2008, 148(8–9): 1230–1241
https://doi.org/10.1016/j.agrformet.2008.03.005
24 Zhu J, Ingram P A, Benfey P N, Elich T. From lab to field, new approaches to phenotyping root system architecture. Current Opinion in Plant Biology, 2011, 14(3): 310–317
https://doi.org/10.1016/j.pbi.2011.03.020 pmid: 21530367
25 Vila H, Hugalde I, Filippo M D. Estimation of leaf water potential by thermographic and spectral measurements in grapevine. Revista de Investigaciones Agropecuarias, 2011, 37(1): 46–53
26 Strange R N, Scott P R. Plant disease: a threat to global food security. Annual Review of Phytopathology, 2005, 43(1): 83–116
https://doi.org/10.1146/annurev.phyto.43.113004.133839 pmid: 16078878
27 Mutka A M, Bart R S. Image-based phenotyping of plant disease symptoms. Frontiers in Plant Science, 2015, 5: 734
https://doi.org/10.3389/fpls.2014.00734 pmid: 25601871
28 Stoll M, Schultz H R, Berkelmann-Loehnertz B. Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agriculture, 2008, 9(6): 407–417
https://doi.org/10.1007/s11119-008-9084-y
29 Iyer-Pascuzzi A S, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz J S, Benfey P N. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiology, 2010, 152(3): 1148–1157
https://doi.org/10.1104/pp.109.150748 pmid: 20107024
30 Lee W S, Alchanatis V, Yang C H, Hirafuji M, Moshou D, Li C. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 2010, 74(1): 2–33
https://doi.org/10.1016/j.compag.2010.08.005
31 Gorbea E, Calatayud A. Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Scientia Horticulturae, 2013, 138: 24–35
https://doi.org/10.1016/j.scienta.2012.02.002
32 Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors, 2014, 14(11): 20078–20111
https://doi.org/10.3390/s141120078 pmid: 25347588
33 Kaplan H. Practical Applications of Infrared Thermal Sensing and Imaging Equipment. Bellingham: SPIE Press, 2007
34 Gaussorgues G. La Thermographie Infrarouge: Principes Technologies Applications. France: Tech.& Doc./Lavoisier, 1999
35 Liu R, Wei R, Wang H P, Chen G. Principles of modern radar. In: Principlesof Modern Radar, Vol. III: Radar Applications. New Jersey: SciTech Publishing, 2014: 691–748
36 Darrigues A, Hall J, Van der Knaap E, Francis D, Dujmovic N, Gray S. Tomato analyzer-color test: a new tool for efficient digital phenotyping. Journal of the American Society for Horticultural Science, 2008, 133(4): 579–586
37 Gonzalo M J, Brewer M T, Anderson C, Sullivan D, Gray S, Van der Knaap E. Tomato fruit shape analysis using morphometric and morphology attributes implemented in Tomato Analyzer software program. Journal of the American Society for Horticultural Science, 2009, 134(1): 77–87
38 Wang X, Wu C, Hirafuji M. Visible light image-based method for sugar content classification of citrus. PLoS One, 2016, 11(1): e0147419
https://doi.org/10.1371/journal.pone.0147419 pmid: 26811935
39 Zakaluk R, Ranjan R S. Predicting the leaf water potential of potato plants using RGB reflectance. Canadian Biosystems Engineering, 2008, 50: 7.1–7.12
40 Golzarian M R, Frick R A, Rajendran K, Berger B, Roy S, Tester M, Lun D S. Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods, 2011, 7(1): 2
https://doi.org/10.1186/1746-4811-7-2 pmid: 21284859
41 Wang C, Li X. Study on nondestructive detection method of potato grading based on multi-source information fusion. Dissertation for the Doctoral Degree. Wuhan: Huazhong Agricultural University, 2014 (in Chinese)
42 Raza S A. Registration of thermal and visible light images of diseased plants using silhouette extraction in the wavelet domain. Elsevier Science Inc., 2015, 48(7): 2119–2128
43 Pérez-Bueno M L, Pineda M, Cabeza F M, Barón M. Multicolor fluorescence imaging as a candidate for disease detection in plant phenotyping. Frontiers in Plant Science, 2016, 7: 1790
https://doi.org/10.3389/fpls.2016.01790 pmid: 27994607
44 Swarbrick P J, Schulze-Lefert P, Scholes J D. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell & Environment, 2006, 29(6): 1061–1076
https://doi.org/10.1111/j.1365-3040.2005.01472.x pmid: 17080933
45 Chaerle L, Hagenbeek D, De Bruyne E, Van Der Straeten D. Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell, Tissue and Organ Culture, 2007, 91(2): 97–106
https://doi.org/10.1007/s11240-007-9282-8
46 Barbagallo R P, Oxborough K, Pallett K E, Baker N R. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiology, 2003, 132(2): 485–493
https://doi.org/10.1104/pp.102.018093 pmid: 12805581
47 Bürling K, Hunsche M, Noga G J. Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum l.) cultivars. Precision Agriculture, 2010, 11(6): 703–716
https://doi.org/10.1007/s11119-010-9194-1
48 Narváez F J Y, Pedregal J S D, Prieto P A, Torres-Torriti M, Cheein F A A. LiDAR and thermal images fusion for ground-based 3D characterisation of fruit trees. Biosystems Engineering, 2016, 151: 479–494
https://doi.org/10.1016/j.biosystemseng.2016.10.012
49 Xu H R, Ying Y B. Application of infrared thermal imaging in identification of citrus on trees.   Journal of Infrared and Millimeter Waves, 2004, 23(5): 353–356
50 Cohen Y, Alchanatis V, Meron M, Saranga Y, Tsipris J. Estimation of leaf water potential by thermal imagery and spatial analysis. Journal of Experimental Botany, 2005, 56(417): 1843–1852
https://doi.org/10.1093/jxb/eri174 pmid: 15897226
51 Grant O M, Tronina L, Jones H G, Chaves M M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. Journal of Experimental Botany, 2007, 58(4): 815–825
https://doi.org/10.1093/jxb/erl153 pmid: 17032729
52 Romano G, Zia-Khan S, Spreer W, Sanchez C, Cairns J, Araus J L, Müller J. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Computers and Electronics in Agriculture, 2011, 79(1): 67–74
https://doi.org/10.1016/j.compag.2011.08.011
53 Ziakhan S, Romano G, Spreer C, Sanchez C, Cairns J, Araus J, Müller J. Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. Journal Agronomy & Crop Science, 2013, 199(2): 1–10
54 Calderón R, Navas-Cortés J A, Lucena C, Zarco-Tejada P J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 2013, 139: 231–245
https://doi.org/10.1016/j.rse.2013.07.031
55 Dumont J, Hirvonen T, Heikkinen V, Mistretta M, Granlund L, Himanen K, Fauch L, Porali I, Hiltunen J, Keski-Saari S, Nygren M, Oksanen E, Hauta-Kasari M, Keinänen M. Thermal and hyperspectral imaging for Norway spruce (Picea abies) seeds screening. Computers and Electronics in Agriculture, 2015, 116: 118–124
https://doi.org/10.1016/j.compag.2015.06.010
56 Jafari M, Minaee S, Safaie N. Detection of pre-symptomatic rose powdery-mildew and gray-mold diseases based on thermal vision. Infrared Physics & Technology, 2017, 85: 170–183
57 Borregaard T, Nielsen H, Nørgaard L, Have H. Crop–weed discrimination by line imaging spectroscopy. Journal of Agricultural Engineering Research, 2000, 75(4): 389–400
https://doi.org/10.1006/jaer.1999.0519
58 Mao W, Wang Y, Wang Y. Spectrum analysis of crop and weeds at seedling. Spectroscopy and Spectral Analysis, 2005, 25(6): 984
59 Serrano L, González-Flor C, Gorchs G. Assessment of grape yield and composition using the reflectance based water index in mediterranean rainfed vineyards. Remote Sensing of Environment, 2012, 118: 249–258
https://doi.org/10.1016/j.rse.2011.11.021
60 Thiel M, Rath T, Ruckelshausen A. Plant moisture measurement in field trials based on nir spectral imaging—a feasability study. Computer Image Analysis in Agriculture, 2010: 26–27
61 Yi Q X, Bao A M, Wang Q, Zhao J. Estimation of leaf water content in cotton by means of hyperspectral indices. Computers and Electronics in Agriculture, 2013, 90: 144–151
https://doi.org/10.1016/j.compag.2012.09.011
62 Abboud T, Bamsey M, Paul A, Graham T, Braham S, Noumeir R, Berinstain A, Ferl R. Deployment of a fully-automated green fluorescent protein imaging system in a high arctic autonomous greenhouse. In: Abboud T, ed. Plant health imaging systems for space biology and plant growth studies. Montréal: À L’ École De Technologie Supérieure, 2013: 13–37
63 Blackburn G A. Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 2007, 58(4): 855–867
https://doi.org/10.1093/jxb/erl123 pmid: 16990372
64 Sasaki Y, Okamoto T, Imou K, Torii T. Automatic diagnosis of plant disease: recognition between healthy and diseased leaf. IFAC Proceedings, 1998, 31(5): 145–150
65 Sabatier D R, Moon C M, Mhora T T, Rutherford R S, Laing M D. Near-infrared reflectance (NIR) spectroscopy as a high-throughput screening tool for pest and disease resistance in a sugarcane breeding programme. International Sugar Journal, 2014, 116(1388): 580–583
66 Moshou D, Bravo C, Obert R, West J S, Ramon H, Vougioukas S, Bochtis D. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engineering, 2011, 108(4): 311–321
https://doi.org/10.1016/j.biosystemseng.2011.01.003
67 Takizawa H, Ezaki N, Mizuno S, Yamamoto S. Plant recognition by integrating color and range data obtained through stereo vision. JACIII, 2005, 9(6): 630–636
https://doi.org/10.20965/jaciii.2005.p0630
68 Kazmi W, Foix S, Alenyà G, Andersen H J. Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: analysis and comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 128–146
https://doi.org/10.1016/j.isprsjprs.2013.11.012
69 Kraft M, Natália R, De Freitas S, Munack A. Test of a 3D time of flight camera for shape measurements of plants. ResearchGate, 2018: 108–115
70 Hargreaves C E, Gregory P J, Bengough A G. Measuring root traits in barley (Hordeum vulgare ssp. vulgare and ssp. spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant and Soil, 2008, 316(1): 285–297
71 Li H, Wang K, Cao Q, Bian H. Measurement of plant height based on stereoscopic vision under the condition of a single camera. Intelligent Control & Automation,  2010: 6026–6030 (in Chinese)
72 Omasa K, Hosoi F, Konishi A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany, 2007, 58(4): 881–898
https://doi.org/10.1093/jxb/erl142 pmid: 17030540
73 Hosoi F, Omasa K. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(2): 151–158
https://doi.org/10.1016/j.isprsjprs.2008.09.003
74 Windt C W, Vergeldt F J, de Jager P A, van As H. MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant, Cell & Environment, 2006, 29(9): 1715–1729
https://doi.org/10.1111/j.1365-3040.2006.01544.x pmid: 16913861
75 Jahnke S, Menzel M I, van Dusschoten D, Roeb G W, Bühler J, Minwuyelet S, Blümler P, Temperton V M, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coenen H H, Schurr U. Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant Journal, 2009, 59(4): 634–644
https://doi.org/10.1111/j.1365-313X.2009.03888.x pmid: 19392708
76 Han H, Yi M. MRI can reveal metabolic changes in lily bulbs in vivo during dormancy release. Life Sciences, 2012, 55(11): 1002–1006
https://doi.org/10.1007/s11427-012-4394-8 pmid: 23124794
77 Baker N R, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 2004, 55(403): 1607–1621
https://doi.org/10.1093/jxb/erh196 pmid: 15258166
78 Cheng H D, Jiang X H, Sun Y, Wang J. Color image segmentation: advances and prospects. Pattern Recognition, 2001, 34(12): 2259–2281
https://doi.org/10.1016/S0031-3203(00)00149-7
79 Materka A, Strzelecki M. Texture analysis methods—a review. Technical University of Lodz, Institute of Electronics, COST B11 report, 1998, 1–33
80 Pietrzykowski E, Stone C, Pinkard E A, Mohammed C. Effects of Mycosphaerella leaf disease on the spectral reflectance properties of juvenile Eucalyptus globules foliage. Forest Pathology, 2006, 36(5): 334–348
https://doi.org/10.1111/j.1439-0329.2006.00459.x
81 Delalieux S, van Aardt J, Keulemans W, Keulemans W, Schrevens E, Coppin P. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. European Journal of Agronomy, 2007, 27(1): 130–143
https://doi.org/10.1016/j.eja.2007.02.005
82 Rumpf T, Mahlein A K, Steiner U, Oerke E C, Dehne H W, Plümer L. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 2010, 74(1): 91–99
https://doi.org/10.1016/j.compag.2010.06.009
83 Moshou D, Bravo C, West J, Wahlen T, McCartney A, Ramon H. Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 2004, 44(3): 173–188
https://doi.org/10.1016/j.compag.2004.04.003
84 Quin J, Burks T F, Ritenour M, Bonn W G. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 2009, 93(2): 183–191
https://doi.org/10.1016/j.jfoodeng.2009.01.014
85 Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret M D, Araus J L. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. Journal of Integrative Plant Biology, 2012, 54(5): 312–320
https://doi.org/10.1111/j.1744-7909.2012.01116.x pmid: 22420640
86 Mahlein A K, Oerke E C, Steiner U, Dehne H W. Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 2012, 133(1): 197–209
https://doi.org/10.1007/s10658-011-9878-z
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed