Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2020, Vol. 7 Issue (3) : 317-328    https://doi.org/10.15302/J-FASE-2020346
REVIEW
Rhizosphere immunity: targeting the underground for sustainable plant health management
Zhong WEI1, Ville-Petri FRIMAN1,2, Thomas POMMIER1,3, Stefan GEISEN1,4, Alexandre JOUSSET1,5(), Qirong SHEN1()
1. Key Laboratory of Plant Immunity, Jiangsu Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
2. Department of Biology, University of York, York, YO10 5DD, UK
3. Ecologie Microbienne, UMR1418, French National Institute for Agricultural Research (INRA), University Lyon I, F-69622 Villeurbanne, France
4. Laboratory of Nematology, Wageningen University and Research, 6700ES Wageningen, the Netherlands
5. Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584CH Utrecht, the Netherlands
 Download: PDF(659 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Managing plant health is a great challenge for modern food production and is further complicated by the lack of common ground between the many disciplines involved in disease control. Here we present the concept of rhizosphere immunity, in which plant health is considered as an ecosystem level property emerging from networks of interactions between plants, microbiota and the surrounding soil matrix. These interactions can potentially extend the innate plant immune system to a point where the rhizosphere immunity can fulfil all four core functions of a full immune system: pathogen prevention, recognition, response and homeostasis. We suggest that considering plant health from a meta-organism perspective will help in developing multidisciplinary pathogen management strategies that focus on steering the whole plant-microbe-soil networks instead of individual components. This might be achieved by bringing together the latest discoveries in phytopathology, microbiome research, soil science and agronomy to pave the way toward more sustainable and productive agriculture.

Keywords rhizosphere      soil microbiome      plant immunity      microbial ecology      plant health      soilborne pathogens     
Corresponding Author(s): Alexandre JOUSSET,Qirong SHEN   
Just Accepted Date: 11 June 2020   Online First Date: 13 July 2020    Issue Date: 28 July 2020
 Cite this article:   
Zhong WEI,Ville-Petri FRIMAN,Thomas POMMIER, et al. Rhizosphere immunity: targeting the underground for sustainable plant health management[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 317-328.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2020346
https://academic.hep.com.cn/fase/EN/Y2020/V7/I3/317
Fig.1  Overview of the components of the rhizosphere immunity. (a) The rhizosphere can be considered to be a meta-organism encompassing interactions between the plant, microbiome, pathogen and the surrounding soil matrix. Each of these components can exert independent (b) and interactive effects on plant health (c), making rhizosphere immunity an emerging property of the whole agricultural ecosystem.
Fig.2  Mechanistic contributions of the rhizosphere components (plant, soil and microbiome) to the key functions associated with immunity of the rhizosphere system. In reference to the medical definition of immunity, these traits are classified into pathogen prevention, pathogen detection, response to pathogen presence and rhizosphere homeostasis.
Fig.3  Rhizosphere immunity can combine several reported mechanisms underlying plant resistance into a whole system approach. (a) Breeding or engineering pathogen resistance into the plant genome can give plants the ability to directly suppress or defend against pathogens; (b) soil suppressiveness, the natural ability of soils to constrain pathogen growth and prevent disease onset, has been consistently linked to direct inhibition of pathogens by soil-dwelling microorganisms; (c) in the “cry for help” hypothesis, plants respond to the presence of a pathogen by actively recruiting microorganisms that directly inhibit pathogens or have positive effects on the activation of plant innate immunity; (d) in the soil immunity hypothesis, pathogen presence triggers changes in the soil structure that can shift the composition of the microbiome toward a more suppressive configuration.
Fig.4  Integration of rhizosphere immunity in plant disease management. In addition to researchers and scientists, it is important to bring together industrial stakeholders, end-users, legal partners and policymakers. Efficient exchange of knowledge and new multidisciplinary collaborations may be achieved through interdisciplinary conferences, workshops and funding calls and development of common terminology and language. Issues related to intellectual property and legal framework also need to be considered to better understand the practical limitations from the academic, industrial and end-user perspective at local and global levels.
1 S Savary, L Willocquet, S J Pethybridge, P Esker, N McRoberts, A Nelson. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 2019, 3(3): 430–439
https://doi.org/10.1038/s41559-018-0793-y pmid: 30718852
2 V Göhre, S Robatzek. Breaking the barriers: microbial effector molecules subvert plant immunity. Annual Review of Phytopathology, 2008, 46(1): 189–215
https://doi.org/10.1146/annurev.phyto.46.120407.110050 pmid: 18422429
3 A R War, M G Paulraj, T Ahmad, A A Buhroo, B Hussain, S Ignacimuthu, H C Sharma. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 2012, 7(10): 1306–1320
https://doi.org/10.4161/psb.21663 pmid: 22895106
4 H Kumar, T Kawai, S Akira. Pathogen recognition by the innate immune system. International Reviews of Immunology, 2011, 30(1): 16–34
https://doi.org/10.3109/08830185.2010.529976 pmid: 21235323
5 J Sharrock, J C Sun. Innate immunological memory: from plants to animals. Current Opinion in Immunology, 2020, 62: 69–78
https://doi.org/10.1016/j.coi.2019.12.001 pmid: 31931432
6 O X Dong, P C Ronald. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiology, 2019, 180(1): 26–38
https://doi.org/10.1104/pp.18.01224 pmid: 30867331
7 R Raman. The impact of Genetically Modified (GM) crops in modern agriculture: a review. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(4): 195–208
https://doi.org/10.1080/21645698.2017.1413522 pmid: 29235937
8 N J Hawkins, C Bass, A Dixon, P Neve. The evolutionary origins of pesticide resistance. Biological Reviews of the Cambridge Philosophical Society, 2018, 94(1): 135–155
https://doi.org/10.1111/brv.12440 pmid: 29971903
9 W Zhang, G Cao, X Li, H Zhang, C Wang, Q Liu, X Chen, Z Cui, J Shen, R Jiang, G Mi, Y Miao, F Zhang, Z Dou. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537(7622): 671–674
https://doi.org/10.1038/nature19368 pmid: 27602513
10 X P Chen, Z L Cui, P M Vitousek, K G Cassman, P A Matson, J S Bai, Q F Meng, P Hou, S C Yue, V Rmheld, F S Zhang. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399–6404
https://doi.org/10.1073/pnas.1101419108 pmid: 21444818
11 P J P Teixeira, N R Colaianni, C R Fitzpatrick, J L Dangl. Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology, 2019, 49: 7–17
https://doi.org/10.1016/j.mib.2019.08.003 pmid: 31563068
12 C Sánchez-Cañizares, B Jorrín, P S Poole, A Tkacz. Understanding the holobiont: the interdependence of plants and their microbiome. Current Opinion in Microbiology, 2017, 38: 188–196
https://doi.org/10.1016/j.mib.2017.07.001 pmid: 28732267
13 J McNear, H David. The rhizosphere— roots, soil and everything in between. Nature Education Knowledge, 2013, 4(3): 1
14 A Hartmann, M Rothballer, M Schmid. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 2008, 312(1–2): 7–14
https://doi.org/10.1007/s11104-007-9514-z
15 D L Jones, P Hinsinger. The rhizosphere: complex by design. Plant and Soil, 2008, 312(1–2): 1–6
https://doi.org/10.1007/s11104-008-9774-2
16 S C Brink. Unlocking the secrets of the rhizosphere. Trends in Plant Science, 2016, 21(3): 169–170
https://doi.org/10.1016/j.tplants.2016.01.020 pmid: 26853595
17 M R Neutra, P A Kozlowski. Mucosal vaccines: the promise and the challenge. Nature Reviews: Immunology, 2006, 6(2): 148–158
https://doi.org/10.1038/nri1777 pmid: 16491139
18 J D G Jones, J L Dangl. The plant immune system. Nature, 2006, 444(7117): 323–329
https://doi.org/10.1038/nature05286 pmid: 17108957
19 J L Dangl, J D G Jones. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826–833
https://doi.org/10.1038/35081161 pmid: 11459065
20 S T Chisholm, G Coaker, B Day, B J Staskawicz. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124(4): 803–814
https://doi.org/10.1016/j.cell.2006.02.008 pmid: 16497589
21 P Bittel, S Robatzek. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology, 2007, 10(4): 335–341
https://doi.org/10.1016/j.pbi.2007.04.021 pmid: 17652011
22 M A Newman, T Sundelin, J T Nielsen, G Erbs. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers of Plant Science, 2013, 4: 139
https://doi.org/10.3389/fpls.2013.00139 pmid: 23720666
23 M Carstens, J Katherine. Plant-pathogen arms race. Science, 2007, 318(5850): 529
https://doi.org/10.1126/science.318.5850.529i
24 J P Anderson, C A Gleason, R C Foley, P H Thrall, J B Burdon, K B Singh. Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 2010, 37(6): 499–512
https://doi.org/10.1071/FP09304 pmid: 21743794
25 M A Gururani, J Venkatesh, C P Upadhyaya, A Nookaraju, S K Pandey, S W Park. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology, 2012, 78: 51–65
https://doi.org/10.1016/j.pmpp.2012.01.002
26 L J Ma, H C van der Does, K A Borkovich, J J Coleman, M J Daboussi, A D Pietro, M Dufresne, M Freitag, M Grabherr, B Henrissat, P M Houterman, S Kang, W B Shim, C Woloshuk, X H Xie, J R Xu, J Antoniw, S E Baker, B H Bluhm, A Breakspear, D W Brown, R A E Butchko S Chapman, R Coulson, P M Coutinho, E G J Danchin, A Diener, L R Gale, D M Gardiner, S Goff, K E Hammond-Kosack, K Hilburn, A Hua-Van, W Jonkers, K Kazan, C D Kodira, M Koehrsen, L Kumar, Y-H Lee, L Li, J M Manners, D Miranda-Saavedra, M Mukherjee, G Park, J Park, S Y Park, R H Proctor, A Regev, M C Ruiz-Roldan, D Sain, S Sakthikumar, S Sykes, D C Schwartz, B G Turgeon, I Wapinski, O Yoder, S Young, Q D Zeng, S G Zhou, J Galagan, C A Cuomo, H C Kistler, M Rep. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium.Nature,2010, 464(7287): 367–373
27 G W Litman, J P Rast, S D Fugmann. The origins of vertebrate adaptive immunity. Nature Reviews: Immunology, 2010, 10(8): 543–553
https://doi.org/10.1038/nri2807 pmid: 20651744
28 L A Marraffini, E J Sontheimer. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews: Genetics, 2010, 11(3): 181–190
https://doi.org/10.1038/nrg2749 pmid: 20125085
29 T Danhorn, C Fuqua. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 2007, 61(1): 401–422
https://doi.org/10.1146/annurev.micro.61.080706.093316 pmid: 17506679
30 R L Berendsen, C M J Pieterse, P A H M Bakker. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478–486
https://doi.org/10.1016/j.tplants.2012.04.001 pmid: 22564542
31 C A Lozupone, J I Stombaugh, J I Gordon, J K Jansson, R Knight. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415): 220–230
https://doi.org/10.1038/nature11550 pmid: 22972295
32 K G Meade, C O’Farrelly. b-Defensins: farming the microbiome for homeostasis and health. Frontiers in Immunology, 2019, 9: 3072
https://doi.org/10.3389/fimmu.2018.03072 pmid: 30761155
33 Z Wei, T Yang, V P Friman, Y Xu, Q Shen, A Jousset. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 2015, 6(1): 8413
https://doi.org/10.1038/ncomms9413 pmid: 26400552
34 C A Mallon, F Poly, X Le Roux, I Marring, J D van Elsas, J F Salles. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology, 2015, 96(4): 915–926
https://doi.org/10.1890/14-1001.1 pmid: 26230013
35 S Mazurier, T Corberand, P Lemanceau, J M Raaijmakers. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME Journal, 2009, 3(8): 977–991
https://doi.org/10.1038/ismej.2009.33 pmid: 19369971
36 J Hu, Z Wei, V P Friman, S H Gu, X F Wang, N Eisenhauer, T J Yang, J Ma, Q R Shen, Y C Xu, A Jousset. Probiotic diversity enhances rhizosphere microbiome function and plant disease Suppression. mBio, 2016, 7(6): e01790–16
https://doi.org/10.1128/mBio.01790-16 pmid: 27965449
37 J M Raaijmakers, M Mazzola. Soil immune responses. Science, 2016, 352(6292): 1392–1393
https://doi.org/10.1126/science.aaf3252 pmid: 27313024
38 Y Gu, Y G Hou, D P Huang, Z X Hao, X F Wang, Z Wei, A Jousset, S Y Tan, D B Xu, Q R Shen, Y C Xu, V P Friman. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant and Soil, 2017, 415(1–2): 269–281
https://doi.org/10.1007/s11104-016-3159-8
39 G S Abawi, T L Widmer. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 2000, 15(1): 37–47
https://doi.org/10.1016/S0929-1393(00)00070-6
40 D C Ngeno, L K Murungi, D I Fundi, V Wekesa, S Haukeland, J Mbaka. Soil chemical properties influence abundance of nematode trophic groups and Ralstonia solanacearum in high tunnel tomato production. AAS Open Research, 2019, 2: 3
https://doi.org/10.12688/aasopenres.12932.1
41 F Rezanezhad, J S Price, W L Quinton, B Lennartz, T Milojevic, P Van Cappellen. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chemical Geology, 2016, 429: 75–84
https://doi.org/10.1016/j.chemgeo.2016.03.010
42 K Narisawa, M Shimura, F Usuki, S Fukuhara, T Hashiba. Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira. Plant Disease, 2005, 89(3): 285–290
https://doi.org/10.1094/PD-89-0285 pmid: 30795351
43 W Xun, J Zhao, C Xue, G Zhang, W Ran, B Wang, Q Shen, R Zhang. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environmental Microbiology, 2016, 18(6): 1907–1917
https://doi.org/10.1111/1462-2920.13098 pmid: 26486414
44 V Venturi, C Keel. Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21(3): 187–198
https://doi.org/10.1016/j.tplants.2016.01.005 pmid: 26832945
45 L C Carvalhais, P G Dennis, D V Badri, B N Kidd, J M Vivanco, P M Schenk. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant-Microbe Interactions, 2015, 28(9): 1049–1058
https://doi.org/10.1094/MPMI-01-15-0016-R pmid: 26035128
46 J Sasse, E Martinoia, T Northen. Feed your friends: do plant exudates shape the root microbiome. Trends in Plant Science, 2018, 23(1): 25–41
https://doi.org/10.1016/j.tplants.2017.09.003 pmid: 29050989
47 S L Lebeis, S H Paredes, D S Lundberg, N Breakfield, J Gehring, M McDonald, S Malfatti, T Glavina del Rio, C D Jones, S G Tringe, J L Dangl. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349(6250): 860–864
https://doi.org/10.1126/science.aaa8764 pmid: 26184915
48 J A Downie. Calcium signals in plant immunity: a spiky issue. New Phytologist, 2014, 204(4): 733–735
https://doi.org/10.1111/nph.13119 pmid: 25367606
49 A Aznar, N W G Chen, S Thomine, A Dellagi. Immunity to plant pathogens and iron homeostasis. Plant Science, 2015, 240: 90–97
https://doi.org/10.1016/j.plantsci.2015.08.022 pmid: 26475190
50 G Castrillo, P J P L Teixeira, S H Paredes, T F Law, L de Lorenzo, M E Feltcher, O M Finkel, N W Breakfield, P Mieczkowski, C D Jones, J Paz-Ares, J L Dangl. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646): 513–518
https://doi.org/10.1038/nature21417 pmid: 28297714
51 A B Wolf, M Vos, W de Boer, G A Kowalchuk. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PLoS One, 2013, 8(12): e83661
https://doi.org/10.1371/journal.pone.0083661 pmid: 24391805
52 M Vos, A B Wolf, S J Jennings, G A Kowalchuk. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 2013, 37(6): 936–954
https://doi.org/10.1111/1574-6976.12023 pmid: 23550883
53 H M Serna-Chavez, N Fierer, P M van Bodegom. Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography, 2013, 22(10): 1162–1172
https://doi.org/10.1111/geb.12070
54 Z Wei, Y A Gu, V P Friman, G A Kowalchuk, Y C Xu, Q R Shen, A Jousset. Initial soil microbiome composition and functioning predetermine future plant health. Science Advances,2019, 5(9): eaaw0759
55 P A H M Bakker, C M J Pieterse, R de Jonge, R L Berendsen. The soil-borne legacy. Cell, 2018, 172(6): 1178–1180
https://doi.org/10.1016/j.cell.2018.02.024 pmid: 29522740
56 M I Rashid, L H Mujawar, T Shahzad, T Almeelbi, I M I Ismail, M Oves. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 2016, 183: 26–41
https://doi.org/10.1016/j.micres.2015.11.007 pmid: 26805616
57 G Mazor, G J Kidron, A Vonshak, A Abeliovich. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 1996, 21(2): 121–130
https://doi.org/10.1111/j.1574-6941.1996.tb00339.x
58 J E Loper, M D Henkels. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 1999, 65(12): 5357–5363
https://doi.org/10.1128/AEM.65.12.5357-5363.1999 pmid: 10583989
59 R Chovatiya, R Medzhitov. Stress, inflammation, and defense of homeostasis. Molecular Cell, 2014, 54(2): 281–288
https://doi.org/10.1016/j.molcel.2014.03.030 pmid: 24766892
60 M H Lee, H S Jeon, S H Kim, J H Chung, D Roppolo, H J Lee, H J Cho, Y Tobimatsu, J Ralph, O K Park. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO Journal, 2019, 38(23): e101948
https://doi.org/10.15252/embj.2019101948 pmid: 31559647
61 M Pollard, F Beisson, Y Li, J B Ohlrogge. Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 2008, 13(5): 236–246
https://doi.org/10.1016/j.tplants.2008.03.003 pmid: 18440267
62 E Hose, D T Clarkson, E Steudle, L Schreiber, W Hartung. The exodermis: a variable apoplastic barrier. Journal of Experimental Botany, 2001, 52(365): 2245–2264
https://doi.org/10.1093/jexbot/52.365.2245 pmid: 11709575
63 P B Beauregard, Y Chai, H Vlamakis, R Losick, R Kolter. Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): E1621–E1630
https://doi.org/10.1073/pnas.1218984110 pmid: 23569226
64 H W Choi, D F Klessig. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology, 2016, 16(1): 232
https://doi.org/10.1186/s12870-016-0921-2 pmid: 27782807
65 G De Lorenzo, S Ferrari, F Cervone, E Okun. Extracellular DAMPs in plants and mammals: immunity, tissue damage and repair. Trends in Immunology, 2018, 39(11): 937–950
https://doi.org/10.1016/j.it.2018.09.006 pmid: 30293747
66 S de Weert, I Kuiper, E L Lagendijk, G E M Lamers, B J J Lugtenberg. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Molecular Plant-Microbe Interactions, 2004, 17(11): 1185–1191
https://doi.org/10.1094/MPMI.2004.17.11.1185 pmid: 15553244
67 C López-Díaz, V Rahjoo, M Sulyok, V Ghionna, A Martín-Vicente, J Capilla, A Di Pietro, M S López-Berges. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 2018, 19(2): 440–453
https://doi.org/10.1111/mpp.12536 pmid: 28093838
68 R Notz, M Maurhofer, H Dubach, D Haas, G Défago. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Applied and Environmental Microbiology, 2002, 68(5): 2229–2235
https://doi.org/10.1128/AEM.68.5.2229-2235.2002 pmid: 11976092
69 E Chapelle, R Mendes, P A H Bakker, J M Raaijmakers. Fungal invasion of the rhizosphere microbiome. ISME Journal, 2016, 10(1): 265–268
https://doi.org/10.1038/ismej.2015.82 pmid: 26023875
70 A Fujiwara, M Fujisawa, R Hamasaki, T Kawasaki, M Fujie, T Yamada. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 2011, 77(12): 4155–4162
https://doi.org/10.1128/AEM.02847-10 pmid: 21498752
71 X Ye, Z Li, X Luo, W Wang, Y Li, R Li, B Zhang, Y Qiao, J Zhou, J Fan, H Wang, Y Huang, H Cao, Z Cui, R Zhang. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome, 2020, 8(1): 49
https://doi.org/10.1186/s40168-020-00824-x pmid: 32252828
72 W Xiong, Y Song, K Yang, Y Gu, Z Wei, G A Kowalchuk, Y Xu, A Jousset, Q Shen, S Geisen. Rhizosphere protists are key determinants of plant health. Microbiome, 2020, 8(1): 27
https://doi.org/10.1186/s40168-020-00799-9 pmid: 32127034
73 M Dickman, B Williams, Y Li, P de Figueiredo, T Wolpert. Reassessing apoptosis in plants. Nature Plants, 2017, 3(10): 773–779
https://doi.org/10.1038/s41477-017-0020-x pmid: 28947814
74 C A Voigt. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers of Plant Science, 2014, 5: 168
https://doi.org/10.3389/fpls.2014.00168 pmid: 24808903
75 X Wang, Z Wei, M Li, X Wang, A Shan, X Mei, A Jousset, Q Shen, Y Xu, V P Friman. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs. Evolution, 2017, 71(3): 733–746
https://doi.org/10.1111/evo.13143 pmid: 27925169
76 H P Bais, T L Weir, L G Perry, S Gilroy, J M Vivanco. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233–266
https://doi.org/10.1146/annurev.arplant.57.032905.105159 pmid: 16669762
77 C Ji, Y Fan, L Zhao. Review on biological degradation of mycotoxins. Animal Nutrition, 2016, 2(3): 127–133
https://doi.org/10.1016/j.aninu.2016.07.003 pmid: 29767078
78 V Radl, J B Winkler, S Kublik, L H Yang, T Winkelmann, G Vestergaard, P Schröder, M Schloter. Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. Environmental Microbiology, 2019, 14(1): 9
https://doi.org/10.1186/s40793-019-0351-5
79 Z R Komy, A M Shaker, S E M Heggy, M E A El-Sayed. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere, 2014, 99: 117–124
https://doi.org/10.1016/j.chemosphere.2013.10.048 pmid: 24268171
80 S J Ye, G M Zeng, H P Wu, C Zhang, J Liang, J Dai, Z F Liu, W P Xiong, J Wan, P Xu, M Cheng. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—a review. Critical Reviews in Environmental Science and Technology, 2017, 47(16): 1528–1553
https://doi.org/10.1080/10643389.2017.1386951
81 D M Weller, J M Raaijmakers, B B M Gardener, L S Thomashow. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 2002, 40(1): 309–348
https://doi.org/10.1146/annurev.phyto.40.030402.110010 pmid: 12147763
82 L X Ren, S M Su, X M Yang, Y C Xu, Q W Huang, Q R Shen. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology & Biochemistry, 2008, 40(3): 834–844
https://doi.org/10.1016/j.soilbio.2007.11.003
83 G Bonanomi, M Lorito, F Vinale, S L Woo. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology, 2018, 56(1): 1–20
https://doi.org/10.1146/annurev-phyto-080615-100046 pmid: 29768137
84 P Garbeva, J A van Veen, J D van Elsas. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 2004, 42(1): 243–270
https://doi.org/10.1146/annurev.phyto.42.012604.135455 pmid: 15283667
85 U Conrath. Systemic acquired resistance. Plant Signaling & Behavior, 2006, 1(4): 179–184
https://doi.org/10.4161/psb.1.4.3221 pmid: 19521483
86 C M J Pieterse, C Zamioudis, R L Berendsen, D M Weller, S C M Van Wees, P A H M Bakker. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 2014, 52(1): 347–375
https://doi.org/10.1146/annurev-phyto-082712-102340 pmid: 24906124
87 S Van der Ent, S C M Van Wees, C M J Pieterse. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 2009, 70(13–14): 1581–1588
https://doi.org/10.1016/j.phytochem.2009.06.009 pmid: 19712950
88 J Yuan, J Zhao, T Wen, M Zhao, R Li, P Goossens, Q Huang, Y Bai, J M Vivanco, G A Kowalchuk, R L Berendsen, Q Shen. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6(1): 156
https://doi.org/10.1186/s40168-018-0537-x pmid: 30208962
89 R L Berendsen, G Vismans, K Yu, Y Song, R de Jonge, W P Burgman, M Burmølle, J Herschend, P A H M Bakker, C M J Pieterse. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12(6): 1496–1507
https://doi.org/10.1038/s41396-018-0093-1 pmid: 29520025
90 H Sanguin, A Sarniguet, K Gazengel, Y Moënne-Loccoz, G L Grundmann. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytologist, 2009, 184(3): 694–707
https://doi.org/10.1111/j.1469-8137.2009.03010.x pmid: 19732350
91 J Y Cha, S Han, H J Hong, H Cho, D Kim, Y Kwon, S K Kwon, M Crüsemann, Y Bok Lee, J F Kim, G Giaever, C Nislow, B S Moore, L S Thomashow, D M Weller, Y S Kwak. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal, 2016, 10(1): 119–129
https://doi.org/10.1038/ismej.2015.95 pmid: 26057845
92 E R Lapsansky, A M Milroy, M J Andales, J M Vivanco. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Current Opinion in Biotechnology, 2016, 38: 137–142
https://doi.org/10.1016/j.copbio.2016.01.014 pmid: 26897653
93 M Hartmann, B Frey, J Mayer, P Mäder, F Widmer. Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, 2015, 9(5): 1177–1194
https://doi.org/10.1038/ismej.2014.210 pmid: 25350160
94 S Jiao, W Chen, J Wang, N Du, Q Li, G Wei. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 2018, 6(1): 146
https://doi.org/10.1186/s40168-018-0526-0 pmid: 30131068
95 Y Teng, W Chen. Soil microbiomes: a promising strategy for contaminated soil remediation: a review. Pedosphere, 2019, 29(3): 283–297
https://doi.org/10.1016/S1002-0160(18)60061-X
96 X Wang, Z Wei, K Yang, J Wang, A Jousset, Y Xu, Q Shen, V P Friman. Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology, 2019, 37(12): 1513–1520
https://doi.org/10.1038/s41587-019-0328-3 pmid: 31792408
97 K Witek, F Jupe, A I Witek, D Baker, M D Clark, J D G Jones. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology, 2016, 34(6): 656–660
https://doi.org/10.1038/nbt.3540 pmid: 27111721
98 M J Kwak, H G Kong, K Choi, S K Kwon, J Y Song, J Lee, P A Lee, S Y Choi, M Seo, H J Lee, E J Jung, H Park, N Roy, H Kim, M M Lee, E M Rubin, S W Lee, J F Kim. Author Correction: rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11): 1117
https://doi.org/10.1038/nbt1118-1117 pmid: 30412196
99 Z Wei, A Jousset. Plant breeding goes microbial. Trends in Plant Science, 2017, 22(7): 555–558
https://doi.org/10.1016/j.tplants.2017.05.009 pmid: 28592368
100 L W Mendes, J M Raaijmakers, M de Hollander, R Mendes, S M Tsai. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12(1): 212–224
https://doi.org/10.1038/ismej.2017.158 pmid: 29028000
101 L W Mendes, R Mendes, J M Raaijmakers, S M Tsai. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME Journal, 2018, 12(12): 3038–3042
https://doi.org/10.1038/s41396-018-0234-6 pmid: 30018368
102 C Xue, Z Z Shen, Y W Hao, S T Yu, Y C Li, W J Huang, Y Chong, W Ran, R Li, Q R Shen. Fumigation coupled with bio-organic fertilizer for the suppression of watermelon Fusarium wilt disease re-shapes the soil microbiome. Applied Soil Ecology, 2019, 140: 49–56
https://doi.org/10.1016/j.apsoil.2019.04.007
103 R P Larkin, T S Griffin. Control of soilborne potato diseases using Brassica green manures. Crop Protection, 2007, 26(7): 1067–1077
https://doi.org/10.1016/j.cropro.2006.10.004
104 G Shen, S Zhang, X Liu, Q Jiang, W Ding. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Applied Microbiology and Biotechnology, 2018, 102(22): 9781–9791
https://doi.org/10.1007/s00253-018-9347-0 pmid: 30302520
105 E Adam, A E Groenenboom, V Kurm, M Rajewska, R Schmidt, O Tyc, S Weidner, G Berg, W de Boer, J Falcão Salles. Controlling the microbiome: microhabitat adjustments for successful biocontrol strategies in soil and human gut. Frontiers in Microbiology, 2016, 7: 1079
https://doi.org/10.3389/fmicb.2016.01079 pmid: 27468279
[1] Lin FU, Wu XIONG, Francisco DINI-ANDREOTE, Beibei WANG, Chengyuan TAO, Yunze RUAN, Zongzhuan SHEN, Rong LI, Qirong SHEN. Changes in bulk soil affect the disease-suppressive rhizosphere microbiome against Fusarium wilt disease[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 307-316.
[2] Gu FENG, Jingping GAI, Xionghan FENG, Haigang LI, Lin ZHANG, Keke YI, Jialong LV, Yiyong ZHU, Li TANG, Yilin LI. Strategies for improving fertilizer phosphorus use efficiency in Chinese cropping systems[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 341-347.
[3] Tao WANG, Jiaxin LI, Qian-Hua SHEN. Regulation of NLR stability in plant immunity[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 97-104.
[4] Yadong YANG, Xiaomin FENG, Yuegao HU, Zhaohai ZENG. The diazotrophic community in oat rhizosphere: effects of legume intercropping and crop growth stage[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 162-171.
[5] Yang SONG,Chen ZHU,Waseem RAZA,Dongsheng WANG,Qiwei HUANG,Shiwei GUO,Ning LING,Qirong SHEN. Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 249-262.
[6] Hong LI,Ziding ZHANG. Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 102-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed