| 
					
						|  |  
    					|  |  
    					| Rhizosphere immunity: targeting the underground for sustainable plant health management |  
						| Zhong WEI1, Ville-Petri FRIMAN1,2, Thomas POMMIER1,3, Stefan GEISEN1,4, Alexandre JOUSSET1,5(  ), Qirong SHEN1(  ) |  
						| 1. Key Laboratory of Plant Immunity, Jiangsu Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China 2. Department of Biology, University of York, York, YO10 5DD, UK
 3. Ecologie Microbienne, UMR1418, French National Institute for Agricultural Research (INRA), University Lyon I, F-69622 Villeurbanne, France
 4. Laboratory of Nematology, Wageningen University and Research, 6700ES Wageningen, the Netherlands
 5. Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584CH Utrecht, the Netherlands
 |  
						|  |  
					
						| 
								
									|  
          
          
            
              
				
								                
													
													    |  |  
														| 
													
													    | Abstract Managing plant health is a great challenge for modern food production and is further complicated by the lack of common ground between the many disciplines involved in disease control. Here we present the concept of rhizosphere immunity, in which plant health is considered as an ecosystem level property emerging from networks of interactions between plants, microbiota and the surrounding soil matrix. These interactions can potentially extend the innate plant immune system to a point where the rhizosphere immunity can fulfil all four core functions of a full immune system: pathogen prevention, recognition, response and homeostasis. We suggest that considering plant health from a meta-organism perspective will help in developing multidisciplinary pathogen management strategies that focus on steering the whole plant-microbe-soil networks instead of individual components. This might be achieved by bringing together the latest discoveries in phytopathology, microbiome research, soil science and agronomy to pave the way toward more sustainable and productive agriculture. |  
															| Keywords 
																																																				rhizosphere  
																		  																																				soil microbiome  
																		  																																				plant immunity  
																		  																																				microbial ecology  
																		  																																				plant health  
																		  																																				soilborne pathogens |  
															| Corresponding Author(s):
																Alexandre JOUSSET,Qirong SHEN |  
															| Just Accepted Date: 11 June 2020  
																																														Online First Date: 13 July 2020   
																																														Issue Date: 28 July 2020 |  |  
								            
								                
																																												
															| 1 | S Savary, L Willocquet, S J Pethybridge, P Esker, N McRoberts, A Nelson. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 2019, 3(3): 430–439 https://doi.org/10.1038/s41559-018-0793-y
														     															     															     		pmid: 30718852
 |  
															| 2 | V Göhre, S Robatzek. Breaking the barriers: microbial effector molecules subvert plant immunity. Annual Review of Phytopathology, 2008, 46(1): 189–215 https://doi.org/10.1146/annurev.phyto.46.120407.110050
														     															     															     		pmid: 18422429
 |  
															| 3 | A R War, M G Paulraj, T Ahmad, A A Buhroo, B Hussain, S Ignacimuthu, H C Sharma. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 2012, 7(10): 1306–1320 https://doi.org/10.4161/psb.21663
														     															     															     		pmid: 22895106
 |  
															| 4 | H Kumar, T Kawai, S Akira. Pathogen recognition by the innate immune system. International Reviews of Immunology, 2011, 30(1): 16–34 https://doi.org/10.3109/08830185.2010.529976
														     															     															     		pmid: 21235323
 |  
															| 5 | J Sharrock, J C Sun. Innate immunological memory: from plants to animals. Current Opinion in Immunology, 2020, 62: 69–78 https://doi.org/10.1016/j.coi.2019.12.001
														     															     															     		pmid: 31931432
 |  
															| 6 | O X Dong, P C Ronald. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiology, 2019, 180(1): 26–38 https://doi.org/10.1104/pp.18.01224
														     															     															     		pmid: 30867331
 |  
															| 7 | R Raman. The impact of Genetically Modified (GM) crops in modern agriculture: a review. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(4): 195–208 https://doi.org/10.1080/21645698.2017.1413522
														     															     															     		pmid: 29235937
 |  
															| 8 | N J Hawkins, C Bass, A Dixon, P Neve. The evolutionary origins of pesticide resistance. Biological Reviews of the Cambridge Philosophical Society, 2018, 94(1): 135–155 https://doi.org/10.1111/brv.12440
														     															     															     		pmid: 29971903
 |  
															| 9 | W Zhang, G Cao, X Li, H Zhang, C Wang, Q Liu, X Chen, Z Cui, J Shen, R Jiang, G Mi, Y Miao, F Zhang, Z Dou. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537(7622): 671–674 https://doi.org/10.1038/nature19368
														     															     															     		pmid: 27602513
 |  
															| 10 | X P Chen, Z L Cui, P M Vitousek, K G Cassman, P A Matson, J S Bai, Q F Meng, P Hou, S C Yue, V Rmheld, F S Zhang. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399–6404 https://doi.org/10.1073/pnas.1101419108
														     															     															     		pmid: 21444818
 |  
															| 11 | P J P Teixeira, N R Colaianni, C R Fitzpatrick, J L Dangl. Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology, 2019, 49: 7–17 https://doi.org/10.1016/j.mib.2019.08.003
														     															     															     		pmid: 31563068
 |  
															| 12 | C Sánchez-Cañizares, B Jorrín, P S Poole, A Tkacz. Understanding the holobiont: the interdependence of plants and their microbiome. Current Opinion in Microbiology, 2017, 38: 188–196 https://doi.org/10.1016/j.mib.2017.07.001
														     															     															     		pmid: 28732267
 |  
															| 13 | J McNear, H David. The rhizosphere— roots, soil and everything in between. Nature Education Knowledge, 2013, 4(3): 1 |  
															| 14 | A Hartmann, M Rothballer, M Schmid. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 2008, 312(1–2): 7–14 https://doi.org/10.1007/s11104-007-9514-z
 |  
															| 15 | D L Jones, P Hinsinger. The rhizosphere: complex by design. Plant and Soil, 2008, 312(1–2): 1–6 https://doi.org/10.1007/s11104-008-9774-2
 |  
															| 16 | S C Brink. Unlocking the secrets of the rhizosphere. Trends in Plant Science, 2016, 21(3): 169–170 https://doi.org/10.1016/j.tplants.2016.01.020
														     															     															     		pmid: 26853595
 |  
															| 17 | M R Neutra, P A Kozlowski. Mucosal vaccines: the promise and the challenge. Nature Reviews: Immunology, 2006, 6(2): 148–158 https://doi.org/10.1038/nri1777
														     															     															     		pmid: 16491139
 |  
															| 18 | J D G Jones, J L Dangl. The plant immune system. Nature, 2006, 444(7117): 323–329 https://doi.org/10.1038/nature05286
														     															     															     		pmid: 17108957
 |  
															| 19 | J L Dangl, J D G Jones. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826–833 https://doi.org/10.1038/35081161
														     															     															     		pmid: 11459065
 |  
															| 20 | S T Chisholm, G Coaker, B Day, B J Staskawicz. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124(4): 803–814 https://doi.org/10.1016/j.cell.2006.02.008
														     															     															     		pmid: 16497589
 |  
															| 21 | P Bittel, S Robatzek. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology, 2007, 10(4): 335–341 https://doi.org/10.1016/j.pbi.2007.04.021
														     															     															     		pmid: 17652011
 |  
															| 22 | M A Newman, T Sundelin, J T Nielsen, G Erbs. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers of Plant Science, 2013, 4: 139 https://doi.org/10.3389/fpls.2013.00139
														     															     															     		pmid: 23720666
 |  
															| 23 | M Carstens, J Katherine. Plant-pathogen arms race. Science, 2007, 318(5850): 529 https://doi.org/10.1126/science.318.5850.529i
 |  
															| 24 | J P Anderson, C A Gleason, R C Foley, P H Thrall, J B Burdon, K B Singh. Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 2010, 37(6): 499–512 https://doi.org/10.1071/FP09304
														     															     															     		pmid: 21743794
 |  
															| 25 | M A Gururani, J Venkatesh, C P Upadhyaya, A Nookaraju, S K Pandey, S W Park. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology, 2012, 78: 51–65 https://doi.org/10.1016/j.pmpp.2012.01.002
 |  
															| 26 | L J Ma, H C van der Does, K A Borkovich, J J Coleman, M J Daboussi, A D Pietro, M Dufresne, M Freitag, M Grabherr, B Henrissat, P M Houterman, S Kang, W B Shim, C Woloshuk, X H Xie, J R Xu, J Antoniw, S E Baker, B H Bluhm, A Breakspear, D W Brown, R A E Butchko S Chapman, R Coulson, P M Coutinho, E G J Danchin, A Diener, L R Gale, D M Gardiner, S Goff, K E Hammond-Kosack, K Hilburn, A Hua-Van, W Jonkers, K Kazan, C D Kodira, M Koehrsen, L Kumar, Y-H Lee, L Li, J M Manners, D Miranda-Saavedra, M Mukherjee, G Park, J Park, S Y Park, R H Proctor, A Regev, M C Ruiz-Roldan, D Sain, S Sakthikumar, S Sykes, D C Schwartz, B G Turgeon, I Wapinski, O Yoder, S Young, Q D Zeng, S G Zhou, J Galagan, C A Cuomo, H C Kistler, M Rep. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium.Nature,2010, 464(7287): 367–373 |  
															| 27 | G W Litman, J P Rast, S D Fugmann. The origins of vertebrate adaptive immunity. Nature Reviews: Immunology, 2010, 10(8): 543–553 https://doi.org/10.1038/nri2807
														     															     															     		pmid: 20651744
 |  
															| 28 | L A Marraffini, E J Sontheimer. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews: Genetics, 2010, 11(3): 181–190 https://doi.org/10.1038/nrg2749
														     															     															     		pmid: 20125085
 |  
															| 29 | T Danhorn, C Fuqua. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 2007, 61(1): 401–422 https://doi.org/10.1146/annurev.micro.61.080706.093316
														     															     															     		pmid: 17506679
 |  
															| 30 | R L Berendsen, C M J Pieterse, P A H M Bakker. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478–486 https://doi.org/10.1016/j.tplants.2012.04.001
														     															     															     		pmid: 22564542
 |  
															| 31 | C A Lozupone, J I Stombaugh, J I Gordon, J K Jansson, R Knight. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415): 220–230 https://doi.org/10.1038/nature11550
														     															     															     		pmid: 22972295
 |  
															| 32 | K G Meade, C O’Farrelly. b-Defensins: farming the microbiome for homeostasis and health. Frontiers in Immunology, 2019, 9: 3072 https://doi.org/10.3389/fimmu.2018.03072
														     															     															     		pmid: 30761155
 |  
															| 33 | Z Wei, T Yang, V P Friman, Y Xu, Q Shen, A Jousset. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 2015, 6(1): 8413 https://doi.org/10.1038/ncomms9413
														     															     															     		pmid: 26400552
 |  
															| 34 | C A Mallon, F Poly, X Le Roux, I Marring, J D van Elsas, J F Salles. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology, 2015, 96(4): 915–926 https://doi.org/10.1890/14-1001.1
														     															     															     		pmid: 26230013
 |  
															| 35 | S Mazurier, T Corberand, P Lemanceau, J M Raaijmakers. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME Journal, 2009, 3(8): 977–991 https://doi.org/10.1038/ismej.2009.33
														     															     															     		pmid: 19369971
 |  
															| 36 | J Hu, Z Wei, V P Friman, S H Gu, X F Wang, N Eisenhauer, T J Yang, J Ma, Q R Shen, Y C Xu, A Jousset. Probiotic diversity enhances rhizosphere microbiome function and plant disease Suppression. mBio, 2016, 7(6): e01790–16 https://doi.org/10.1128/mBio.01790-16
														     															     															     		pmid: 27965449
 |  
															| 37 | J M Raaijmakers, M Mazzola. Soil immune responses. Science, 2016, 352(6292): 1392–1393 https://doi.org/10.1126/science.aaf3252
														     															     															     		pmid: 27313024
 |  
															| 38 | Y Gu, Y G Hou, D P Huang, Z X Hao, X F Wang, Z Wei, A Jousset, S Y Tan, D B Xu, Q R Shen, Y C Xu, V P Friman. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant and Soil, 2017, 415(1–2): 269–281 https://doi.org/10.1007/s11104-016-3159-8
 |  
															| 39 | G S Abawi, T L Widmer. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 2000, 15(1): 37–47 https://doi.org/10.1016/S0929-1393(00)00070-6
 |  
															| 40 | D C Ngeno, L K Murungi, D I Fundi, V Wekesa, S Haukeland, J Mbaka. Soil chemical properties influence abundance of nematode trophic groups and Ralstonia solanacearum in high tunnel tomato production. AAS Open Research, 2019, 2: 3 https://doi.org/10.12688/aasopenres.12932.1
 |  
															| 41 | F Rezanezhad, J S Price, W L Quinton, B Lennartz, T Milojevic, P Van Cappellen. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chemical Geology, 2016, 429: 75–84 https://doi.org/10.1016/j.chemgeo.2016.03.010
 |  
															| 42 | K Narisawa, M Shimura, F Usuki, S Fukuhara, T Hashiba. Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira. Plant Disease, 2005, 89(3): 285–290 https://doi.org/10.1094/PD-89-0285
														     															     															     		pmid: 30795351
 |  
															| 43 | W Xun, J Zhao, C Xue, G Zhang, W Ran, B Wang, Q Shen, R Zhang. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environmental Microbiology, 2016, 18(6): 1907–1917 https://doi.org/10.1111/1462-2920.13098
														     															     															     		pmid: 26486414
 |  
															| 44 | V Venturi, C Keel. Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21(3): 187–198 https://doi.org/10.1016/j.tplants.2016.01.005
														     															     															     		pmid: 26832945
 |  
															| 45 | L C Carvalhais, P G Dennis, D V Badri, B N Kidd, J M Vivanco, P M Schenk. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant-Microbe Interactions, 2015, 28(9): 1049–1058 https://doi.org/10.1094/MPMI-01-15-0016-R
														     															     															     		pmid: 26035128
 |  
															| 46 | J Sasse, E Martinoia, T Northen. Feed your friends: do plant exudates shape the root microbiome. Trends in Plant Science, 2018, 23(1): 25–41 https://doi.org/10.1016/j.tplants.2017.09.003
														     															     															     		pmid: 29050989
 |  
															| 47 | S L Lebeis, S H Paredes, D S Lundberg, N Breakfield, J Gehring, M McDonald, S Malfatti, T Glavina del Rio, C D Jones, S G Tringe, J L Dangl. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349(6250): 860–864 https://doi.org/10.1126/science.aaa8764
														     															     															     		pmid: 26184915
 |  
															| 48 | J A Downie. Calcium signals in plant immunity: a spiky issue. New Phytologist, 2014, 204(4): 733–735 https://doi.org/10.1111/nph.13119
														     															     															     		pmid: 25367606
 |  
															| 49 | A Aznar, N W G Chen, S Thomine, A Dellagi. Immunity to plant pathogens and iron homeostasis. Plant Science, 2015, 240: 90–97 https://doi.org/10.1016/j.plantsci.2015.08.022
														     															     															     		pmid: 26475190
 |  
															| 50 | G Castrillo, P J P L Teixeira, S H Paredes, T F Law, L de Lorenzo, M E Feltcher, O M Finkel, N W Breakfield, P Mieczkowski, C D Jones, J Paz-Ares, J L Dangl. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646): 513–518 https://doi.org/10.1038/nature21417
														     															     															     		pmid: 28297714
 |  
															| 51 | A B Wolf, M Vos, W de Boer, G A Kowalchuk. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PLoS One, 2013, 8(12): e83661 https://doi.org/10.1371/journal.pone.0083661
														     															     															     		pmid: 24391805
 |  
															| 52 | M Vos, A B Wolf, S J Jennings, G A Kowalchuk. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews, 2013, 37(6): 936–954 https://doi.org/10.1111/1574-6976.12023
														     															     															     		pmid: 23550883
 |  
															| 53 | H M Serna-Chavez, N Fierer, P M van Bodegom. Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography, 2013, 22(10): 1162–1172 https://doi.org/10.1111/geb.12070
 |  
															| 54 | Z Wei, Y A Gu, V P Friman, G A Kowalchuk, Y C Xu, Q R Shen, A Jousset. Initial soil microbiome composition and functioning predetermine future plant health. Science Advances,2019, 5(9): eaaw0759 |  
															| 55 | P A H M Bakker, C M J Pieterse, R de Jonge, R L Berendsen. The soil-borne legacy. Cell, 2018, 172(6): 1178–1180 https://doi.org/10.1016/j.cell.2018.02.024
														     															     															     		pmid: 29522740
 |  
															| 56 | M I Rashid, L H Mujawar, T Shahzad, T Almeelbi, I M I Ismail, M Oves. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 2016, 183: 26–41 https://doi.org/10.1016/j.micres.2015.11.007
														     															     															     		pmid: 26805616
 |  
															| 57 | G Mazor, G J Kidron, A Vonshak, A Abeliovich. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 1996, 21(2): 121–130 https://doi.org/10.1111/j.1574-6941.1996.tb00339.x
 |  
															| 58 | J E Loper, M D Henkels. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 1999, 65(12): 5357–5363 https://doi.org/10.1128/AEM.65.12.5357-5363.1999
														     															     															     		pmid: 10583989
 |  
															| 59 | R Chovatiya, R Medzhitov. Stress, inflammation, and defense of homeostasis. Molecular Cell, 2014, 54(2): 281–288 https://doi.org/10.1016/j.molcel.2014.03.030
														     															     															     		pmid: 24766892
 |  
															| 60 | M H Lee, H S Jeon, S H Kim, J H Chung, D Roppolo, H J Lee, H J Cho, Y Tobimatsu, J Ralph, O K Park. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO Journal, 2019, 38(23): e101948 https://doi.org/10.15252/embj.2019101948
														     															     															     		pmid: 31559647
 |  
															| 61 | M Pollard, F Beisson, Y Li, J B Ohlrogge. Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 2008, 13(5): 236–246 https://doi.org/10.1016/j.tplants.2008.03.003
														     															     															     		pmid: 18440267
 |  
															| 62 | E Hose, D T Clarkson, E Steudle, L Schreiber, W Hartung. The exodermis: a variable apoplastic barrier. Journal of Experimental Botany, 2001, 52(365): 2245–2264 https://doi.org/10.1093/jexbot/52.365.2245
														     															     															     		pmid: 11709575
 |  
															| 63 | P B Beauregard, Y Chai, H Vlamakis, R Losick, R Kolter. Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): E1621–E1630 https://doi.org/10.1073/pnas.1218984110
														     															     															     		pmid: 23569226
 |  
															| 64 | H W Choi, D F Klessig. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology, 2016, 16(1): 232 https://doi.org/10.1186/s12870-016-0921-2
														     															     															     		pmid: 27782807
 |  
															| 65 | G De Lorenzo, S Ferrari, F Cervone, E Okun. Extracellular DAMPs in plants and mammals: immunity, tissue damage and repair. Trends in Immunology, 2018, 39(11): 937–950 https://doi.org/10.1016/j.it.2018.09.006
														     															     															     		pmid: 30293747
 |  
															| 66 | S de Weert, I Kuiper, E L Lagendijk, G E M Lamers, B J J Lugtenberg. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Molecular Plant-Microbe Interactions, 2004, 17(11): 1185–1191 https://doi.org/10.1094/MPMI.2004.17.11.1185
														     															     															     		pmid: 15553244
 |  
															| 67 | C López-Díaz, V Rahjoo, M Sulyok, V Ghionna, A Martín-Vicente, J Capilla, A Di Pietro, M S López-Berges. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 2018, 19(2): 440–453 https://doi.org/10.1111/mpp.12536
														     															     															     		pmid: 28093838
 |  
															| 68 | R Notz, M Maurhofer, H Dubach, D Haas, G Défago. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Applied and Environmental Microbiology, 2002, 68(5): 2229–2235 https://doi.org/10.1128/AEM.68.5.2229-2235.2002
														     															     															     		pmid: 11976092
 |  
															| 69 | E Chapelle, R Mendes, P A H Bakker, J M Raaijmakers. Fungal invasion of the rhizosphere microbiome. ISME Journal, 2016, 10(1): 265–268 https://doi.org/10.1038/ismej.2015.82
														     															     															     		pmid: 26023875
 |  
															| 70 | A Fujiwara, M Fujisawa, R Hamasaki, T Kawasaki, M Fujie, T Yamada. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 2011, 77(12): 4155–4162 https://doi.org/10.1128/AEM.02847-10
														     															     															     		pmid: 21498752
 |  
															| 71 | X Ye, Z Li, X Luo, W Wang, Y Li, R Li, B Zhang, Y Qiao, J Zhou, J Fan, H Wang, Y Huang, H Cao, Z Cui, R Zhang. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. Microbiome, 2020, 8(1): 49 https://doi.org/10.1186/s40168-020-00824-x
														     															     															     		pmid: 32252828
 |  
															| 72 | W Xiong, Y Song, K Yang, Y Gu, Z Wei, G A Kowalchuk, Y Xu, A Jousset, Q Shen, S Geisen. Rhizosphere protists are key determinants of plant health. Microbiome, 2020, 8(1): 27 https://doi.org/10.1186/s40168-020-00799-9
														     															     															     		pmid: 32127034
 |  
															| 73 | M Dickman, B Williams, Y Li, P de Figueiredo, T Wolpert. Reassessing apoptosis in plants. Nature Plants, 2017, 3(10): 773–779 https://doi.org/10.1038/s41477-017-0020-x
														     															     															     		pmid: 28947814
 |  
															| 74 | C A Voigt. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers of Plant Science, 2014, 5: 168 https://doi.org/10.3389/fpls.2014.00168
														     															     															     		pmid: 24808903
 |  
															| 75 | X Wang, Z Wei, M Li, X Wang, A Shan, X Mei, A Jousset, Q Shen, Y Xu, V P Friman. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs. Evolution, 2017, 71(3): 733–746 https://doi.org/10.1111/evo.13143
														     															     															     		pmid: 27925169
 |  
															| 76 | H P Bais, T L Weir, L G Perry, S Gilroy, J M Vivanco. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233–266 https://doi.org/10.1146/annurev.arplant.57.032905.105159
														     															     															     		pmid: 16669762
 |  
															| 77 | C Ji, Y Fan, L Zhao. Review on biological degradation of mycotoxins. Animal Nutrition, 2016, 2(3): 127–133 https://doi.org/10.1016/j.aninu.2016.07.003
														     															     															     		pmid: 29767078
 |  
															| 78 | V Radl, J B Winkler, S Kublik, L H Yang, T Winkelmann, G Vestergaard, P Schröder, M Schloter. Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. Environmental Microbiology, 2019, 14(1): 9 https://doi.org/10.1186/s40793-019-0351-5
 |  
															| 79 | Z R Komy, A M Shaker, S E M Heggy, M E A El-Sayed. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere, 2014, 99: 117–124 https://doi.org/10.1016/j.chemosphere.2013.10.048
														     															     															     		pmid: 24268171
 |  
															| 80 | S J Ye, G M Zeng, H P Wu, C Zhang, J Liang, J Dai, Z F Liu, W P Xiong, J Wan, P Xu, M Cheng. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—a review. Critical Reviews in Environmental Science and Technology, 2017, 47(16): 1528–1553 https://doi.org/10.1080/10643389.2017.1386951
 |  
															| 81 | D M Weller, J M Raaijmakers, B B M Gardener, L S Thomashow. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 2002, 40(1): 309–348 https://doi.org/10.1146/annurev.phyto.40.030402.110010
														     															     															     		pmid: 12147763
 |  
															| 82 | L X Ren, S M Su, X M Yang, Y C Xu, Q W Huang, Q R Shen. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology & Biochemistry, 2008, 40(3): 834–844 https://doi.org/10.1016/j.soilbio.2007.11.003
 |  
															| 83 | G Bonanomi, M Lorito, F Vinale, S L Woo. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology, 2018, 56(1): 1–20 https://doi.org/10.1146/annurev-phyto-080615-100046
														     															     															     		pmid: 29768137
 |  
															| 84 | P Garbeva, J A van Veen, J D van Elsas. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 2004, 42(1): 243–270 https://doi.org/10.1146/annurev.phyto.42.012604.135455
														     															     															     		pmid: 15283667
 |  
															| 85 | U Conrath. Systemic acquired resistance. Plant Signaling & Behavior, 2006, 1(4): 179–184 https://doi.org/10.4161/psb.1.4.3221
														     															     															     		pmid: 19521483
 |  
															| 86 | C M J Pieterse, C Zamioudis, R L Berendsen, D M Weller, S C M Van Wees, P A H M Bakker. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 2014, 52(1): 347–375 https://doi.org/10.1146/annurev-phyto-082712-102340
														     															     															     		pmid: 24906124
 |  
															| 87 | S Van der Ent, S C M Van Wees, C M J Pieterse. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 2009, 70(13–14): 1581–1588 https://doi.org/10.1016/j.phytochem.2009.06.009
														     															     															     		pmid: 19712950
 |  
															| 88 | J Yuan, J Zhao, T Wen, M Zhao, R Li, P Goossens, Q Huang, Y Bai, J M Vivanco, G A Kowalchuk, R L Berendsen, Q Shen. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6(1): 156 https://doi.org/10.1186/s40168-018-0537-x
														     															     															     		pmid: 30208962
 |  
															| 89 | R L Berendsen, G Vismans, K Yu, Y Song, R de Jonge, W P Burgman, M Burmølle, J Herschend, P A H M Bakker, C M J Pieterse. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12(6): 1496–1507 https://doi.org/10.1038/s41396-018-0093-1
														     															     															     		pmid: 29520025
 |  
															| 90 | H Sanguin, A Sarniguet, K Gazengel, Y Moënne-Loccoz, G L Grundmann. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytologist, 2009, 184(3): 694–707 https://doi.org/10.1111/j.1469-8137.2009.03010.x
														     															     															     		pmid: 19732350
 |  
															| 91 | J Y Cha, S Han, H J Hong, H Cho, D Kim, Y Kwon, S K Kwon, M Crüsemann, Y Bok Lee, J F Kim, G Giaever, C Nislow, B S Moore, L S Thomashow, D M Weller, Y S Kwak. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal, 2016, 10(1): 119–129 https://doi.org/10.1038/ismej.2015.95
														     															     															     		pmid: 26057845
 |  
															| 92 | E R Lapsansky, A M Milroy, M J Andales, J M Vivanco. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Current Opinion in Biotechnology, 2016, 38: 137–142 https://doi.org/10.1016/j.copbio.2016.01.014
														     															     															     		pmid: 26897653
 |  
															| 93 | M Hartmann, B Frey, J Mayer, P Mäder, F Widmer. Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, 2015, 9(5): 1177–1194 https://doi.org/10.1038/ismej.2014.210
														     															     															     		pmid: 25350160
 |  
															| 94 | S Jiao, W Chen, J Wang, N Du, Q Li, G Wei. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 2018, 6(1): 146 https://doi.org/10.1186/s40168-018-0526-0
														     															     															     		pmid: 30131068
 |  
															| 95 | Y Teng, W Chen. Soil microbiomes: a promising strategy for contaminated soil remediation: a review. Pedosphere, 2019, 29(3): 283–297 https://doi.org/10.1016/S1002-0160(18)60061-X
 |  
															| 96 | X Wang, Z Wei, K Yang, J Wang, A Jousset, Y Xu, Q Shen, V P Friman. Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology, 2019, 37(12): 1513–1520 https://doi.org/10.1038/s41587-019-0328-3
														     															     															     		pmid: 31792408
 |  
															| 97 | K Witek, F Jupe, A I Witek, D Baker, M D Clark, J D G Jones. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology, 2016, 34(6): 656–660 https://doi.org/10.1038/nbt.3540
														     															     															     		pmid: 27111721
 |  
															| 98 | M J Kwak, H G Kong, K Choi, S K Kwon, J Y Song, J Lee, P A Lee, S Y Choi, M Seo, H J Lee, E J Jung, H Park, N Roy, H Kim, M M Lee, E M Rubin, S W Lee, J F Kim. Author Correction: rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11): 1117 https://doi.org/10.1038/nbt1118-1117
														     															     															     		pmid: 30412196
 |  
															| 99 | Z Wei, A Jousset. Plant breeding goes microbial. Trends in Plant Science, 2017, 22(7): 555–558 https://doi.org/10.1016/j.tplants.2017.05.009
														     															     															     		pmid: 28592368
 |  
															| 100 | L W Mendes, J M Raaijmakers, M de Hollander, R Mendes, S M Tsai. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12(1): 212–224 https://doi.org/10.1038/ismej.2017.158
														     															     															     		pmid: 29028000
 |  
															| 101 | L W Mendes, R Mendes, J M Raaijmakers, S M Tsai. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME Journal, 2018, 12(12): 3038–3042 https://doi.org/10.1038/s41396-018-0234-6
														     															     															     		pmid: 30018368
 |  
															| 102 | C Xue, Z Z Shen, Y W Hao, S T Yu, Y C Li, W J Huang, Y Chong, W Ran, R Li, Q R Shen. Fumigation coupled with bio-organic fertilizer for the suppression of watermelon Fusarium wilt disease re-shapes the soil microbiome. Applied Soil Ecology, 2019, 140: 49–56 https://doi.org/10.1016/j.apsoil.2019.04.007
 |  
															| 103 | R P Larkin, T S Griffin. Control of soilborne potato diseases using Brassica green manures. Crop Protection, 2007, 26(7): 1067–1077 https://doi.org/10.1016/j.cropro.2006.10.004
 |  
															| 104 | G Shen, S Zhang, X Liu, Q Jiang, W Ding. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Applied Microbiology and Biotechnology, 2018, 102(22): 9781–9791 https://doi.org/10.1007/s00253-018-9347-0
														     															     															     		pmid: 30302520
 |  
															| 105 | E Adam, A E Groenenboom, V Kurm, M Rajewska, R Schmidt, O Tyc, S Weidner, G Berg, W de Boer, J Falcão Salles. Controlling the microbiome: microhabitat adjustments for successful biocontrol strategies in soil and human gut. Frontiers in Microbiology, 2016, 7: 1079 https://doi.org/10.3389/fmicb.2016.01079
														     															     															     		pmid: 27468279
 |  
								            
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |