Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (1) : 130-147    https://doi.org/10.15302/J-FASE-2020376
RESEARCH ARTICLE
INTENSIFICATION OF GRASSLAND-BASED DAIRY PRODUCTION AND ITS IMPACTS ON LAND, NITROGEN AND PHOSPHORUS USE EFFICIENCIES
Jouke OENEMA1(), Oene OENEMA2
1. Wageningen Plant Research, Agrosystems Research, 6700 AA Wageningen, the Netherlands.
2. Wageningen Environmental Research, 6700 AA Wageningen, the Netherlands.
 Download: PDF(936 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Monitoring data of>5000 dairy farms collected and examined in uniform manner.

• Environmental performances of farms influenced by government regulations.

• N and P surpluses at farm level remained about constant with intensity level.

• N and P use efficiencies at farm, herd and soil increased with intensity level.

• Accounting for externalization of off-farm feed production affects NUE and PUE.

• Ammonia emissions per kg milk decreased with the level of intensification.

Many grassland-based dairy farms are intensifying production, i.e., produce more milk per ha of land in response to the increasing demand for milk (by about 2% per year) in a globalized market. However, intensive dairy farming has been implicated for its resources use, ammonia and greenhouse gas emissions, and eutrophication impacts. This paper addresses the question of how the intensity of dairy production relates to N and P surpluses and use efficiencies on farms subjected to agri-environmental regulations. Detailed monitoring data were analyzed from 2858 grassland-based dairy farms in The Netherlands for the year 2015. The farms produced on average 925 Mg·yr1 milk. Milk production per ha ranged from<10 to>30 Mg·ha1·yr1. Purchased feed and manure export strongly increased with the level of intensification. Surpluses of N and P at farm level remained constant and ammonia emissions per kg milk decreased with the level of intensification. In conclusion, N and P surpluses did not differ much among dairy farms greatly differing in intensity due to legal N and P application limits and obligatory export of manure surpluses to other farms. Further, N and P use efficiencies also did not differ among dairy farms differing in intensity provided the externalization of feed production was accounted for. This paper provides lessons for proper monitoring and control of N and P cycling in dairy farming.

Keywords ammonia      externalization      feed      forage maize      front runners      manure production      milk yield      nitrogen surplus     
Corresponding Author(s): Jouke OENEMA   
Just Accepted Date: 26 January 2021   Online First Date: 02 March 2021    Issue Date: 29 March 2021
 Cite this article:   
Jouke OENEMA,Oene OENEMA. INTENSIFICATION OF GRASSLAND-BASED DAIRY PRODUCTION AND ITS IMPACTS ON LAND, NITROGEN AND PHOSPHORUS USE EFFICIENCIES[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 130-147.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2020376
https://academic.hep.com.cn/fase/EN/Y2021/V8/I1/130
Fig.1  Box plots of indicator values per group of farms. (a) Milk production per ha of farmland; (b) milk production per cow; (c) feed import, expressed in kg protein N per ha of farmland; and (d) land area per farm. The 2858 farms were ordered in ascending order of milk production and then divided in 10 equal groups of 286 dairy farms. Boxes indicate the 25 (bottom) and 75 (top) percentile values per group of farms, the line in the box represents the medium, and the whiskers indicate the 5 and 95 percentile values.
Indicator Groups of farms, in ascending order of milk production per ha
1 2 3 4 5 6 7 8 9 10
Milk production (Mg·ha-1) 11.1 13.4 14.5 15.5 16.4 17.5 18.6 20.2 22.7 30.0
General farm characteristics
Share of grassland (%) 82 a 85 bc 85 bc 86 c 86 bc 85 bc 85 bc 86 bc 84 b 85 bc
Total milk production (Gg·yr-1) 651 a 781 b 811 b 847 bc 909 cd 961 de 987 de 999 e 1116 f 1191 f
Milk production per cow (kg) 7589 a 8012 b 8190 c 8372 d 8482 d 8634 e 8784 f 8830 f 8894 fg 8988 g
Young stocks (number per 10 cows) 8.4 f 7.7 e 7.4 de 7.2 cd 7.1 cd 7.0 c 6.9 c 6.9 c 6.5 b 6.1 a
Grazing intensity (h·yr-1) 1061 f 974 f 847 e 756 de 657 cd 610 c 611 c 455 b 381 ab 333 a
N surplus farm (kg·ha-1·yr-1) 174 a 191 bc 188 b 196 bc 197 c 193 bc 199 cd 206 de 199 cd 208 e
N use efficiency farm (%) 34 ab 33 a 35 b 35 b 37 c 38 d 38 d 39 d 43 e 49 f
Total N output (kg·ha-1·yr-1) 102 a 113 b 128 c 143 d 159 e 175 f 193 g 227 h 276 i 432 j
N output in milk and animals (kg·ha-1·yr-1) 77 a 91 b 99 c 105 d 110 e 116 f 124 g 134 h 151 i 199 j
N output manure (kg·ha-1·yr-1) 13 a 16 ab 25 bc 33 c 42 d 52 e 65 f 89 g 119 h 225 i
N output manure (fraction of total N output) 0.10 a 0.12 b 0.17 c 0.21 d 0.24 e 0.28 f 0.31 g 0.37 h 0.41 i 0.49 j
N feed import (kg·ha-1·yr-1) 113 a 137 b 151 c 166 d 181 e 195 f 217 g 248 h 296 i 449 j
N feed import (% of total N input) 40 a 45 b 47 c 49 d 50 d 52 e 55 f 57 g 61 h 68 i
P surplus farm (kg·ha-1·yr-1) 1 g 1 fg -1 e 0 ef -1 de -3 c -2 cd -3 c -5 b -7 a
P use efficiency farm (%) 122 ab 113 a 125 abc 118 ab 125 abcd 137 cd 127 abcd 130 bcd 159 e 140 d
Total P output (kg·ha-1·yr-1) 19 a 21 b 24 c 27 d 29 e 32 f 35 g 42 h 50 i 78 j
P output in milk and animals (kg·ha-1·yr-1) 15 a 18 b 19 c 20 d 21 e 23 f 24 g 26 h 29 i 39 j
P output manure (kg·ha-1·yr-1) 2 a 3 ab 4 bc 6 cd 7 d 9 e 11 f 15 g 20 h 38 i
P output manure (fraction of total P output) 0.09 a 0.11 a 0.15 b 0.19 c 0.22 d 0.26 e 0.29 f 0.34 g 0.38 h 0.45 i
Total NH3 emissions (kg·ha-1·yr-1) 54 a 60 b 62 c 63 cd 64 de 66 ef 67 f 69 g 72 h 81 i
Total NH3 emissions (kg per Mg milk) 4.9 j 4.5 i 4.3 h 4.1 g 3.9 f 3.8 e 3.6 d 3.4 c 3.2 b 2.7 a
Tab.1  Mean farm characteristics and indicators of 2858 dairy farms in 2015
Indicator Groups of farms, in ascending order of milk production per ha
1 2 3 4 5 6 7 8 9 10
Indicators herd management
N use efficiency herd (%) 23.3 a 23.9 b 24.1 b 24.6 c 24.8 cd 25.0 d 25.4 e 25.5 e 26.0 f 26.4 g
P use efficiency herd (%) 29.9 a 30.6 b 30.7 b 31.5 c 31.7 c 32.1 d 32.6 e 32.6 e 33.4 f 33.7 f
Feed efficiency (kg FPCM per kg DM intake) 0.98 a 1.03 b 1.05 c 1.07 d 1.08 de 1.09 e 1.11 f 1.11 f 1.13 g 1.15 h
CP content in total feed ration (g per kgDM) 158 abc 159 def 161 f 160 ef 159 cde 159 cde 158 cd 158 bc 157 ab 156 a
Share of maize in total feed ration (%) 22 ab 22 a 21 a 21 a 23 bc 23 ab 25 cd 26 d 28 e 31 f
Share of concentrates in ration (%) 25 a 27 b 28 b 29 cd 29 c 30 de 31 e 31 e 32 f 33 f
Indicators soil and crop management
N use efficiency soil (%) 67 ab 66 a 69 bcd 67 ab 68 abc 69 cde 68 abcd 67 ab 70 de 71 e
P use efficiency soil (%) 99 ab 98 a 102 bc 101 abc 104 cd 108 e 106 de 108 e 115 f 122 g
N surplus soil (kg·ha-1·yr-1) 120 a 131 bcd 124 abc 132 cd 131 bcd 125 abc 130 bcd 134 d 123 ab 123 ab
Manure N input to soil (kg·ha-1·yr-1) 205 a 219 b 223 bc 224 cd 224 cd 224 cd 227 d 227 d 227 d 231 e
Mineral N fertilizer input to soil (kg·ha-1·yr-1) 121 a 133 b 136 bc 140 cd 144 d 145 d 142 cd 144 d 143 d 144 d
Manure P input to soil (kg·ha-1·yr-1) 35 ab 37 cde 37 e 37 cde 37 de 36 cd 36 cd 36 c 35 b 34 a
Mineral P fertilizer input to soil (kg·ha-1·yr-1) 0.2 bc 0.1 abc 0.2 abc 0.1 ab 0.1 abc 0.3 c 0.1 abc 0.0 a 0.1 ab 0.2 bc
Dry matter yield grassland (Mg·ha-1·yr-1) 9.7 a 10.2 b 10.5 bc 10.6 cd 10.8 de 10.9 de 11.0 ef 11.2 fg 11.5 gh 11.6 h
Dry matter yield silage maize (Mg·ha-1·yr-1) 18.3 b 17.9 ab 17.9 ab 17.9 ab 18.4 b 18.2 ab 18.3 b 18.0 ab 18.4 b 17.7 a
Farm produced feed N (% of total N feed intake) 69 h 65 g 65 g 62 f 60 ef 59 e 55 d 51 c 49 b 39 a
Tab.2  Mean performance indicators of herd management and soil and crop management of 2858 dairy farm in 2015
Fig.2  Box plots of indicator values per group of farms. (a) N surplus per ha of farmland; (b) nitrogen use efficiency (NUE) at farm level; (c) total N output in milk and meat per ha of farmland; and (d) total manure N export, expressed in kg N per ha of farmland. The 2858 farms were ordered in ascending order of milk production and then divided in 10 equal groups of 286 dairy farms. Boxes indicate the 25 (bottom) and 75 (top) percentile values per group of farms, the line in the box represents the medium, and the whiskers indicate the 5 and 95 percentile values.
Fig.3  Box plots of indicator values per group of farms. (a) Phosphorus surplus per ha of farmland; (b) phosphorus use efficiency (PUE) at farm level; (c) phosphorus use efficiency (PUE) of the herd; and (d) total manure phosphorus export, expressed in kg·ha-1 P of farmland. The 2858 farms were ordered in ascending order of milk production and then divided in 10 equal groups of 286 dairy farms. Boxes indicate the 25 (bottom) and 75 (top) percentile values per group of farms, the line in the box represents the medium, and the whiskers indicate the 5 and 95 percentile values.
Fig.4  Nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) at farm level as function of milk production per ha of farmland (groups 1–10), following corrections for the externalization of the inefficiencies of imported animal feed N and P. We assumed that the imported animal feed was produced with an efficiency of 50% for both N and P (a,b) and with an efficiency of 75% of the imported feed (c,d). The 2858 farms were ordered in ascending order of milk production and then divided in 10 equal groups of 286 dairy farms. Boxes indicate the 25 (bottom) and 75 (top) percentile values per group of farms, the line in the box represents the medium, and the whiskers indicate the 5 and 95 percentile values.
1 Organisation for Economic Co-operation and Development-Food and Agriculture Organization of United Nation (OECD-FAO). OECD-FAO Agricultural Outlook 20182027. Chapter 7: dairy and dairy products, 2018 doi:10.1787/agr_outlook-2018-en
2 International Dairy Federation (IDF). The world dairy situation 2018. Bulletin of the International Dairy Federation, 2018, 494, 199
3 Z Bai, M R F Lee, L Ma, S Ledgard, O Oenema, G L Velthof, W Ma, M Guo, Z Zhao, S Wei, S Li, X Liu, P Havlík, J Luo, C Hu, F Zhang. Global environmental costs of China’s thirst for milk. Global Change Biology, 2018, 24(5): 2198–2211
https://doi.org/10.1111/gcb.14047 pmid: 29417720
4 P J Gerber, T V Vellinga, C Opio, H Steinfeld. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livestock Science, 139(1–2): 100–108 doi:10.1016/j.livsci.2011.03.012
5 J M Powell, C A Rotz. Measures of nitrogen use efficiency and nitrogen loss from dairy production systems. Journal of Environmental Quality, 2015, 44(2): 336–344
https://doi.org/10.2134/jeq2014.07.0299 pmid: 26023953
6 H Westhoek, J P Lesschen, T Rood, S Wagner, A De Marco, D Murphy-Bokern, A Leip, H van Grinsven, M A Sutton, O Oenema. Food choices, health and environment: effects of cutting Europe’s meat and dairy intake. Global Environmental Change, 2014, 26: 196–205
https://doi.org/10.1016/j.gloenvcha.2014.02.004
7 Anonymous. International Milk Price Comparison. The Hague, the Netherlands: LTO Nederland, 2018
8 N Alexandratos, J Bruinsma. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper.Rome, Italy: Food and Organization of the United Nations, 2012, 12–03
9 K Goulding, S Jarvis, A Whitmore. Optimizing nutrient management for farm systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2008, 363(1491): 667–680
https://doi.org/10.1098/rstb.2007.2177 pmid: 17652069
10 H C J Godfray, J R Beddington, I R Crute, L Haddad, D Lawrence, J F Muir, J Pretty, S Robinson, S M Thomas, C Toulmin. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812–818
https://doi.org/10.1126/science.1185383 pmid: 20110467
11 M A Sutton, A Bleeker, C M Howard, M Bekunda, B Grizzetti, W de Vries, H J M van Grinsven, Y P Abrol, T K Adhya, G Billen, E A Davidson, A Datta, R Diaz, J W Erisman, X J Liu, O Oenema, C Palm, N Raghuram, S Reis, R W Scholz, T Sims, H Westhoek, F S Zhang. Our Nutrient World: the challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. Edinburgh, UK: Centre for Ecology and Hydrology (CEH), 2013
12 K G Cassman. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National academy of Sciences of the Unitied States of America, 1999, 96(11): 5952–5959
13 T Garnett, M C Appleby, A Balmford, I J Bateman, T G Benton, P Bloomer, B Burlingame, M Dawkins, L Dolan, D Fraser, M Herrero, I Hoffmann, P Smith, P K Thornton, C Toulmin, S J Vermeulen, H C J Godfray. Sustainable intensification in agriculture: premises and policies. Science, 2013, 341(6141): 33–34
https://doi.org/10.1126/science.1234485 pmid: 23828927
14 N Clay, T Garnett, J Lorimer. Dairy intensification: drivers, impacts and alternatives. Ambio, 2020, 49(1): 35–48
https://doi.org/10.1007/s13280-019-01177-y pmid: 31055793
15 F F P Bos, A L Smit, J J Schröder. Is agricultural intensification in the Netherlands running up to its limits? NJAS Wageningen Journal of Life Sciences, 2013, 66: 65–73
https://doi.org/10.1016/j.njas.2013.06.001
16 Food and Agriculture Organization of the United Nations (FAO). Innovation in family farming. The State of Food and Agriculture. Rome, Italy:Food and Agriculture Organization of the United Nations, 2014
17 G McElwee. Farmers as entrepreneurs: developing competitive skills. Journal of Developmental Entrepreneurship, 2006, 11(3): 187–206
https://doi.org/10.1142/S1084946706000398
18 K Anderson. Globalization’s effects on world agricultural trade, 1960–2050. Philosophical Transaction of the Royal Society B, 2010, 365(1554): 3007–3021
https://doi.org/10.1098/rstb.2010.0131 pmid: 20713399
19 C J M Ondersteijn, S B Harsh, G W J Giesen, A C G Beldman, R B M Huirne. Management strategies on Dutch dairy farms to meet environmental regulations: a multi-case study. Netherlands Journal of Agricultural Science, 2002, 50(1): 47–65
20 O Oenema, C de Klein, M Alfaro. Intensification of grassland and forage use: driving forces and constraints. Crop & Pasture Science, 2014, 65(6): 524–537
https://doi.org/10.1071/CP14001
21 J D Van der Ploeg. The New Peasantries. Struggles for Autonomy and Sustainability in an Era of Empire and Globalization. London and Sterling, VA: Earthscan Publisher, 2009, 356
22 M Quemada, L Lassaletta, L S Jensen, O Godinot, F Brentrup, C Buckley, S Foray, S K Hvid, J Oenema, K G Richards, O Oenema. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agricultural Systems, 2020, 177: 102689
https://doi.org/10.1016/j.agsy.2019.102689
23 C A M De Klein, R M Monaghan, M A Alfaro, C J P Gourley, O Oenema, J M Powell. Nitrogen performance indicators for dairy production systems. Soil Research, 2017, 55(6): 479–488
https://doi.org/10.1071/SR16349
24 J J Schröder, J J Neeteson. Nutrient management regulations in the Netherlands. Geoderma, 2008, 144(3–4): 418–425
https://doi.org/10.1016/j.geoderma.2007.12.012
25 A Van der Woud. Landscape and People – Netherlands 1850–1940. Prometheus Amsterdam, 2020, 445 (in Dutch)
26 H F M Aarts. Resource management in a ‘De Marke’ dairy farming system. Dissertation for the Doctoral Degree. Wageningen, the Netherlands: Wageningen University, 2000
27 J Verloop. Limits of effective nutrient management in dairy farming: analyses of experimental farm De Marke. Dissertation for the Doctoral Degree. Wageningen, the Netherlands: Wageningen University, 2013
28 J Oenema. Transitions in nutrient management on commercial pilot farms in the Netherlands. Dissertation for the Doctoral Degree. Wageningen, the Netherlands: Wageningen University, 2013
29 J Oenema, H van Keulen, R L M Schils, H F M Aarts. Participatory farm management adaptations to reduce environmental impact on commercial pilot dairy farms in the Netherlands. Netherlands Journal of Agricultural Science, 2011, 58(1–2): 39–48
30 J Oenema, S Burgers, H van Keulen, M van Ittersum. Stochastic uncertainty and sensitivities of nitrogen flows on dairy farms in The Netherlands. Agricultural Systems, 2015, 137: 126–138
https://doi.org/10.1016/j.agsy.2015.04.009
31 J Oenema, L B Šebek, J J Schröder, J Verloop, M H A de Haan, G J Hilhorst. Testing of the KringloopWijzer: measured and calculated nitrogen and phosphorus yields in harvested crops and measured and calculated production of manure nitrogen and phosphorus on dairy farms. Rapport WPR-689, Wageningen, the Netherlands: Wageningen Plant Research, 2017 (in Dutch)
32 H F M Aarts, E E Biewinga, H van Keulen. Dairy farming systems based on efficient nutrient management. Netherlands Journal of Agricultural Science, 1992, 40(3): 285–299
https://doi.org/10.18174/njas.v40i3.16514
33 H Van Keulen, H F M Aarts, B Habekotté, H G van der Meer, J H J Spiertz. Soil-plant-animal relations in nutrient cycling: the case of dairy farming system ‘De Marke’. European Journal of Agronomy, 2000, 13(2–3): 245–261
https://doi.org/10.1016/S1161-0301(00)00077-0
34 J J Schröder, H F M Aarts, H F M ten Berge, H van Keulen, J J Neeteson. An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. European Journal of Agronomy, 2003, 20(1–2): 33–44
https://doi.org/10.1016/S1161-0301(03)00070-4
35 M De Vries, W Van Dijk, J De Boer, M H A De Haan, J Oenema, J Verloop, L A Lagerwerf. Calculation rules of the Annual Nutrient Cycling Assessment (ANCA) 2019, background information about farm-specific excretion parameters (update of ANCA report 2018). Wageningen, the Netherlands: Wageningen Livestock Research, 2020, 1279
https://doi.org/10.18174/533905
36 VSNi. Genstat for Windows 19th Edition. Hemel Hempstead, UK: VSN International (VSNi), 2019
37 R L Ott, M Longnecker. An introduction to statistical methods and data analysis. 6th ed. Florence, Italy: Cengage, 2010
38 J Verloop, L J M Boumans, H van Keulen, J Oenema, G J Hilhorst, H F M Aarts, L B J Sebek. Reducing nitrate leaching to groundwater in an intensive dairy farming system. Nutrient cycling and the environment, 2006, 74: 59–74
39 J Oenema, S L G E Burgers, J Verloop, A Hooijboer, L J M Boumans, H F M ten Berge. Multi-scale effects of farm management and soil and climatic conditions on nitrate leaching in intensive dairy farming systems in the Netherlands. Journal of Environmental Quality, 2010, 39(6): 2016–2028
https://doi.org/10.2134/jeq2010.0035 pmid: 21284299
40 R P Evershed, S Payne, A G Sherratt, M S Copley, J Coolidge, D Urem-Kotsu, K Kotsakis, M Ozdoğan, A E Ozdoğan, O Nieuwenhuyse, P M M G Akkermans, D Bailey, R R Andeescu, S Campbell, S Farid, I Hodder, N Yalman, M Ozbaşaran, E Biçakci, Y Garfinkel, T Levy, M M Burton. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 2008, 455(7212): 528–531
https://doi.org/10.1038/nature07180 pmid: 18690215
41 J Bieleman. Five Centuries of Farming – A short History of Dutch Agriculture 1500–2000. Mansholt publication series, volume 8. Wageningen: Wageningen Academic Publishers, 2010, 369
42 A Kuipers, M Klopcic, C Thomass. Knowledge transfer in cattle husbandry: New management practices, attitudes and adaptation. The Netherlands: Wageningen Academic Publishers, EAAP publication, 2005, 117
43 P Van Horne, H Prins. Development of dairy farming in the Netherlands in the period 1960–2000. Report 2.02.07. The Hague: Agricultural Economics Research Institute (LEI), 2002
44 G L Velthof, J P Lesschen, J Webb, S Pietrzak, Z Miatkowski, M Pinto, J Kros, O Oenema. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008. Science of the Total Environment, 2014, 468–469: 1225–1233
https://doi.org/10.1016/j.scitotenv.2013.04.058 pmid: 23731510
45 S Van Berkum, C J A M de Bont, J H Helmingen, W. van EverdingenEuropean dairy policy in the years to come: ways to quota abolition. Report 6.06.12. The Hague:Agricultural Economics Research Institute (LEI),2006 (in Dutch)
46 S Huettel, R Jongeneel. How has the EU milk quota affected patterns of herd-size change? European Review of Agriculture Economics, 2011, 38(4): 497–527
https://doi.org/10.1093/erae/jbq050
47 C W Klootwijk, C E Van Middelaar, P B M Berentsen, I J M de Boer. Dutch dairy farms after milk quota abolition: economic and environmental consequences of a new manure policy. Journal of Dairy Science, 2016, 99(10): 8384–8396
https://doi.org/10.3168/jds.2015-10781 pmid: 27474986
48 FrieslandCampina (RFC). Foqus planet: quality and safety in the chain. Amersfoort. Available at RFC website on December 20, 2020
49 I J M De Boer, M K van Ittersum. Circularity in agricultural production. Wageningen, the Netherlands: Wageningen University and Research, 2018
50 A Alvarez, J del Corral, D Solís, J A Pérez. Does intensification improve the economic efficiency of dairy farms? Journal of Dairy Science, 2008, 91(9): 3693–3698
https://doi.org/10.3168/jds.2008-1123 pmid: 18765628
51 A Zimmermann, T Heckelei. Structural change of European Dairy Farm—A cross-regional analysis. Journal of Agricultural Economics, 2012, 63(3): 576–603
https://doi.org/10.1111/j.1477-9552.2012.00355.x
52 P C Beukes, M R Scarsbrook, P Gregorini, A J Romera, D A Clark, W Catto. The relationship between milk production and farm-gate nitrogen surplus for the Waikato region, New Zealand. Journal of Environmental Management, 2012, 93(1): 44–51
https://doi.org/10.1016/j.jenvman.2011.08.013 pmid: 22054570
53 K J Stott, C J P Gourley. Intensification, nitrogen use and recovery in grazing-based dairy systems. Agricultural Systems, 2016, 144: 101–112
https://doi.org/10.1016/j.agsy.2016.01.003
54 F Nevens, I Verbruggen, D Reheul, G Hofman. Farm gate nitrogen surpluses and nitrogen use efficiency of specialized dairy farms in Flanders: evolution and future goals. Agricultural Systems, 2006, 88(2–3): 142–155
https://doi.org/10.1016/j.agsy.2005.03.005
55 J M Powell, C J P Gourley, C A Rotz, D M Weaver. Nitrogen use efficiency: a potential performance indicator and policy tool for dairy farms. Environmental Science & Policy, 2010, 13(3): 217–228
https://doi.org/10.1016/j.envsci.2010.03.007
56 T V Vellinga, H Blonk, M Marinussen, W J van Zeist, I J M de Boer, D Starmans. Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of feed production and utilization. Report 674. Praktijkrapport. Rundvee, Paarden, Schapen, Geiten, 2012, 108
57 X Zhang, E A Davidson, D L Mauzerall, T D Searchinger, P Dumas, Y Shen. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51–59
https://doi.org/10.1038/nature15743 pmid: 26595273
58 R A Spears, A J Young, R A Kohn. Whole-farm phosphorus balance on western dairy farms. Journal of Dairy Science, 2003, 86(2): 688–695
https://doi.org/10.3168/jds.S0022-0302(03)73648-0 pmid: 12647976
59 C J P Gourley, W J Dougherty, D M Weaver, S R Aarons, I M Awty, D M Gibson, M C Hannah, A P Smith, K I Peverill. Farm-scale nitrogen, phosphorus, potassium and sulphur balances and use efficiencies on Australian dairy farms. Animal Production Science, 2012, 52(10): 929–944
https://doi.org/10.1071/AN11337
60 A Pearce, R Maguire. The state of phosphorus balance on 58 Virginia dairy farms. Journal of Environmental Quality, 2020, 49(2): 324–334
https://doi.org/10.1002/jeq2.20054 pmid: 33016426
61 C J P Gourley, S R Aarons, J M Powell. Nitrogen use efficiency and manure management practices in contrasting dairy production systems. Agriculture, Ecosystems & Environment, 2012, 147(1): 73–81
https://doi.org/10.1016/j.agee.2011.05.011
62 O F Schoumans, W J Chardon. Phosphate saturation degree and accumulation of phosphate in various soil types in the Netherlands. Geoderma, 2015, 237–238: 325–335
https://doi.org/10.1016/j.geoderma.2014.08.015
63 O F Schoumans, W J Chardon, M E Bechmann, C Gascuel-Odoux, G Hofman, B Kronvang, G H Rubæk, B Ulén, J M Dorioz. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Science of the Total Environment, 2014, 468– 469: 1255–1266
https://doi.org/10.1016/j.scitotenv.2013.08.061 pmid: 24060142
64 J C Van Middelkoop, C van der Salm, P A I Ehlert, I J M de Boer, O Oenema. Does balanced phosphorus fertilisation sustain high herbage yields and phosphorus contents in alternately grazed and mown pastures? Nutrient Cycling in Agroecosystems, 2016, 106(1): 93–111
https://doi.org/10.1007/s10705-016-9791-0
65 S Bittman, M Dedina, C M Howard, O Oenema, M A Sutton. Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen. Edinburgh, UK: Centre for Ecology and Hydrology, 2014
66 L B Mendes, J G Pieters, D Snoek, N W M Ogink, E Brusselman, P Demeyer. Reduction of ammonia emissions from dairy cattle cubicle houses via improved management- or design-based strategies: a modeling approach. Science of the Total Environment, 2017, 574: 520–531
https://doi.org/10.1016/j.scitotenv.2016.09.079 pmid: 27648530
67 A van den Pol-van Dasselaar, T V Vellinga, H Heiligenberg, A Johansen, E Kennedy. To graze or not to graze, that’s the question. Grassland Science in Europe, 2008, 13: 706–716
68 R Schils, B Philipsen, N Hoekstra, G Holshof, R Zom, I Hoving, K van Reenen, M Stienezen, C Klootwijk, J van der Werf, L Sebek, N van Eekeren, I van Dixhoorn, A van den Pol-van Dasselaar. Amazing grazing: a public and private partnership to stimulate grazing practices in intensive dairy systems. Sustainability, 2019, 11(20): 5868
https://doi.org/10.3390/su11205868
69 M J Vandehaar. Efficiency of nutrient use and relationship to profitability on dairy farms. Journal of Dairy Science, 1998, 81(1): 272–282
https://doi.org/10.3168/jds.S0022-0302(98)75576-6 pmid: 9493104
70 T Dalgaard, B Hansen, B Hasler, O Hertel, N J Hutchings, B H Jacobsen, L Stoumann Jensen, B Kronvang, J E Olesen, J K Schjørring, I Sillebak Kristensen, M Graversgaard, M Termansen, H Vejre. Policies for agricultural nitrogen management – trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters, 2014, 9(11): 115002
https://doi.org/10.1088/1748-9326/9/11/115002
71 S Cela, Q M Ketterings, M Soberon, C N Rasmussen, K J Czymmek. Upper Susquehanna watershed and New York State improvements in nitrogen and phosphorus mass balances of dairy farms. Journal of Soil and Water Conservation, 2017, 72(1): 1–11
https://doi.org/10.2489/jswc.72.1.1
72 S Cela, Q M Ketterings, K Czymmek, M Soberon, C Rasmussen. Long-term trends of nitrogen and phosphorus mass balances on New York State dairy farms. Journal of Dairy Science, 2015, 98(10): 7052–7070
https://doi.org/10.3168/jds.2015-9776 pmid: 26254530
73 M A Soberon, S Cela, Q M Ketterings, C N Rasmussen, K J Czymmek. Changes in nutrient mass balances over time and related drivers for 54 New York State dairy farms. Journal of Dairy Science, 2015, 98(8): 5313–5329
https://doi.org/10.3168/jds.2014-9236 pmid: 26094217
74 G Goodlass, N Halberg, G Verschuur. Input output accounting systems in the European community—an appraisal of their usefulness in raising awareness of environmental problems. European Journal of Agronomy, 2003, 20(1–2): 17–24
https://doi.org/10.1016/S1161-0301(03)00068-6
75 C J P Gourley, J M Powell. Nutrient Management Approaches and Tools for Dairy Farms in Australia and the U.S. Babcock Institute Discussion Paper No. 2007–4. International Dairy Research and Development, University of Wisconsin-Madison, 2007, 49
76 A Franzluebbers, D Hunt, G Telford, S Bittman, Q M Ketterings. Integrated crop-livestock systems: lessons from New York, British Columbia, and the south-eastern United States. Frontiers of Agricultural Science and Engineering, 2021 [Published Online] doi:10.15302/J-FASE-2020365
77 R L M Schils, M H A de Haan, J G A Hemmer, A van den Pol-van Dasselaar, J A de Boer, A G Evers, G Holshof, J C van Middelkoop, R L G Zom. DairyWise, a whole-farm dairy model. Journal of Dairy Science, 2007, 90(11): 5334–5346
https://doi.org/10.3168/jds.2006-842 pmid: 17954774
[1] FASE-20376-OF-OJ_suppl_1 Download
[1] Shuai ZHANG, Xin WU, Dandan HAN, Yong HOU, Jianzhuang TAN, Sung Woo KIM, Defa LI, Yulong YIN, Junjun WANG. PORK PRODUCTION SYSTEMS IN CHINA: A REVIEW OF THEIR DEVELOPMENT, CHALLENGES AND PROSPECTS IN GREEN PRODUCTION[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 15-24.
[2] Xuejun LIU, Wen XU, Zhipeng SHA, Yangyang ZHANG, Zhang WEN, Jingxia WANG, Fusuo ZHANG, Keith GOULDING. A green eco-environment for sustainable development: framework and action[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 67-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed