Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (2) : 314-334    https://doi.org/10.15302/J-FASE-2021386
REVIEW
RECENT ADVANCES IN THE REGULATION OF CLIMACTERIC FRUIT RIPENING: HORMONE, TRANSCRIPTION FACTOR AND EPIGENETIC MODIFICATIONS
Yinglin JI, Mingyang XU, Aide WANG()
Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
 Download: PDF(627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• The dynamic interplay between phytohormones plays an important part in climacteric fruit ripening.

• Transcription factors are critical for the regulation of climacteric fruit ripening.

• Epigenetic modifications act as important regulators of fruit ripening.

Fruit ripening is a complex developmental process made up of genetically programmed physiological and biochemical activities. It culminates in desirable changes in the structural and textural properties and is governed by a complex regulatory network. Much is known about ethylene, one of the most important metabolites promoting the ripening of climacteric fruits. However, the dynamic interplay between phytohormones also plays an important part. Additional regulatory factors such as transcription factors (TFs) and epigenetic modifications also play vital role in the regulation of climacteric fruit ripening. Here, we review and evaluate the complex regulatory network comprising interactions between hormones and the action of TFs and epigenetic modifications during climacteric fruit ripening.

Keywords climacteric fruit ripening      phytohormones      TFs      epigenetic modifications     
Corresponding Author(s): Aide WANG   
Just Accepted Date: 03 February 2021   Online First Date: 10 March 2021    Issue Date: 13 July 2021
 Cite this article:   
Yinglin JI,Mingyang XU,Aide WANG. RECENT ADVANCES IN THE REGULATION OF CLIMACTERIC FRUIT RIPENING: HORMONE, TRANSCRIPTION FACTOR AND EPIGENETIC MODIFICATIONS[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 314-334.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021386
https://academic.hep.com.cn/fase/EN/Y2021/V8/I2/314
Fig.1  Changes in respiration rate and ethylene production in climacteric or non-climacteric fruit during development, maturation and senescence[3]. Dashed lines represent the non-climacteric fruits and solid lines climacteric fruits. Green lines represent the respiration rate and orange lines ethylene production.
Fig.2  Concentrations of endogenous phytohormones in climacteric fruit including apple, pear and tomato during development, maturation and senescence[26,3947].
Fig.3  Transcription factors involved in regulating fruit ripening[3,62,65,76]. →, positive regulation; ^, negative regulation.
1 R Karlova, N Chapman, K David, G C Angenent, G B Seymour, R A de Maagd. Transcriptional control of fleshy fruit development and ripening. Journal of Experimental Botany, 2014, 65(16): 4527–4541
https://doi.org/10.1093/jxb/eru316 pmid: 25080453
2 J Giovannoni, C Nguyen, B Ampofo, S Zhong, Z Fei. The epigenome and transcriptional dynamics of fruit ripening. Annual Review of Plant Biology, 2017, 68(1): 61–84
https://doi.org/10.1146/annurev-arplant-042916-040906 pmid: 28226232
3 J Giovannoni. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52(1): 725–749
https://doi.org/10.1146/annurev.arplant.52.1.725 pmid: 11337414
4 B M Kevany, D M Tieman, M G Taylor, V D Cin, H J Klee. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant Journal, 2007, 51(3): 458–467
https://doi.org/10.1111/j.1365-313X.2007.03170.x pmid: 17655616
5 C S Barry, J J Giovannoni. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(20): 7923–7928
https://doi.org/10.1073/pnas.0602319103 pmid: 16682641
6 G Manjunatha, K J Gupta, V Lokesh, L A Mur, B Neelwarne. Nitric oxide counters ethylene effects on ripening fruits. Plant Signaling & Behavior, 2012, 7(4): 476–483
https://doi.org/10.4161/psb.19523 pmid: 22499176
7 S Cherian, C R Figueroa, H Nair. ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. Journal of Experimental Botany, 2014, 65(17): 4705–4722
https://doi.org/10.1093/jxb/eru280 pmid: 24994760
8 J J Giovannoni. Genetic regulation of fruit development and ripening. Plant Cell, 2004, 16(Suppl 1): S170–S180
https://doi.org/10.1105/tpc.019158 pmid: 15010516
9 W Wang, J Cai, P Wang, S Tian, G Qin. Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Genome Biology, 2017, 18(1): 47
https://doi.org/10.1186/s13059-017-1178-2 pmid: 28270225
10 L Alexander, D Grierson. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 2002, 53(377): 2039–2055
https://doi.org/10.1093/jxb/erf072 pmid: 12324528
11 L Fuentes, C R Figueroa, M Valdenegro. Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae, 2019, 5(2): 45
https://doi.org/10.3390/horticulturae5020045
12 C Li, H Jia, Y Chai, Y Shen. Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. Plant Signaling & Behavior, 2011, 6(12): 1950–1953
https://doi.org/10.4161/psb.6.12.18024 pmid: 22095148
13 S D Castellarin, G A Gambetta, H Wada, K A Shackel, M A Matthews. Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. Journal of Experimental Botany, 2011, 62(12): 4345–4354
https://doi.org/10.1093/jxb/err150 pmid: 21586429
14 K Liu, C Yuan, S Feng, S Zhong, H Li, J Zhong, C Shen, J Liu. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.). BMC Genomics, 2017, 18(1): 351
https://doi.org/10.1186/s12864-017-3722-6 pmid: 28476147
15 M Pérez-Llorca, P Muñoz, M Müller, S Munné-Bosch. Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Frontiers of Plant Science, 2019, 10: 136
https://doi.org/10.3389/fpls.2019.00136 pmid: 30833953
16 Y Chen, J Grimplet, K David, S D Castellarin, J Terol, D C J Wong, Z Luo, R Schaffer, J M Celton, M Talon, G A Gambetta, C Chervin. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science, 2018, 276: 63–72
https://doi.org/10.1016/j.plantsci.2018.07.012 pmid: 30348329
17 G M Symons, Y J Chua, J J Ross, L J Quittenden, N W Davies, J B Reid. Hormonal changes during non-climacteric ripening in strawberry. Journal of Experimental Botany, 2012, 63(13): 4741–4750
https://doi.org/10.1093/jxb/ers147 pmid: 22791823
18 Y Li, Y Lu, L Li, Z Chu, H Zhang, H Li, A R Fernie, B Ouyang. Impairment of hormone pathways results in a general disturbance of fruit primary metabolism in tomato. Food Chemistry, 2019, 274: 170–179
https://doi.org/10.1016/j.foodchem.2018.08.026 pmid: 30372923
19 J Cheng, Q Niu, B Zhang, K Chen, R Yang, J K Zhu, Y Zhang, Z Lang. Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 2018, 19(1): 212
https://doi.org/10.1186/s13059-018-1587-x pmid: 30514401
20 K Manning, M Tör, M Poole, Y Hong, A J Thompson, G J King, J J Giovannoni, G B Seymour. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 2006, 38(8): 948–952
https://doi.org/10.1038/ng1841 pmid: 16832354
21 Y Zeng, Z Pan, L Wang, Y Ding, Q Xu, S Xiao, X Deng. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Physiologia Plantarum, 2014, 150(2): 252–270
https://doi.org/10.1111/ppl.12080 pmid: 23786612
22 Y Kamiyoshihara, D M Tieman, D J Huber, H J Klee. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. Plant Physiology, 2012, 160(1): 488–497
https://doi.org/10.1104/pp.112.202820 pmid: 22797658
23 J E Guo, Z Hu, X Yu, A Li, F Li, Y Wang, S Tian, G Chen. A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Reports, 2018, 37(1): 125–135
https://doi.org/10.1007/s00299-017-2211-3 pmid: 28932910
24 Y Wang, W Wang, J Cai, Y Zhang, G Qin, S Tian. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biology, 2014, 15(12): 548
https://doi.org/10.1186/s13059-014-0548-2 pmid: 25464976
25 S Li, K Chen, D Grierson. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. New Phytologist, 2019, 221(4): 1724–1741
https://doi.org/10.1111/nph.15545 pmid: 30328615
26 C Buesa, M Dominguez, M Vendrell. Abscisic acid effects on ethylene production and respiration rate in detached apple fruits at different stages of development. Spanish Journal of Food Science and Technology, 1994, 34(5): 495–506
27 T Li, Z Jiang, L Zhang, D Tan, Y Wei, H Yuan, T Li, A Wang. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant Journal, 2016, 88(5): 735–748
https://doi.org/10.1111/tpj.13289 pmid: 27476697
28 T Li, Y Xu, L Zhang, Y Ji, D Tan, H Yuan, A Wang. The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell, 2017, 29(6): 1316–1334
https://doi.org/10.1105/tpc.17.00349 pmid: 28550149
29 Y Jiang, D C Joyce, A J Macnish. Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. Journal of Plant Growth Regulation, 2000, 19(1): 106–111
https://doi.org/10.1007/s003440000011 pmid: 11010997
30 Y F Guo, W Shan, S M Liang, C J Wu, W Wei, J Y Chen, W J Lu, J F Kuang. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiologia Plantarum, 2019, 165(3): 555–568
https://doi.org/10.1111/ppl.12750 pmid: 29704245
31 S E S A Khader, B P Singh, S A Khan. Effect of GA3 as a post-harvest treatment of mango fruit on ripening, amylase and peroxidase activity and quality during storage. Scientia Horticulturae, 1988, 36(3-4): 261–266
https://doi.org/10.1016/0304-4238(88)90060-X
32 S S Zaharah, Z Singh, G M Symons, J B Reid. Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation, 2012, 31(3): 363–372
https://doi.org/10.1007/s00344-011-9245-5
33 L Trainotti, A Tadiello, G Casadoro. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany, 2007, 58(12): 3299–3308
https://doi.org/10.1093/jxb/erm178 pmid: 17925301
34 M Tatsuki, N Nakajima, H Fujii, T Shimada, M Nakano, K Hayashi, H Hayama, H Yoshioka, Y Nakamura. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). Journal of Experimental Botany, 2013, 64(4): 1049–1059
https://doi.org/10.1093/jxb/ers381 pmid: 23364941
35 H Y Shi, Y X Zhang. Expression and regulation of pear 1-aminocyclopropane-1-carboxylic acid synthase gene (PpACS1a) during fruit ripening, under salicylic acid and indole-3-acetic acid treatment, and in diseased fruit. Molecular Biology Reports, 2014, 41(6): 4147–4154
https://doi.org/10.1007/s11033-014-3286-3 pmid: 24562629
36 P T Yue, Y N Wang, H D Bu, X Y Li, H Yuan, A D Wang. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biology and Technology, 2019, 157: 110955
https://doi.org/10.1016/j.postharvbio.2019.110955
37 A Khan, Z Singh. Methyl jasmonate promotes fruit ripening and improves fruit quality in Japanese plum. Journal of Horticultural Science & Biotechnology, 2007, 82(5): 695–706
https://doi.org/10.1080/14620316.2007.11512293
38 H Kende. Ethylene biosynthesis. Annual Review of Plant Biology, 1993, 44(1): 283–307
https://doi.org/10.1146/annurev.pp.44.060193.001435
39 A Payasi, G Sanwal. Ripening of climacteric fruits and their control. Journal of Food Biochemistry, 2010, 34(4): 679–710
https://doi.org/10.1111/j.1745-4514.2009.00307.x
40 P Yue, Q Lu, Z Liu, T Lv, X Li, H Bu, W Liu, Y Xu, H Yuan, A Wang. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytologist, 2020, 226(6): 1781–1795
https://doi.org/10.1111/nph.16500 pmid: 32083754
41 K Liu, B C Kang, H Jiang, S L Moore, H Li, C B Watkins, T L Setter, M M A Jahn. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Molecular Biology, 2005, 58(4): 447–464
https://doi.org/10.1007/s11103-005-6505-4 pmid: 16021332
42 M Zhang, P Leng, G Zhang, X Li. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 2009, 166(12): 1241–1252
https://doi.org/10.1016/j.jplph.2009.01.013 pmid: 19307046
43 S Chen, X Wang, L Zhang, S Lin, D Liu, Q Wang, S Cai, R El-Tanbouly, L Gan, H Wu, Y Li. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Horticulture Research, 2016, 3(1): 16059
https://doi.org/10.1038/hortres.2016.59 pmid: 28018605
44 R Ben-Arie, Y Saks, L Sonego, A Frank. Cell wall metabolism in gibberellin-treated persimmon fruits. Plant Growth Regulation, 1996, 19(1): 25–33
https://doi.org/10.1007/BF00024399
45 S D Clouse. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 2011, 23(4): 1219–1230
https://doi.org/10.1105/tpc.111.084475 pmid: 21505068
46 M Saniewski, J Czapski, J Nowacki, E Lange. The effect of methyl jasmonate on ethylene and l-aminocyclopropane-1-carboxylic acid production in apple fruits. Biologia Plantarum, 1987, 29(3): 199–203
https://doi.org/10.1007/BF02876829
47 J E Davey, J Van Staden. Endogenous cytokinins in the fruits of ripening and non-ripening tomatoes. Plant Science Letters, 1978, 11(3-4): 359–364
https://doi.org/10.1016/0304-4211(78)90023-8
48 C S Barry, M I Llop-Tous, D Grierson. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology, 2000, 123(3): 979–986
https://doi.org/10.1104/pp.123.3.979 pmid: 10889246
49 A Nakatsuka, S Murachi, H Okunishi, S Shiomi, R Nakano, Y Kubo, A Inaba. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology, 1998, 118(4): 1295–1305
https://doi.org/10.1104/pp.118.4.1295 pmid: 9847103
50 E J McMurchie, W B McGlasson, I L Eaks. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 1972, 237(5352): 235–236
https://doi.org/10.1038/237235a0 pmid: 4557321
51 S F Yang, N E Hoffman. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 1984, 35(1): 155–189
https://doi.org/10.1146/annurev.pp.35.060184.001103
52 G B Seymour, J E Taylor, G A Tucker. Biochemistry of fruit ripening. Springer, 1993
53 Z Lin, S Zhong, D Grierson. Recent advances in ethylene research. Journal of Experimental Botany, 2009, 60(12): 3311–3336
https://doi.org/10.1093/jxb/erp204 pmid: 19567479
54 T Li, D Tan, Z Liu, Z Jiang, Y Wei, L Zhang, X Li, H Yuan, A Wang. Apple MdACS6 regulates ethylene biosynthesis during fruit development involving ethylene-responsive factor. Plant & Cell Physiology, 2015, 56(10): 1909–1917
https://doi.org/10.1093/pcp/pcv111 pmid: 26209510
55 A Wang, J Yamakake, H Kudo, Y Wakasa, Y Hatsuyama, M Igarashi, A Kasai, T Li, T Harada. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiology, 2009, 151(1): 391–399
https://doi.org/10.1104/pp.109.135822 pmid: 19587104
56 V Varanasi, S Shin, J Mattheis, D Rudell, Y M Zhu. Expression profiles of the MdACS3 gene suggest a function as an accelerator of apple (Malus × domestica) fruit ripening. Postharvest Biology and Technology, 2011, 62(2): 141–148
https://doi.org/10.1016/j.postharvbio.2011.05.005
57 D M Tan, T Z Li, A D Wang. Apple 1-aminocyclopropane-1-carboxylic acid synthase genes, MdACS1 and MdACS3a, are expressed in different systems of ethylene biosynthesis. Plant Molecular Biology Reporter, 2013, 31(1): 204–209
https://doi.org/10.1007/s11105-012-0490-y
58 T Sunako, W Sakuraba, M Senda, S Akada, R Ishikawa, M Niizeki, T Harada. An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiology, 1999, 119(4): 1297–1304
https://doi.org/10.1104/pp.119.4.1297 pmid: 10198088
59 A M Dandekar, G Teo, B G Defilippi, S L Uratsu, A J Passey, A A Kader, J R Stow, R J Colgan, D J James. Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Research, 2004, 13(4): 373–384
https://doi.org/10.1023/B:TRAG.0000040037.90435.45 pmid: 15517996
60 P W Oeller, M W Lu, L P Taylor, D A Pike, A Theologis. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 1991, 254(5030): 437–439
https://doi.org/10.1126/science.1925603 pmid: 1925603
61 C S Barry, B Blume, M Bouzayen, W Cooper, A J Hamilton, D Grierson. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant Journal, 1996, 9(4): 525–535
https://doi.org/10.1046/j.1365-313X.1996.09040525.x pmid: 8624515
62 R J Schaffer, E N Friel, E J Souleyre, K Bolitho, K Thodey, S Ledger, J H Bowen, J H Ma, B Nain, D Cohen, A P Gleave, R N Crowhurst, B J Janssen, J L Yao, R D Newcomb. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology, 2007, 144(4): 1899–1912
https://doi.org/10.1104/pp.106.093765 pmid: 17556515
63 Y M Jiang, J R Fu. Ethylene regulation of fruit ripening: molecular aspects. Plant Growth Regulation, 2000, 30(3): 193–200
https://doi.org/10.1023/A:1006348627110
64 Y Liu, N E Hoffman, S F Yang. Promotion by ethylene of the capability to convert 1-aminocyclopropane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits. Plant Physiology, 1985, 77(2): 407–411
https://doi.org/10.1104/pp.77.2.407 pmid: 16664067
65 H Guo, J R Ecker. The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 2004, 7(1): 40–49
https://doi.org/10.1016/j.pbi.2003.11.011 pmid: 14732440
66 H S Ireland, F Guillen, J H Bowen, E J Tacken, J Putterill, R J Schaffer, J W Johnston. Mining the apple genome reveals a family of nine ethylene receptor genes. Postharvest Biology and Technology, 2012, 72: 42–46
https://doi.org/10.1016/j.postharvbio.2012.05.003
67 J Q Wilkinson, M B Lanahan, H C Yen, J J Giovannoni, H J Klee. An ethylene-inducible component of signal transduction encoded by never-ripe. Science, 1995, 270(5243): 1807–1809
https://doi.org/10.1126/science.270.5243.1807 pmid: 8525371
68 D Zhou, P Kalaitzís, A K Mattoo, M L Tucker. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Molecular Biology, 1996, 30(6): 1331–1338
https://doi.org/10.1007/BF00019564 pmid: 8704141
69 C C Lashbrook, D M Tieman, H J Klee. Differential regulation of the tomato ETR gene family throughout plant development. Plant Journal, 1998, 15(2): 243–252
https://doi.org/10.1046/j.1365-313X.1998.00202.x pmid: 9721682
70 D M Tieman, H J Klee. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiology, 1999, 120(1): 165–172
https://doi.org/10.1104/pp.120.1.165 pmid: 10318694
71 Z Gao, Y F Chen, M D Randlett, X C Zhao, J L Findell, J J Kieber, G E Schaller. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biological Chemistry, 2003, 278(36): 34725–34732
https://doi.org/10.1074/jbc.M305548200 pmid: 12821658
72 Y Huang, H Li, C E Hutchison, J Laskey, J J Kieber. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant Journal, 2003, 33(2): 221–233
https://doi.org/10.1046/j.1365-313X.2003.01620.x pmid: 12535337
73 J Leclercq, L C Adams-Phillips, H Zegzouti, B Jones, A Latché, J J Giovannoni, J C Pech, M Bouzayen. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiology, 2002, 130(3): 1132–1142
https://doi.org/10.1104/pp.009415 pmid: 12427980
74 L Adams-Phillips, C Barry, P Kannan, J Leclercq, M Bouzayen, J Giovannoni. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Molecular Biology, 2004, 54(3): 387–404
https://doi.org/10.1023/B:PLAN.0000036371.30528.26 pmid: 15284494
75 J M Alonso, A N Stepanova. The ethylene signaling pathway. Science, 2004, 306(5701): 1513–1515
https://doi.org/10.1126/science.1104812 pmid: 15567852
76 X R Yin, A C Allan, K S Chen, I B Ferguson. Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiology, 2010, 153(3): 1280–1292
https://doi.org/10.1104/pp.110.157081 pmid: 20457803
77 T Nakano, K Suzuki, T Fujimura, H Shinshi. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411–432
https://doi.org/10.1104/pp.105.073783 pmid: 16407444
78 M Ohta, K Matsui, K Hiratsu, H Shinshi, M Ohme-Takagi. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13(8): 1959–1968
https://doi.org/10.1105/TPC.010127 pmid: 11487705
79 M Ohta, M Ohme-Takagi, H Shinshi. Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant Journal, 2000, 22(1): 29–38
https://doi.org/10.1046/j.1365-313x.2000.00709.x pmid: 10792818
80 S Y Fujimoto, M Ohta, A Usui, H Shinshi, M Ohme-Takagi. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12(3): 393–404
pmid: 10715325
81 Z Zhang, H Zhang, R Quan, X C Wang, R Huang. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology, 2009, 150(1): 365–377
https://doi.org/10.1104/pp.109.135830 pmid: 19261734
82 Y Y Xiao, J Y Chen, J F Kuang, W Shan, H Xie, Y M Jiang, W J Lu. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany, 2013, 64(8): 2499–2510
https://doi.org/10.1093/jxb/ert108 pmid: 23599278
83 R Kumar, A Khurana, A K Sharma. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 2014, 65(16): 4561–4575
https://doi.org/10.1093/jxb/eru277 pmid: 25028558
84 S Abel, A Theologis. Early genes and auxin action. Plant Physiology, 1996, 111(1): 9–17
https://doi.org/10.1104/pp.111.1.9 pmid: 8685277
85 J G Buta, D W Spaulding. Changes in indole-3-acetic acid and abscisic acid levels during tomato (Lycopersicon esculentum Mill.) fruit development and ripening. Journal of Plant Growth Regulation, 1994, 13(3): 163–166
https://doi.org/10.1007/BF00196382
86 S Mapelli, C Frova, G Torti, G P Soressi. Relationship between set, development and activities of growth regulators in tomato fruits. Plant & Cell Physiology, 1978, 19(7): 1281–1288
87 R Kumar, P Agarwal, A K Tyagi, A K Sharma. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Molecular Genetics and Genomics, 2012, 287(3): 221–235
https://doi.org/10.1007/s00438-011-0672-6 pmid: 22228229
88 A N Miller, C S Walsh, J D Cohen. Measurement of indole-3-acetic acid in peach fruits (Prunus persica L. Batsch cv Redhaven) during development. Plant Physiology, 1987, 84(2): 491–494
https://doi.org/10.1104/pp.84.2.491 pmid: 16665467
89 M Lavy, M Estelle. Mechanisms of auxin signaling. Development, 2016, 143(18): 3226–3229
https://doi.org/10.1242/dev.131870 pmid: 27624827
90 O Leyser. Auxin signaling. Plant Physiology, 2018, 176(1): 465–479
https://doi.org/10.1104/pp.17.00765 pmid: 28818861
91 S Lohani, P K Trivedi, P Nath. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 2004, 31(2): 119–126
https://doi.org/10.1016/j.postharvbio.2003.08.001
92 J Li, X Tao, L Li, L Mao, Z Luo, Z U Khan, T Ying. Comprehensive RNA-Seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS One, 2016, 11(5): e0156453
https://doi.org/10.1371/journal.pone.0156453 pmid: 27228127
93 I El-Sharkawy, S M Sherif, B Jones, I Mila, P P Kumar, M Bouzayen, S Jayasankar. TIR1-like auxin-receptors are involved in the regulation of plum fruit development. Journal of Experimental Botany, 2014, 65(18): 5205–5215
https://doi.org/10.1093/jxb/eru279 pmid: 24996652
94 A B Bleecker, H Kende. Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology, 2000, 16(1): 1–18
https://doi.org/10.1146/annurev.cellbio.16.1.1 pmid: 11031228
95 B B Desai, P B Deshpande. Chemical control of ripening in banana. Physiologia Plantarum, 1978, 44(3): 238–240
https://doi.org/10.1111/j.1399-3054.1978.tb08624.x
96 P McAtee, S Karim, R Schaffer, K David. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers of Plant Science, 2013, 4: 79
https://doi.org/10.3389/fpls.2013.00079 pmid: 23616786
97 H F Jia, Y M Chai, C L Li, D Lu, J J Luo, L Qin, Y Y Shen. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 2011, 157(1): 188–199
https://doi.org/10.1104/pp.111.177311 pmid: 21734113
98 B Z Hou, C L Li, Y Y Han, Y Y Shen. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC Plant Biology, 2018, 18(1): 162
https://doi.org/10.1186/s12870-018-1377-3 pmid: 30097017
99 W Mou, D Li, Z Luo, L Li, L Mao, T Ying. SlAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Science, 2018, 276: 239–249
https://doi.org/10.1016/j.plantsci.2018.07.015 pmid: 30348324
100 Y Wang, Y Wang, K Ji, S Dai, Y Hu, L Sun, Q Li, P Chen, Y Sun, C Duan, Y Wu, H Luo, D Zhang, Y Guo, P Leng. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiology and Biochemistry, 2013, 64: 70–79
https://doi.org/10.1016/j.plaphy.2012.12.015 pmid: 23376370
101 M Zhang, B Yuan, P Leng. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany, 2009, 60(6): 1579–1588
https://doi.org/10.1093/jxb/erp026 pmid: 19246595
102 S S Zaharah, Z Singh, G M Symons, J B Reid. Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biology and Technology, 2013, 75: 37–44
https://doi.org/10.1016/j.postharvbio.2012.07.009
103 M Vendrell, C Buesa. Relationship between abscisic acid content and ripening of apples. In: Herregods M, ed. International symposium on postharvest handling of fruit and vegetables. Acta Horticulturae, 1989, (258): 45
104 K Shu, X D Liu, Q Xie, Z H He. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant, 2016, 9(1): 34–45
https://doi.org/10.1016/j.molp.2015.08.010 pmid: 26343970
105 R P Pharis, R W King. Gibberellins and reproductive development in seed plants. Annual Review of Plant Physiology, 1985, 36(1): 517–568
https://doi.org/10.1146/annurev.pp.36.060185.002505
106 J C Serrani, R Sanjuán, O Ruiz-Rivero, M Fos, J L García-Martínez. Gibberellin regulation of fruit set and growth in tomato. Plant Physiology, 2007, 145(1): 246–257
https://doi.org/10.1104/pp.107.098335 pmid: 17660355
107 H Li, H Wu, Q Qi, H Li, Z Li, S Chen, Q Ding, Q Wang, Z Yan, Y Gai, X Jiang, J Ding, T Gu, X Hou, M Richard, Y Zhao, Y Li. Gibberellins play a role in regulating tomato fruit ripening. Plant & Cell Physiology, 2019, 60(7): 1619–1629
https://doi.org/10.1093/pcp/pcz069 pmid: 31073591
108 A Srivastava, A K Handa. Hormonal regulation of tomato fruit development: a molecular perspective. Journal of Plant Growth Regulation, 2005, 24(2): 67–82
https://doi.org/10.1007/s00344-005-0015-0
109 H C Dostal, A C Leopold. Gibberellin delays ripening of tomatoes. Science, 1967, 158(3808): 1579–1580
https://doi.org/10.1126/science.158.3808.1579 pmid: 17816629
110 N B Mandava. Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 1988, 39(1): 23–52
https://doi.org/10.1146/annurev.pp.39.060188.000323
111 T Montoya, T Nomura, T Yokota, K Farrar, K Harrison, J D G Jones, T Kaneta, Y Kamiya, M Szekeres, G J Bishop. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant Journal, 2005, 42(2): 262–269
https://doi.org/10.1111/j.1365-313X.2005.02376.x pmid: 15807787
112 B Vidya Vardhini, S S R Rao. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 2002, 61(7): 843–847
https://doi.org/10.1016/S0031-9422(02)00223-6 pmid: 12453577
113 T Zhu, W R Tan, X G Deng, T Zheng, D W Zhang, H H Lin. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology, 2015, 100: 196–204
https://doi.org/10.1016/j.postharvbio.2014.09.016
114 Y Ji Y L, Z Y Qu, J J Jiang, J F Yan, M Y Chu, X Xu, H Su, A D Yuan, Wang. The mechanism for brassinosteroids suppressing climacteric fruit ripening. Plant Physiology, 2021: kiab013 doi:10.1093/plphys/kiab013
115 X J Li, X J Chen, X Guo, L L Yin, G J Ahammed, C J Xu, K S Chen, C C Liu, X J Xia, K Shi, J Zhou, Y H Zhou, J Q Yu. DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 2016, 14(3): 1021–1033
https://doi.org/10.1111/pbi.12474 pmid: 26383874
116 S Nie, S Huang, S Wang, D Cheng, J Liu, S Lv, Q Li, X Wang. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Frontiers of Plant Science, 2017, 8: 1386
https://doi.org/10.3389/fpls.2017.01386 pmid: 28848587
117 Z Zhu, Z Q Zhang, G Z Qin, S P Tian. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 2010, 56(1): 50–55
https://doi.org/10.1016/j.postharvbio.2009.11.014
118 B Lv, H Tian, F Zhang, J Liu, S Lu, M Bai, C Li, Z Ding. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLOS Genetics, 2018, 14(1): e1007144
https://doi.org/10.1371/journal.pgen.1007144 pmid: 29324765
119 C Wasternack, S Song. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 2017, 68(6): 1303–1321
pmid: 27940470
120 C Wasternack, B Hause. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021–1058
https://doi.org/10.1093/aob/mct067 pmid: 23558912
121 C S Barry, J J Giovannoni. Ethylene and fruit ripening. Journal of Plant Growth Regulation, 2007, 26(2): 143–159
https://doi.org/10.1007/s00344-007-9002-y
122 S Kondo, A Tomiyama, H Seto. Changes of endogenous jasmonic acid and methyl jasmonate in apples and sweet cherries during fruit development. Journal of the American Society for Horticultural Science, 2000, 125(3): 282–287
https://doi.org/10.21273/JASHS.125.3.282
123 M Saniewski, A Miszczak, L Kawa-Miszczak, E Wegrzynowicz-Lesiak, K Miyamoto, J Ueda. Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. Journal of Plant Growth Regulation, 1998, 17(1): 33–37
https://doi.org/10.1007/PL00007009
124 H J D Lalel, Z Singh, S C Tan. The role of methyl jasmonate in mango ripening and biosynthesis of aroma volatile compounds. Journal of Horticultural Science & Biotechnology, 2003, 78(4): 470–484
https://doi.org/10.1080/14620316.2003.11511652
125 M Saniewski, J Czapski, J Nowacki. Relationship between stimulatory effect of methyl jasmonate on ethylene production and 1-aminocyclopropane-1-carboxylic acid content in tomatoes. Biologia Plantarum, 1987, 29(1): 17–21
https://doi.org/10.1007/BF02902308
126 K Kazan, J M Manners. MYC2: the master in action. Molecular Plant, 2013, 6(3): 686–703
https://doi.org/10.1093/mp/sss128 pmid: 23142764
127 P Fernández-Calvo, A Chini, G Fernández-Barbero, J M Chico, S Gimenez-Ibanez, J Geerinck, D Eeckhout, F Schweizer, M Godoy, J M Franco-Zorrilla, L Pauwels, E Witters, M I Puga, J Paz-Ares, A Goossens, P Reymond, G De Jaeger, R Solano. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell, 2011, 23(2): 701–715
https://doi.org/10.1105/tpc.110.080788 pmid: 21335373
128 X Zhang, Z Zhu, F An, D Hao, P Li, J Song, C Yi, H Guo. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell, 2014, 26(3): 1105–1117
https://doi.org/10.1105/tpc.113.122002 pmid: 24668749
129 D R Rudell, J K Fellman, J P Mattheis. Preharvest application of methyl jasmonate to ‘Fuji’ apples enhances red coloration and affects fruit size, splitting, and bitter pit incidence. HortScience, 2005, 40(6): 1760–1762
https://doi.org/10.21273/HORTSCI.40.6.1760
130 W Liu, T Li, H Yuan, D Tan, A Wang. Enhancement of apple coloration using jasmonate treatment without sacrificing storage potential. Plant Signaling & Behavior, 2018, 13(1): e1422467
https://doi.org/10.1080/15592324.2017.1422467 pmid: 29286869
131 J J Kieber, G E Schaller. Cytokinins. In: The Arabidopsis Book. The American Society of Plant Biologists, 2014, 12
132 A Varga, J J Bruinsma. The growth and ripening of tomato fruits at different levels of endogenous cytokinins. Journal of Horticultural Science, 1974, 49(2): 135–142
https://doi.org/10.1080/00221589.1974.11514560
133 N Desai, G M Chism. Changes in cytokinin activity in the ripening tomato fruit. Journal of Food Science, 1978, 43(4): 1324–1326
https://doi.org/10.1111/j.1365-2621.1978.tb15300.x
134 A Ainalidou, G Tanou, M Belghazi, M Samiotaki, G Diamantidis, A Molassiotis, K Karamanoli. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. Journal of Proteomics, 2016, 143: 318–333
https://doi.org/10.1016/j.jprot.2016.02.013 pmid: 26915585
135 S Setha. Roles of abscisic acid in fruit ripening. Walailak Journal of Science and Technology, 2012, 9(4): 297–308
136 L Sun, Y Sun, M Zhang, L Wang, J Ren, M Cui, Y Wang, K Ji, P Li, Q Li, P Chen, S Dai, C Duan, Y Wu, P Leng. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiology, 2012, 158(1): 283–298
https://doi.org/10.1104/pp.111.186866 pmid: 22108525
137 B Jones, P Frasse, E Olmos, H Zegzouti, Z G Li, A Latché, J C Pech, M Bouzayen. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant Journal, 2002, 32(4): 603–613
https://doi.org/10.1046/j.1365-313X.2002.01450.x pmid: 12445130
138 M C Parra-Lobato, M C Gomez-Jimenez. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. Journal of Experimental Botany, 2011, 62(13): 4447–4465
https://doi.org/10.1093/jxb/err124 pmid: 21633085
139 P Torrigiani, D Bressanin, K Beatriz Ruiz, A Tadiello, L Trainotti, C Bonghi, V Ziosi, G Costa. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiologia Plantarum, 2012, 146(1): 86–98
https://doi.org/10.1111/j.1399-3054.2012.01612.x pmid: 22409726
140 N Li, B L Parsons, D R Liu, A K Mattoo. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology, 1992, 18(3): 477–487
https://doi.org/10.1007/BF00040664 pmid: 1371404
141 S Rümer, K J Gupta, W M Kaiser. Plant cells oxidize hydroxylamines to NO. Journal of Experimental Botany, 2009, 60(7): 2065–2072
https://doi.org/10.1093/jxb/erp077 pmid: 19357430
142 G Manjunatha, V Lokesh, B Neelwarne. Nitric oxide in fruit ripening: trends and opportunities. Biotechnology Advances, 2010, 28(4): 489–499
https://doi.org/10.1016/j.biotechadv.2010.03.001 pmid: 20307642
143 V Ziosi, C Bonghi, A M Bregoli, L Trainotti, S Biondi, S Sutthiwal, S Kondo, G Costa, P Torrigiani. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. Journal of Experimental Botany, 2008, 59(3): 563–573
https://doi.org/10.1093/jxb/erm331 pmid: 18252703
144 X T Fan, J P Mattheis, J K Fellman. A role for jasmonates in climacteric fruit ripening. Planta, 1998, 204(4): 444–449
https://doi.org/10.1007/s004250050278
145 R Singh, P Singh, N Pathak, V K Singh, U N Dwivedi. Modulation of mango ripening by chemicals: physiological and biochemical aspects. Plant Growth Regulation, 2007, 53(2): 137–145
https://doi.org/10.1007/s10725-007-9211-1
146 D Martínez Romero, D Valero, M Serrano, F Burló, A Carbonell, L Burgos, F Riquelme. Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) storability improvement. Journal of Food Science, 2000, 65(2): 288–294
https://doi.org/10.1111/j.1365-2621.2000.tb15995.x
147 J Vrebalov, D Ruezinsky, V Padmanabhan, R White, D Medrano, R Drake, W Schuch, J Giovannoni. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 2002, 296(5566): 343–346
https://doi.org/10.1126/science.1068181 pmid: 11951045
148 Y Ito, A Nishizawa-Yokoi, M Endo, M Mikami, Y Shima, N Nakamura, E Kotake-Nara, S Kawasaki, S Toki. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature Plants, 2017, 3(11): 866–874
https://doi.org/10.1038/s41477-017-0041-5 pmid: 29085071
149 S Li, H Xu, Z Ju, D Cao, H Zhu, D Fu, D Grierson, G Qin, Y Luo, B Zhu. The RIN-MC fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes. Plant Physiology, 2018, 176(1): 891–909
https://doi.org/10.1104/pp.17.01449 pmid: 29133374
150 S Li, B Zhu, J Pirrello, C Xu, B Zhang, M Bouzayen, K Chen, D Grierson. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytologist, 2020, 226(2): 460–475
https://doi.org/10.1111/nph.16362 pmid: 31814125
151 Y Ito, M Kitagawa, N Ihashi, K Yabe, J Kimbara, J Yasuda, H Ito, T Inakuma, S Hiroi, T Kasumi. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant Journal, 2008, 55(2): 212–223
https://doi.org/10.1111/j.1365-313X.2008.03491.x pmid: 18363783
152 M Fujisawa, T Nakano, Y Ito. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biology, 2011, 11(1): 26
https://doi.org/10.1186/1471-2229-11-26 pmid: 21276270
153 C Martel, J Vrebalov, P Tafelmeyer, J J Giovannoni. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiology, 2011, 157(3): 1568–1579
https://doi.org/10.1104/pp.111.181107 pmid: 21941001
154 G Qin, Y Wang, B Cao, W Wang, S Tian. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant Journal, 2012, 70(2): 243–255
https://doi.org/10.1111/j.1365-313X.2011.04861.x pmid: 22098335
155 C Gao, Z Ju, D Cao, B Zhai, G Qin, H Zhu, D Fu, Y Luo, B Zhu. MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation. Plant Biotechnology Journal, 2015, 13(3): 370–382
https://doi.org/10.1111/pbi.12297 pmid: 25516062
156 M Itkin, H Seybold, D Breitel, I Rogachev, S Meir, A Aharoni. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant Journal, 2009, 60(6): 1081–1095
https://doi.org/10.1111/j.1365-313X.2009.04064.x pmid: 19891701
157 J Vrebalov, I L Pan, A J M Arroyo, R McQuinn, M Chung, M Poole, J Rose, G Seymour, S Grandillo, J Giovannoni, V F Irish. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell, 2009, 21(10): 3041–3062
https://doi.org/10.1105/tpc.109.066936 pmid: 19880793
158 M Bemer, R Karlova, A R Ballester, Y M Tikunov, A G Bovy, M Wolters-Arts, P B Rossetto, G C Angenent, R A de Maagd. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell, 2012, 24(11): 4437–4451
https://doi.org/10.1105/tpc.112.103283 pmid: 23136376
159 M Fujisawa, Y Shima, H Nakagawa, M Kitagawa, J Kimbara, T Nakano, T Kasumi, Y Ito. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell, 2014, 26(1): 89–101
https://doi.org/10.1105/tpc.113.119453 pmid: 24415769
160 T Dong, Z Hu, L Deng, Y Wang, M Zhu, J Zhang, G Chen. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiology, 2013, 163(2): 1026–1036
https://doi.org/10.1104/pp.113.224436 pmid: 24006286
161 Q Xie, Z Hu, Z Zhu, T Dong, Z Zhao, B Cui, G Chen. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Scientific Reports, 2014, 4(1): 4367
https://doi.org/10.1038/srep04367 pmid: 24621662
162 E Giménez, B Pineda, J Capel, M T Antón, A Atarés, F Pérez-Martín, B García-Sogo, T Angosto, V Moreno, R Lozano. Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS One, 2010, 5(12): e14427
https://doi.org/10.1371/journal.pone.0014427 pmid: 21203447
163 Y Shima, M Kitagawa, M Fujisawa, T Nakano, H Kato, J Kimbara, T Kasumi, Y Ito. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Molecular Biology, 2013, 82(4-5): 427–438
https://doi.org/10.1007/s11103-013-0071-y pmid: 23677393
164 L C Hileman, J F Sundstrom, A Litt, M Chen, T Shumba, V F Irish. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Molecular Biology and Evolution, 2006, 23(11): 2245–2258
https://doi.org/10.1093/molbev/msl095 pmid: 16926244
165 J Pirrello, B C N Prasad, W Zhang, K Chen, I Mila, M Zouine, A Latché, J C Pech, M Ohme-Takagi, F Regad, M Bouzayen. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology, 2012, 12(1): 190
https://doi.org/10.1186/1471-2229-12-190 pmid: 23057995
166 X Meng, J Xu, Y He, K Y Yang, B Mordorski, Y Liu, S Zhang. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell, 2013, 25(3): 1126–1142
https://doi.org/10.1105/tpc.112.109074 pmid: 23524660
167 M A Rodrigues, R E Bianchetti, L Freschi. Shedding light on ethylene metabolism in higher plants. Frontiers of Plant Science, 2014, 5: 665
https://doi.org/10.3389/fpls.2014.00665 pmid: 25520728
168 M Y Chung, J Vrebalov, R Alba, J Lee, R McQuinn, J D Chung, P Klein, J Giovannoni. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant Journal, 2010, 64(6): 936–947
https://doi.org/10.1111/j.1365-313X.2010.04384.x pmid: 21143675
169 J M Lee, J G Joung, R McQuinn, M Y Chung, Z Fei, D Tieman, H Klee, J Giovannoni. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant Journal, 2012, 70(2): 191–204
https://doi.org/10.1111/j.1365-313X.2011.04863.x pmid: 22111515
170 R Karlova, F M Rosin, J Busscher-Lange, V Parapunova, P T Do, A R Fernie, P D Fraser, C Baxter, G C Angenent, R A de Maagd. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell, 2011, 23(3): 923–941
https://doi.org/10.1105/tpc.110.081273 pmid: 21398570
171 M Aida, T Ishida, H Fukaki, H Fujisawa, M Tasaka. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9(6): 841–857
https://doi.org/10.1105/tpc.9.6.841 pmid: 9212461
172 A N Olsen, H A Ernst, L L Leggio, K Skriver. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79–87
https://doi.org/10.1016/j.tplants.2004.12.010 pmid: 15708345
173 H Zhang, J Jin, L Tang, Y Zhao, X Gu, G Gao, J Luo. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Research, 2011, 39(Database issue suppl_1): D1114–D1117
https://doi.org/10.1093/nar/gkq1141 pmid: 21097470
174 Y J Hao, W Wei, Q X Song, H W Chen, Y Q Zhang, F Wang, H F Zou, G Lei, A G Tian, W K Zhang, B Ma, J S Zhang, S Y Chen. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant Journal, 2011, 68(2): 302–313
https://doi.org/10.1111/j.1365-313X.2011.04687.x pmid: 21707801
175 M Zhu, G Chen, S Zhou, Y Tu, Y Wang, T Dong, Z Hu. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant & Cell Physiology, 2014, 55(1): 119–135
https://doi.org/10.1093/pcp/pct162 pmid: 24265273
176 S D Yang, P J Seo, H K Yoon, C M Park. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell, 2011, 23(6): 2155–2168
https://doi.org/10.1105/tpc.111.084913 pmid: 21673078
177 S Lindemose, M K Jensen, J V de Velde, C O’Shea, K S Heyndrickx, C T Workman, K Vandepoele, K Skriver, F D Masi. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Research, 2014, 42(12): 7681–7693
https://doi.org/10.1093/nar/gku502 pmid: 24914054
178 S Moore, J Vrebalov, P Payton, J Giovannoni. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. Journal of Experimental Botany, 2002, 53(377): 2023–2030
https://doi.org/10.1093/jxb/erf057 pmid: 12324526
179 S Osorio, R Alba, C M B Damasceno, G Lopez-Casado, M Lohse, M I Zanor, T Tohge, B Usadel, J K C Rose, Z Fei, J J Giovannoni, A R Fernie. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiology, 2011, 157(1): 405–425
https://doi.org/10.1104/pp.111.175463 pmid: 21795583
180 N Ma, H Feng, X Meng, D Li, D Yang, C Wu, Q Meng. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology, 2014, 14(1): 351
https://doi.org/10.1186/s12870-014-0351-y pmid: 25491370
181 C Meng, D Yang, X Ma, W Zhao, X Liang, N Ma, Q Meng. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology, 2016, 193: 88–96
https://doi.org/10.1016/j.jplph.2016.01.014 pmid: 26962710
182 Y Gao, W Wei, X Zhao, X Tan, Z Fan, Y Zhang, Y Jing, L Meng, B Zhu, H Zhu, J Chen, C Z Jiang, D Grierson, Y Luo, D Q Fu. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture Research, 2018, 5(1): 75
https://doi.org/10.1038/s41438-018-0111-5 pmid: 30588320
183 Z Lin, Y Hong, M Yin, C Li, K Zhang, D Grierson. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant Journal, 2008, 55(2): 301–310
https://doi.org/10.1111/j.1365-313X.2008.03505.x pmid: 18397374
184 A Lovisetto, F Guzzo, A Tadiello, E Confortin, A Pavanello, A Botton, G Casadoro. Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiology and Biochemistry, 2013, 70: 462–470
https://doi.org/10.1016/j.plaphy.2013.06.014 pmid: 23845825
185 A Feller, K Machemer, E L Braun, E Grotewold. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 2011, 66(1): 94–116
https://doi.org/10.1111/j.1365-313X.2010.04459.x pmid: 21443626
186 G Yao, M Ming, A C Allan, C Gu, L Li, X Wu, R Wang, Y Chang, K Qi, S Zhang, J Wu. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92(3): 437–451
https://doi.org/10.1111/tpj.13666 pmid: 28845529
187 X H An, Y Tian, K Q Chen, X J Liu, D D Liu, X B Xie, C G Cheng, P H Cong, Y J Hao. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant & Cell Physiology, 2015, 56(4): 650–662
https://doi.org/10.1093/pcp/pcu205 pmid: 25527830
188 Z Q Fan, L J Ba, W Shan, Y Y Xiao, W J Lu, J F Kuang, J Y Chen. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. Plant Journal, 2018, 96(6): 1191–1205
https://doi.org/10.1111/tpj.14099 pmid: 30242914
189 K Kaufmann, A Pajoro, G C Angenent. Regulation of transcription in plants: mechanisms controlling developmental switches. Nature Reviews: Genetics, 2010, 11(12): 830–842
https://doi.org/10.1038/nrg2885 pmid: 21063441
190 S Feng, S E Jacobsen, W Reik. Epigenetic reprogramming in plant and animal development. Science, 2010, 330(6004): 622–627
https://doi.org/10.1126/science.1190614 pmid: 21030646
191 H Wollmann, F Berger. Epigenetic reprogramming during plant reproduction and seed development. Current Opinion in Plant Biology, 2012, 15(1): 63–69
https://doi.org/10.1016/j.pbi.2011.10.001 pmid: 22035873
192 J A Law, S E Jacobsen. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews: Genetics, 2010, 11(3): 204–220
https://doi.org/10.1038/nrg2719 pmid: 20142834
193 X J He, T Chen, J K Zhu. Regulation and function of DNA methylation in plants and animals. Cell Research, 2011, 21(3): 442–465
https://doi.org/10.1038/cr.2011.23 pmid: 21321601
194 S Zhong, Z Fei, Y R Chen, Y Zheng, M Huang, J Vrebalov, R McQuinn, N Gapper, B Liu, J Xiang, Y Shao, J J Giovannoni. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 2013, 31(2): 154–159
https://doi.org/10.1038/nbt.2462 pmid: 23354102
195 E Teyssier, G Bernacchia, S Maury, A How Kit, L Stammitti-Bert, D Rolin, P Gallusci. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta, 2008, 228(3): 391–399
https://doi.org/10.1007/s00425-008-0743-z pmid: 18488247
196 P H Tate, A P Bird. Effects of DNA methylation on DNA-binding proteins and gene expression. Current Opinion in Genetics & Development, 1993, 3(2): 226–231
https://doi.org/10.1016/0959-437X(93)90027-M pmid: 8504247
197 R Liu, A How-Kit, L Stammitti, E Teyssier, D Rolin, A Mortain-Bertrand, S Halle, M Liu, J Kong, C Wu, C Degraeve-Guibault, N H Chapman, M Maucourt, T C Hodgman, J Tost, M Bouzayen, Y Hong, G B Seymour, J J Giovannoni, P Gallusci. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10804–10809
https://doi.org/10.1073/pnas.1503362112 pmid: 26261318
198 Z Lang, Y Wang, K Tang, D Tang, T Datsenka, J Cheng, Y Zhang, A K Handa, J K Zhu. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(22): E4511–E4519
https://doi.org/10.1073/pnas.1705233114 pmid: 28507144
199 L Zhou, S Tian, G Qin. RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biology, 2019, 20(1): 156
https://doi.org/10.1186/s13059-019-1771-7 pmid: 31387610
200 C Liu, F Lu, X Cui, X Cao. Histone methylation in higher plants. Annual Review of Plant Biology, 2010, 61(1): 395–420
https://doi.org/10.1146/annurev.arplant.043008.091939 pmid: 20192747
201 P Lü, S Yu, N Zhu, Y R Chen, B Zhou, Y Pan, D Tzeng, J P Fabi, J Argyris, J Garcia-Mas, N Ye, J Zhang, D Grierson, J Xiang, Z Fei, J Giovannoni, S Zhong. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants, 2018, 4(10): 784–791
https://doi.org/10.1038/s41477-018-0249-z pmid: 30250279
202 Q Liang, H Deng, Y Li, Z Liu, P Shu, R Fu, Y Zhang, J Pirrello, Y Zhang, D Grierson, M Bouzayen, Y Liu, M Liu. Like heterochromatin protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening-related genes in tomato. New Phytologist, 2020, 227(2): 485–497
https://doi.org/10.1111/nph.16550 pmid: 32181875
203 Z Li, G Jiang, X Liu, X Ding, D Zhang, X Wang, Y Zhou, H Yan, T Li, K Wu, Y Jiang, X Duan. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytologist, 2020, 227(4): 1138–1156
https://doi.org/10.1111/nph.16590 pmid: 32255501
204 Z Wang, H Cao, F Chen, Y Liu. The roles of histone acetylation in seed performance and plant development. Plant Physiology and Biochemistry, 2014, 84: 125–133
https://doi.org/10.1016/j.plaphy.2014.09.010 pmid: 25270163
205 X Liu, S Yang, M Zhao, M Luo, C W Yu, C Y Chen, R Tai, K Wu. Transcriptional repression by histone deacetylases in plants. Molecular Plant, 2014, 7(5): 764–772
https://doi.org/10.1093/mp/ssu033 pmid: 24658416
206 R Aiese Cigliano, W Sanseverino, G Cremona, M R Ercolano, C Conicella, F M Consiglio. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics, 2013, 14(1): 57
https://doi.org/10.1186/1471-2164-14-57 pmid: 23356725
207 J E Guo, Z L Hu, X H Guo, L C Zhang, X H Yu, S G Zhou, G P Chen. Molecular characterization of nine tissue-specific or stress-responsive genes of histone deacetylase in tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2017, 36(3): 566–577
https://doi.org/10.1007/s00344-016-9660-8
208 J E Guo, Z Hu, M Zhu, F Li, Z Zhu, Y Lu, G Chen. The tomato histone deacetylase SlHDA1 contributes to the repression of fruit ripening and carotenoid accumulation. Scientific Reports, 2017, 7(1): 7930
https://doi.org/10.1038/s41598-017-08512-x pmid: 28801625
209 J E Guo, Z Hu, F Li, L Zhang, X Yu, B Tang, G Chen. Silencing of histone deacetylase SlHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato. Plant Science, 2017, 265: 29–38
https://doi.org/10.1016/j.plantsci.2017.09.013 pmid: 29223340
210 Z Zhu, F An, Y Feng, P Li, L Xue, M A, Z Jiang, J M Kim, T K To, W Li, X Zhang, Q Yu, Z Dong, W Q Chen, M Seki, J M Zhou, H Guo. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12539–12544
https://doi.org/10.1073/pnas.1103959108 pmid: 21737749
211 L Pi, E Aichinger, E van der Graaff, C I Llavata-Peris, D Weijers, L Hennig, E Groot, T Laux. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Developmental Cell, 2015, 33(5): 576–588
https://doi.org/10.1016/j.devcel.2015.04.024 pmid: 26028217
212 Y C Han, J F Kuang, J Y Chen, X C Liu, Y Y Xiao, C C Fu, J N Wang, K Q Wu, W J Lu. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiology, 2016, 171(2): 1070–1084
https://doi.org/10.1104/pp.16.00301 pmid: 27208241
213 R Velasco, A Zharkikh, J Affourtit, A Dhingra, A Cestaro, A Kalyanaraman, P Fontana, S K Bhatnagar, M Troggio, D Pruss, S Salvi, M Pindo, P Baldi, S Castelletti, M Cavaiuolo, G Coppola, F Costa, V Cova, A Dal Ri, V Goremykin, M Komjanc, S Longhi, P Magnago, G Malacarne, M Malnoy, D Micheletti, M Moretto, M Perazzolli, A Si-Ammour, S Vezzulli, E Zini, G Eldredge, L M Fitzgerald, N Gutin, J Lanchbury, T Macalma, J T Mitchell, J Reid, B Wardell, C Kodira, Z Chen, B Desany, F Niazi, M Palmer, T Koepke, D Jiwan, S Schaeffer, V Krishnan, C Wu, V T Chu, S T King, J Vick, Q Tao, A Mraz, A Stormo, K Stormo, R Bogden, D Ederle, A Stella, A Vecchietti, M M Kater, S Masiero, P Lasserre, Y Lespinasse, A C Allan, V Bus, D Chagné, R N Crowhurst, A P Gleave, E Lavezzo, J A Fawcett, S Proost, P Rouzé, L Sterck, S Toppo, B Lazzari, R P Hellens, C E Durel, A Gutin, R E Bumgarner, S E Gardiner, M Skolnick, M Egholm, Y Van de Peer, F Salamini, R Viola. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10): 833–839
https://doi.org/10.1038/ng.654 pmid: 20802477
214 A D’Hont, F Denoeud, J M Aury, F C Baurens, F Carreel, O Garsmeur, B Noel, S Bocs, G Droc, M Rouard, C Da Silva, K Jabbari, C Cardi, J Poulain, M Souquet, K Labadie, C Jourda, J Lengellé, M Rodier-Goud, A Alberti, M Bernard, M Correa, S Ayyampalayam, M R Mckain, J Leebens-Mack, D Burgess, M Freeling, D Mbéguié-A-Mbéguié, M Chabannes, T Wicker, O Panaud, J Barbosa, E Hribova, P Heslop-Harrison, R Habas, R Rivallan, P Francois, C Poiron, A Kilian, D Burthia, C Jenny, F Bakry, S Brown, V Guignon, G Kema, M Dita, C Waalwijk, S Joseph, A Dievart, O Jaillon, J Leclercq, X Argout, E Lyons, A Almeida, M Jeridi, J Dolezel, N Roux, A M Risterucci, J Weissenbach, M Ruiz, J C Glaszmann, F Quétier, N Yahiaoui, P Wincker. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature Genetics, 2012, 488(7410): 213–217
https://doi.org/10.1038/nature11241 pmid: 22801500
215 J Garcia-Mas, A Benjak, W Sanseverino, M Bourgeois, G Mir, V M González, E Hénaff, F Câmara, L Cozzuto, E Lowy, T Alioto, S Capella-Gutiérrez, J Blanca, J Cañizares, P Ziarsolo, D Gonzalez-Ibeas, L Rodríguez-Moreno, M Droege, L Du, M Alvarez-Tejado, B Lorente-Galdos, M Melé, L Yang, Y Weng, A Navarro, T Marques-Bonet, M A Aranda, F Nuez, B Picó, T Gabaldón, G Roma, R Guigó, J M Casacuberta, P Arús, P Puigdomènech. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11872–11877
https://doi.org/10.1073/pnas.1205415109 pmid: 22753475
216 R Ming, S Hou, Y Feng, Q Yu, A Dionne-Laporte, J H Saw, P Senin, W Wang, B V Ly, K L Lewis, S L Salzberg, L Feng, M R Jones, R L Skelton, J E Murray, C Chen, W Qian, J Shen, P Du, M Eustice, E Tong, H Tang, E Lyons, R E Paull, T P Michael, K Wall, D W Rice, H Albert, M L Wang, Y J Zhu, M Schatz, N Nagarajan, R A Acob, P Guan, A Blas, C M Wai, C M Ackerman, Y Ren, C Liu, J Wang, J Wang, J K Na, E V Shakirov, B Haas, J Thimmapuram, D Nelson, X Wang, J E Bowers, A R Gschwend, A L Delcher, R Singh, J Y Suzuki, S Tripathi, K Neupane, H Wei, B Irikura, M Paidi, N Jiang, W Zhang, G Presting, A Windsor, R Navajas-Pérez, M J Torres, F A Feltus, B Porter, Y Li, A M Burroughs, M C Luo, L Liu, D A Christopher, S M Mount, P H Moore, T Sugimura, J Jiang, M A Schuler, V Friedman, T Mitchell-Olds, D E Shippen, C W dePamphilis, J D Palmer, M Freeling, A H Paterson, D Gonsalves, L Wang, M Alam. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature Genetics, 2008, 452(7190): 991–996
https://doi.org/10.1038/nature06856 pmid: 18432245
217 J Wu, Z Wang, Z Shi, S Zhang, R Ming, S Zhu, M A Khan, S Tao, S S Korban, H Wang, N J Chen, T Nishio, X Xu, L Cong, K Qi, X Huang, Y Wang, X Zhao, J Wu, C Deng, C Gou, W Zhou, H Yin, G Qin, Y Sha, Y Tao, H Chen, Y Yang, Y Song, D Zhan, J Wang, L Li, M Dai, C Gu, Y Wang, D Shi, X Wang, H Zhang, L Zeng, D Zheng, C Wang, M Chen, G Wang, L Xie, V Sovero, S Sha, W Huang, S Zhang, M Zhang, J Sun, L Xu, Y Li, X Liu, Q Li, J Shen, J Wang, R E Paull, J L Bennetzen, J Wang, S Zhang. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 2013, 23(2): 396–408
https://doi.org/10.1101/gr.144311.112 pmid: 23149293
218 Z Fei, X Tang, R Alba, J Giovannoni. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Research, 2006, 34(Suppl_1): D766–D770
https://doi.org/10.1093/nar/gkj110 pmid: 16381976
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed