|
|
Rhizosphere immunity: targeting the underground for sustainable plant health management |
Zhong WEI1, Ville-Petri FRIMAN1,2, Thomas POMMIER1,3, Stefan GEISEN1,4, Alexandre JOUSSET1,5( ), Qirong SHEN1( ) |
1. Key Laboratory of Plant Immunity, Jiangsu Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China 2. Department of Biology, University of York, York, YO10 5DD, UK 3. Ecologie Microbienne, UMR1418, French National Institute for Agricultural Research (INRA), University Lyon I, F-69622 Villeurbanne, France 4. Laboratory of Nematology, Wageningen University and Research, 6700ES Wageningen, the Netherlands 5. Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584CH Utrecht, the Netherlands |
|
|
Abstract Managing plant health is a great challenge for modern food production and is further complicated by the lack of common ground between the many disciplines involved in disease control. Here we present the concept of rhizosphere immunity, in which plant health is considered as an ecosystem level property emerging from networks of interactions between plants, microbiota and the surrounding soil matrix. These interactions can potentially extend the innate plant immune system to a point where the rhizosphere immunity can fulfil all four core functions of a full immune system: pathogen prevention, recognition, response and homeostasis. We suggest that considering plant health from a meta-organism perspective will help in developing multidisciplinary pathogen management strategies that focus on steering the whole plant-microbe-soil networks instead of individual components. This might be achieved by bringing together the latest discoveries in phytopathology, microbiome research, soil science and agronomy to pave the way toward more sustainable and productive agriculture.
|
Keywords
rhizosphere
soil microbiome
plant immunity
microbial ecology
plant health
soilborne pathogens
|
Corresponding Author(s):
Alexandre JOUSSET,Qirong SHEN
|
Just Accepted Date: 11 June 2020
Online First Date: 13 July 2020
Issue Date: 28 July 2020
|
|
1 |
S Savary, L Willocquet, S J Pethybridge, P Esker, N McRoberts, A Nelson. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 2019, 3(3): 430–439
https://doi.org/10.1038/s41559-018-0793-y
pmid: 30718852
|
2 |
V Göhre, S Robatzek. Breaking the barriers: microbial effector molecules subvert plant immunity. Annual Review of Phytopathology, 2008, 46(1): 189–215
https://doi.org/10.1146/annurev.phyto.46.120407.110050
pmid: 18422429
|
3 |
A R War, M G Paulraj, T Ahmad, A A Buhroo, B Hussain, S Ignacimuthu, H C Sharma. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 2012, 7(10): 1306–1320
https://doi.org/10.4161/psb.21663
pmid: 22895106
|
4 |
H Kumar, T Kawai, S Akira. Pathogen recognition by the innate immune system. International Reviews of Immunology, 2011, 30(1): 16–34
https://doi.org/10.3109/08830185.2010.529976
pmid: 21235323
|
5 |
J Sharrock, J C Sun. Innate immunological memory: from plants to animals. Current Opinion in Immunology, 2020, 62: 69–78
https://doi.org/10.1016/j.coi.2019.12.001
pmid: 31931432
|
6 |
O X Dong, P C Ronald. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiology, 2019, 180(1): 26–38
https://doi.org/10.1104/pp.18.01224
pmid: 30867331
|
7 |
R Raman. The impact of Genetically Modified (GM) crops in modern agriculture: a review. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(4): 195–208
https://doi.org/10.1080/21645698.2017.1413522
pmid: 29235937
|
8 |
N J Hawkins, C Bass, A Dixon, P Neve. The evolutionary origins of pesticide resistance. Biological Reviews of the Cambridge Philosophical Society, 2018, 94(1): 135–155
https://doi.org/10.1111/brv.12440
pmid: 29971903
|
9 |
W Zhang, G Cao, X Li, H Zhang, C Wang, Q Liu, X Chen, Z Cui, J Shen, R Jiang, G Mi, Y Miao, F Zhang, Z Dou. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537(7622): 671–674
https://doi.org/10.1038/nature19368
pmid: 27602513
|
10 |
X P Chen, Z L Cui, P M Vitousek, K G Cassman, P A Matson, J S Bai, Q F Meng, P Hou, S C Yue, V Rmheld, F S Zhang. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399–6404
https://doi.org/10.1073/pnas.1101419108
pmid: 21444818
|
11 |
P J P Teixeira, N R Colaianni, C R Fitzpatrick, J L Dangl. Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology, 2019, 49: 7–17
https://doi.org/10.1016/j.mib.2019.08.003
pmid: 31563068
|
12 |
C Sánchez-Cañizares, B Jorrín, P S Poole, A Tkacz. Understanding the holobiont: the interdependence of plants and their microbiome. Current Opinion in Microbiology, 2017, 38: 188–196
https://doi.org/10.1016/j.mib.2017.07.001
pmid: 28732267
|
13 |
J McNear, H David. The rhizosphere— roots, soil and everything in between. Nature Education Knowledge, 2013, 4(3): 1
|
14 |
A Hartmann, M Rothballer, M Schmid. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 2008, 312(1–2): 7–14
https://doi.org/10.1007/s11104-007-9514-z
|
15 |
D L Jones, P Hinsinger. The rhizosphere: complex by design. Plant and Soil, 2008, 312(1–2): 1–6
https://doi.org/10.1007/s11104-008-9774-2
|
16 |
S C Brink. Unlocking the secrets of the rhizosphere. Trends in Plant Science, 2016, 21(3): 169–170
https://doi.org/10.1016/j.tplants.2016.01.020
pmid: 26853595
|
17 |
M R Neutra, P A Kozlowski. Mucosal vaccines: the promise and the challenge. Nature Reviews: Immunology, 2006, 6(2): 148–158
https://doi.org/10.1038/nri1777
pmid: 16491139
|
18 |
J D G Jones, J L Dangl. The plant immune system. Nature, 2006, 444(7117): 323–329
https://doi.org/10.1038/nature05286
pmid: 17108957
|
19 |
J L Dangl, J D G Jones. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826–833
https://doi.org/10.1038/35081161
pmid: 11459065
|
20 |
S T Chisholm, G Coaker, B Day, B J Staskawicz. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124(4): 803–814
https://doi.org/10.1016/j.cell.2006.02.008
pmid: 16497589
|
21 |
P Bittel, S Robatzek. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology, 2007, 10(4): 335–341
https://doi.org/10.1016/j.pbi.2007.04.021
pmid: 17652011
|
22 |
M A Newman, T Sundelin, J T Nielsen, G Erbs. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers of Plant Science, 2013, 4: 139
https://doi.org/10.3389/fpls.2013.00139
pmid: 23720666
|
23 |
M Carstens, J Katherine. Plant-pathogen arms race. Science, 2007, 318(5850): 529
https://doi.org/10.1126/science.318.5850.529i
|
24 |
J P Anderson, C A Gleason, R C Foley, P H Thrall, J B Burdon, K B Singh. Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 2010, 37(6): 499–512
https://doi.org/10.1071/FP09304
pmid: 21743794
|
25 |
M A Gururani, J Venkatesh, C P Upadhyaya, A Nookaraju, S K Pandey, S W Park. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology, 2012, 78: 51–65
https://doi.org/10.1016/j.pmpp.2012.01.002
|
26 |
L J Ma, H C van der Does, K A Borkovich, J J Coleman, M J Daboussi, A D Pietro, M Dufresne, M Freitag, M Grabherr, B Henrissat, P M Houterman, S Kang, W B Shim, C Woloshuk, X H Xie, J R Xu, J Antoniw, S E Baker, B H Bluhm, A Breakspear, D W Brown, R A E Butchko S Chapman, R Coulson, P M Coutinho, E G J Danchin, A Diener, L R Gale, D M Gardiner, S Goff, K E Hammond-Kosack, K Hilburn, A Hua-Van, W Jonkers, K Kazan, C D Kodira, M Koehrsen, L Kumar, Y-H Lee, L Li, J M Manners, D Miranda-Saavedra, M Mukherjee, G Park, J Park, S Y Park, R H Proctor, A Regev, M C Ruiz-Roldan, D Sain, S Sakthikumar, S Sykes, D C Schwartz, B G Turgeon, I Wapinski, O Yoder, S Young, Q D Zeng, S G Zhou, J Galagan, C A Cuomo, H C Kistler, M Rep. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium.Nature,2010, 464(7287): 367–373
|
27 |
G W Litman, J P Rast, S D Fugmann. The origins of vertebrate adaptive immunity. Nature Reviews: Immunology, 2010, 10(8): 543–553
https://doi.org/10.1038/nri2807
pmid: 20651744
|
28 |
L A Marraffini, E J Sontheimer. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews: Genetics, 2010, 11(3): 181–190
https://doi.org/10.1038/nrg2749
pmid: 20125085
|
29 |
T Danhorn, C Fuqua. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 2007, 61(1): 401–422
https://doi.org/10.1146/annurev.micro.61.080706.093316
pmid: 17506679
|
30 |
R L Berendsen, C M J Pieterse, P A H M Bakker. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478–486
https://doi.org/10.1016/j.tplants.2012.04.001
pmid: 22564542
|
31 |
C A Lozupone, J I Stombaugh, J I Gordon, J K Jansson, R Knight. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415): 220–230
https://doi.org/10.1038/nature11550
pmid: 22972295
|
32 |
K G Meade, C O’Farrelly. b-Defensins: farming the microbiome for homeostasis and health. Frontiers in Immunology, 2019, 9: 3072
https://doi.org/10.3389/fimmu.2018.03072
pmid: 30761155
|
33 |
Z Wei, T Yang, V P Friman, Y Xu, Q Shen, A Jousset. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 2015, 6(1): 8413
https://doi.org/10.1038/ncomms9413
pmid: 26400552
|
34 |
C A Mallon, F Poly, X Le Roux, I Marring, J D van Elsas, J F Salles. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology, 2015, 96(4): 915–926
https://doi.org/10.1890/14-1001.1
pmid: 26230013
|
35 |
S Mazurier, T Corberand, P Lemanceau, J M Raaijmakers. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME Journal, 2009, 3(8): 977–991
https://doi.org/10.1038/ismej.2009.33
pmid: 19369971
|
36 |
J Hu, Z Wei, V P Friman, S H Gu, X F Wang, N Eisenhauer, T J Yang, J Ma, Q R Shen, Y C Xu, A Jousset. Probiotic diversity enhances rhizosphere microbiome function and plant disease Suppression. mBio, 2016, 7(6): e01790–16
https://doi.org/10.1128/mBio.01790-16
pmid: 27965449
|
37 |
J M Raaijmakers, M Mazzola. Soil immune responses. Science, 2016, 352(6292): 1392–1393
https://doi.org/10.1126/science.aaf3252
pmid: 27313024
|
38 |
Y Gu, Y G Hou, D P Huang, Z X Hao, X F Wang, Z Wei, A Jousset, S Y Tan, D B Xu, Q R Shen, Y C Xu, V P Friman. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant and Soil, 2017, 415(1–2): 269–281
https://doi.org/10.1007/s11104-016-3159-8
|
39 |
G S Abawi, T L Widmer. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 2000, 15(1): 37–47
https://doi.org/10.1016/S0929-1393(00)00070-6
|
40 |
D C Ngeno, L K Murungi, D I Fundi, V Wekesa, S Haukeland, J Mbaka. Soil chemical properties influence abundance of nematode trophic groups and Ralstonia solanacearum in high tunnel tomato production. AAS Open Research, 2019, 2: 3
https://doi.org/10.12688/aasopenres.12932.1
|
41 |
F Rezanezhad, J S Price, W L Quinton, B Lennartz, T Milojevic, P Van Cappellen. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chemical Geology, 2016, 429: 75–84
https://doi.org/10.1016/j.chemgeo.2016.03.010
|
42 |
K Narisawa, M Shimura, F Usuki, S Fukuhara, T Hashiba. Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira. Plant Disease, 2005, 89(3): 285–290
https://doi.org/10.1094/PD-89-0285
pmid: 30795351
|
43 |
W Xun, J Zhao, C Xue, G Zhang, W Ran, B Wang, Q Shen, R Zhang. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environmental Microbiology, 2016, 18(6): 1907–1917
https://doi.org/10.1111/1462-2920.13098
pmid: 26486414
|
44 |
V Venturi, C Keel. Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21(3): 187–198
https://doi.org/10.1016/j.tplants.2016.01.005
pmid: 26832945
|
45 |
L C Carvalhais, P G Dennis, D V Badri, B N Kidd, J M Vivanco, P M Schenk. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant-Microbe Interactions, 2015, 28(9): 1049–1058
https://doi.org/10.1094/MPMI-01-15-0016-R
pmid: 26035128
|
46 |
J Sasse, E Martinoia, T Northen. Feed your friends: do plant exudates shape the root microbiome. Trends in Plant Science, 2018, 23(1): 25–41
https://doi.org/10.1016/j.tplants.2017.09.003
pmid: 29050989
|
47 |
S L Lebeis, S H Paredes, D S Lundberg, N Breakfield, J Gehring, M McDonald, S Malfatti, T Glavina del Rio, C D Jones, S G Tringe, J L Dangl. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349(6250): 860–864
https://doi.org/10.1126/science.aaa8764
pmid: 26184915
|
48 |
J A Downie. Calcium signals in plant immunity: a spiky issue. New Phytologist, 2014, 204(4): 733–735
https://doi.org/10.1111/nph.13119
pmid: 25367606
|
49 |
A Aznar, N W G Chen, S Thomine, A Dellagi. Immunity to plant pathogens and iron homeostasis. Plant Science, 2015, 240: 90–97
https://doi.org/10.1016/j.plantsci.2015.08.022
pmid: 26475190
|
50 |
G Castrillo, P J P L Teixeira, S H Paredes, T F Law, L de Lorenzo, M E Feltcher, O M Finkel, N W Breakfield, P Mieczkowski, C D Jones, J Paz-Ares, J L Dangl. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646): 513–518
https://doi.org/10.1038/nature21417
pmid: 28297714
|
51 |
A B Wolf, M Vos, W de Boer, G A Kowalchuk. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PLoS One, 2013, 8(12): e83661
https://doi.org/10.1371/journal.pone.0083661
pmid: 24391805
|
52 |
M Vos, A B Wolf, S J Jennings, G A Kowalchuk. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 2013, 37(6): 936–954
https://doi.org/10.1111/1574-6976.12023
pmid: 23550883
|
53 |
H M Serna-Chavez, N Fierer, P M van Bodegom. Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography, 2013, 22(10): 1162–1172
https://doi.org/10.1111/geb.12070
|
54 |
Z Wei, Y A Gu, V P Friman, G A Kowalchuk, Y C Xu, Q R Shen, A Jousset. Initial soil microbiome composition and functioning predetermine future plant health. Science Advances,2019, 5(9): eaaw0759
|
55 |
P A H M Bakker, C M J Pieterse, R de Jonge, R L Berendsen. The soil-borne legacy. Cell, 2018, 172(6): 1178–1180
https://doi.org/10.1016/j.cell.2018.02.024
pmid: 29522740
|
56 |
M I Rashid, L H Mujawar, T Shahzad, T Almeelbi, I M I Ismail, M Oves. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 2016, 183: 26–41
https://doi.org/10.1016/j.micres.2015.11.007
pmid: 26805616
|
57 |
G Mazor, G J Kidron, A Vonshak, A Abeliovich. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 1996, 21(2): 121–130
https://doi.org/10.1111/j.1574-6941.1996.tb00339.x
|
58 |
J E Loper, M D Henkels. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 1999, 65(12): 5357–5363
https://doi.org/10.1128/AEM.65.12.5357-5363.1999
pmid: 10583989
|
59 |
R Chovatiya, R Medzhitov. Stress, inflammation, and defense of homeostasis. Molecular Cell, 2014, 54(2): 281–288
https://doi.org/10.1016/j.molcel.2014.03.030
pmid: 24766892
|
60 |
M H Lee, H S Jeon, S H Kim, J H Chung, D Roppolo, H J Lee, H J Cho, Y Tobimatsu, J Ralph, O K Park. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO Journal, 2019, 38(23): e101948
https://doi.org/10.15252/embj.2019101948
pmid: 31559647
|
61 |
M Pollard, F Beisson, Y Li, J B Ohlrogge. Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 2008, 13(5): 236–246
https://doi.org/10.1016/j.tplants.2008.03.003
pmid: 18440267
|
62 |
E Hose, D T Clarkson, E Steudle, L Schreiber, W Hartung. The exodermis: a variable apoplastic barrier. Journal of Experimental Botany, 2001, 52(365): 2245–2264
https://doi.org/10.1093/jexbot/52.365.2245
pmid: 11709575
|
63 |
P B Beauregard, Y Chai, H Vlamakis, R Losick, R Kolter. Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): E1621–E1630
https://doi.org/10.1073/pnas.1218984110
pmid: 23569226
|
64 |
H W Choi, D F Klessig. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology, 2016, 16(1): 232
https://doi.org/10.1186/s12870-016-0921-2
pmid: 27782807
|
65 |
G De Lorenzo, S Ferrari, F Cervone, E Okun. Extracellular DAMPs in plants and mammals: immunity, tissue damage and repair. Trends in Immunology, 2018, 39(11): 937–950
https://doi.org/10.1016/j.it.2018.09.006
pmid: 30293747
|
66 |
S de Weert, I Kuiper, E L Lagendijk, G E M Lamers, B J J Lugtenberg. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Molecular Plant-Microbe Interactions, 2004, 17(11): 1185–1191
https://doi.org/10.1094/MPMI.2004.17.11.1185
pmid: 15553244
|
67 |
C López-Díaz, V Rahjoo, M Sulyok, V Ghionna, A Martín-Vicente, J Capilla, A Di Pietro, M S López-Berges. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 2018, 19(2): 440–453
https://doi.org/10.1111/mpp.12536
pmid: 28093838
|
68 |
R Notz, M Maurhofer, H Dubach, D Haas, G Défago. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Applied and Environmental Microbiology, 2002, 68(5): 2229–2235
https://doi.org/10.1128/AEM.68.5.2229-2235.2002
pmid: 11976092
|
69 |
E Chapelle, R Mendes, P A H Bakker, J M Raaijmakers. Fungal invasion of the rhizosphere microbiome. ISME Journal, 2016, 10(1): 265–268
https://doi.org/10.1038/ismej.2015.82
pmid: 26023875
|
70 |
A Fujiwara, M Fujisawa, R Hamasaki, T Kawasaki, M Fujie, T Yamada. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 2011, 77(12): 4155–4162
https://doi.org/10.1128/AEM.02847-10
pmid: 21498752
|
71 |
X Ye, Z Li, X Luo, W Wang, Y Li, R Li, B Zhang, Y Qiao, J Zhou, J Fan, H Wang, Y Huang, H Cao, Z Cui, R Zhang. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome, 2020, 8(1): 49
https://doi.org/10.1186/s40168-020-00824-x
pmid: 32252828
|
72 |
W Xiong, Y Song, K Yang, Y Gu, Z Wei, G A Kowalchuk, Y Xu, A Jousset, Q Shen, S Geisen. Rhizosphere protists are key determinants of plant health. Microbiome, 2020, 8(1): 27
https://doi.org/10.1186/s40168-020-00799-9
pmid: 32127034
|
73 |
M Dickman, B Williams, Y Li, P de Figueiredo, T Wolpert. Reassessing apoptosis in plants. Nature Plants, 2017, 3(10): 773–779
https://doi.org/10.1038/s41477-017-0020-x
pmid: 28947814
|
74 |
C A Voigt. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers of Plant Science, 2014, 5: 168
https://doi.org/10.3389/fpls.2014.00168
pmid: 24808903
|
75 |
X Wang, Z Wei, M Li, X Wang, A Shan, X Mei, A Jousset, Q Shen, Y Xu, V P Friman. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs. Evolution, 2017, 71(3): 733–746
https://doi.org/10.1111/evo.13143
pmid: 27925169
|
76 |
H P Bais, T L Weir, L G Perry, S Gilroy, J M Vivanco. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233–266
https://doi.org/10.1146/annurev.arplant.57.032905.105159
pmid: 16669762
|
77 |
C Ji, Y Fan, L Zhao. Review on biological degradation of mycotoxins. Animal Nutrition, 2016, 2(3): 127–133
https://doi.org/10.1016/j.aninu.2016.07.003
pmid: 29767078
|
78 |
V Radl, J B Winkler, S Kublik, L H Yang, T Winkelmann, G Vestergaard, P Schröder, M Schloter. Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. Environmental Microbiology, 2019, 14(1): 9
https://doi.org/10.1186/s40793-019-0351-5
|
79 |
Z R Komy, A M Shaker, S E M Heggy, M E A El-Sayed. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere, 2014, 99: 117–124
https://doi.org/10.1016/j.chemosphere.2013.10.048
pmid: 24268171
|
80 |
S J Ye, G M Zeng, H P Wu, C Zhang, J Liang, J Dai, Z F Liu, W P Xiong, J Wan, P Xu, M Cheng. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—a review. Critical Reviews in Environmental Science and Technology, 2017, 47(16): 1528–1553
https://doi.org/10.1080/10643389.2017.1386951
|
81 |
D M Weller, J M Raaijmakers, B B M Gardener, L S Thomashow. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 2002, 40(1): 309–348
https://doi.org/10.1146/annurev.phyto.40.030402.110010
pmid: 12147763
|
82 |
L X Ren, S M Su, X M Yang, Y C Xu, Q W Huang, Q R Shen. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology & Biochemistry, 2008, 40(3): 834–844
https://doi.org/10.1016/j.soilbio.2007.11.003
|
83 |
G Bonanomi, M Lorito, F Vinale, S L Woo. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology, 2018, 56(1): 1–20
https://doi.org/10.1146/annurev-phyto-080615-100046
pmid: 29768137
|
84 |
P Garbeva, J A van Veen, J D van Elsas. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 2004, 42(1): 243–270
https://doi.org/10.1146/annurev.phyto.42.012604.135455
pmid: 15283667
|
85 |
U Conrath. Systemic acquired resistance. Plant Signaling & Behavior, 2006, 1(4): 179–184
https://doi.org/10.4161/psb.1.4.3221
pmid: 19521483
|
86 |
C M J Pieterse, C Zamioudis, R L Berendsen, D M Weller, S C M Van Wees, P A H M Bakker. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 2014, 52(1): 347–375
https://doi.org/10.1146/annurev-phyto-082712-102340
pmid: 24906124
|
87 |
S Van der Ent, S C M Van Wees, C M J Pieterse. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 2009, 70(13–14): 1581–1588
https://doi.org/10.1016/j.phytochem.2009.06.009
pmid: 19712950
|
88 |
J Yuan, J Zhao, T Wen, M Zhao, R Li, P Goossens, Q Huang, Y Bai, J M Vivanco, G A Kowalchuk, R L Berendsen, Q Shen. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6(1): 156
https://doi.org/10.1186/s40168-018-0537-x
pmid: 30208962
|
89 |
R L Berendsen, G Vismans, K Yu, Y Song, R de Jonge, W P Burgman, M Burmølle, J Herschend, P A H M Bakker, C M J Pieterse. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12(6): 1496–1507
https://doi.org/10.1038/s41396-018-0093-1
pmid: 29520025
|
90 |
H Sanguin, A Sarniguet, K Gazengel, Y Moënne-Loccoz, G L Grundmann. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytologist, 2009, 184(3): 694–707
https://doi.org/10.1111/j.1469-8137.2009.03010.x
pmid: 19732350
|
91 |
J Y Cha, S Han, H J Hong, H Cho, D Kim, Y Kwon, S K Kwon, M Crüsemann, Y Bok Lee, J F Kim, G Giaever, C Nislow, B S Moore, L S Thomashow, D M Weller, Y S Kwak. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal, 2016, 10(1): 119–129
https://doi.org/10.1038/ismej.2015.95
pmid: 26057845
|
92 |
E R Lapsansky, A M Milroy, M J Andales, J M Vivanco. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Current Opinion in Biotechnology, 2016, 38: 137–142
https://doi.org/10.1016/j.copbio.2016.01.014
pmid: 26897653
|
93 |
M Hartmann, B Frey, J Mayer, P Mäder, F Widmer. Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, 2015, 9(5): 1177–1194
https://doi.org/10.1038/ismej.2014.210
pmid: 25350160
|
94 |
S Jiao, W Chen, J Wang, N Du, Q Li, G Wei. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 2018, 6(1): 146
https://doi.org/10.1186/s40168-018-0526-0
pmid: 30131068
|
95 |
Y Teng, W Chen. Soil microbiomes: a promising strategy for contaminated soil remediation: a review. Pedosphere, 2019, 29(3): 283–297
https://doi.org/10.1016/S1002-0160(18)60061-X
|
96 |
X Wang, Z Wei, K Yang, J Wang, A Jousset, Y Xu, Q Shen, V P Friman. Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology, 2019, 37(12): 1513–1520
https://doi.org/10.1038/s41587-019-0328-3
pmid: 31792408
|
97 |
K Witek, F Jupe, A I Witek, D Baker, M D Clark, J D G Jones. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology, 2016, 34(6): 656–660
https://doi.org/10.1038/nbt.3540
pmid: 27111721
|
98 |
M J Kwak, H G Kong, K Choi, S K Kwon, J Y Song, J Lee, P A Lee, S Y Choi, M Seo, H J Lee, E J Jung, H Park, N Roy, H Kim, M M Lee, E M Rubin, S W Lee, J F Kim. Author Correction: rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11): 1117
https://doi.org/10.1038/nbt1118-1117
pmid: 30412196
|
99 |
Z Wei, A Jousset. Plant breeding goes microbial. Trends in Plant Science, 2017, 22(7): 555–558
https://doi.org/10.1016/j.tplants.2017.05.009
pmid: 28592368
|
100 |
L W Mendes, J M Raaijmakers, M de Hollander, R Mendes, S M Tsai. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12(1): 212–224
https://doi.org/10.1038/ismej.2017.158
pmid: 29028000
|
101 |
L W Mendes, R Mendes, J M Raaijmakers, S M Tsai. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME Journal, 2018, 12(12): 3038–3042
https://doi.org/10.1038/s41396-018-0234-6
pmid: 30018368
|
102 |
C Xue, Z Z Shen, Y W Hao, S T Yu, Y C Li, W J Huang, Y Chong, W Ran, R Li, Q R Shen. Fumigation coupled with bio-organic fertilizer for the suppression of watermelon Fusarium wilt disease re-shapes the soil microbiome. Applied Soil Ecology, 2019, 140: 49–56
https://doi.org/10.1016/j.apsoil.2019.04.007
|
103 |
R P Larkin, T S Griffin. Control of soilborne potato diseases using Brassica green manures. Crop Protection, 2007, 26(7): 1067–1077
https://doi.org/10.1016/j.cropro.2006.10.004
|
104 |
G Shen, S Zhang, X Liu, Q Jiang, W Ding. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Applied Microbiology and Biotechnology, 2018, 102(22): 9781–9791
https://doi.org/10.1007/s00253-018-9347-0
pmid: 30302520
|
105 |
E Adam, A E Groenenboom, V Kurm, M Rajewska, R Schmidt, O Tyc, S Weidner, G Berg, W de Boer, J Falcão Salles. Controlling the microbiome: microhabitat adjustments for successful biocontrol strategies in soil and human gut. Frontiers in Microbiology, 2016, 7: 1079
https://doi.org/10.3389/fmicb.2016.01079
pmid: 27468279
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|