|
|
RECENT ADVANCES IN THE REGULATION OF CLIMACTERIC FRUIT RIPENING: HORMONE, TRANSCRIPTION FACTOR AND EPIGENETIC MODIFICATIONS |
Yinglin JI, Mingyang XU, Aide WANG( ) |
Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China. |
|
|
Abstract • The dynamic interplay between phytohormones plays an important part in climacteric fruit ripening. • Transcription factors are critical for the regulation of climacteric fruit ripening. • Epigenetic modifications act as important regulators of fruit ripening. Fruit ripening is a complex developmental process made up of genetically programmed physiological and biochemical activities. It culminates in desirable changes in the structural and textural properties and is governed by a complex regulatory network. Much is known about ethylene, one of the most important metabolites promoting the ripening of climacteric fruits. However, the dynamic interplay between phytohormones also plays an important part. Additional regulatory factors such as transcription factors (TFs) and epigenetic modifications also play vital role in the regulation of climacteric fruit ripening. Here, we review and evaluate the complex regulatory network comprising interactions between hormones and the action of TFs and epigenetic modifications during climacteric fruit ripening.
|
Keywords
climacteric fruit ripening
phytohormones
TFs
epigenetic modifications
|
Corresponding Author(s):
Aide WANG
|
Just Accepted Date: 03 February 2021
Online First Date: 10 March 2021
Issue Date: 13 July 2021
|
|
1 |
R Karlova, N Chapman, K David, G C Angenent, G B Seymour, R A de Maagd. Transcriptional control of fleshy fruit development and ripening. Journal of Experimental Botany, 2014, 65(16): 4527–4541
https://doi.org/10.1093/jxb/eru316
pmid: 25080453
|
2 |
J Giovannoni, C Nguyen, B Ampofo, S Zhong, Z Fei. The epigenome and transcriptional dynamics of fruit ripening. Annual Review of Plant Biology, 2017, 68(1): 61–84
https://doi.org/10.1146/annurev-arplant-042916-040906
pmid: 28226232
|
3 |
J Giovannoni. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52(1): 725–749
https://doi.org/10.1146/annurev.arplant.52.1.725
pmid: 11337414
|
4 |
B M Kevany, D M Tieman, M G Taylor, V D Cin, H J Klee. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant Journal, 2007, 51(3): 458–467
https://doi.org/10.1111/j.1365-313X.2007.03170.x
pmid: 17655616
|
5 |
C S Barry, J J Giovannoni. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(20): 7923–7928
https://doi.org/10.1073/pnas.0602319103
pmid: 16682641
|
6 |
G Manjunatha, K J Gupta, V Lokesh, L A Mur, B Neelwarne. Nitric oxide counters ethylene effects on ripening fruits. Plant Signaling & Behavior, 2012, 7(4): 476–483
https://doi.org/10.4161/psb.19523
pmid: 22499176
|
7 |
S Cherian, C R Figueroa, H Nair. ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. Journal of Experimental Botany, 2014, 65(17): 4705–4722
https://doi.org/10.1093/jxb/eru280
pmid: 24994760
|
8 |
J J Giovannoni. Genetic regulation of fruit development and ripening. Plant Cell, 2004, 16(Suppl 1): S170–S180
https://doi.org/10.1105/tpc.019158
pmid: 15010516
|
9 |
W Wang, J Cai, P Wang, S Tian, G Qin. Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Genome Biology, 2017, 18(1): 47
https://doi.org/10.1186/s13059-017-1178-2
pmid: 28270225
|
10 |
L Alexander, D Grierson. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 2002, 53(377): 2039–2055
https://doi.org/10.1093/jxb/erf072
pmid: 12324528
|
11 |
L Fuentes, C R Figueroa, M Valdenegro. Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae, 2019, 5(2): 45
https://doi.org/10.3390/horticulturae5020045
|
12 |
C Li, H Jia, Y Chai, Y Shen. Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. Plant Signaling & Behavior, 2011, 6(12): 1950–1953
https://doi.org/10.4161/psb.6.12.18024
pmid: 22095148
|
13 |
S D Castellarin, G A Gambetta, H Wada, K A Shackel, M A Matthews. Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. Journal of Experimental Botany, 2011, 62(12): 4345–4354
https://doi.org/10.1093/jxb/err150
pmid: 21586429
|
14 |
K Liu, C Yuan, S Feng, S Zhong, H Li, J Zhong, C Shen, J Liu. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.). BMC Genomics, 2017, 18(1): 351
https://doi.org/10.1186/s12864-017-3722-6
pmid: 28476147
|
15 |
M Pérez-Llorca, P Muñoz, M Müller, S Munné-Bosch. Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Frontiers of Plant Science, 2019, 10: 136
https://doi.org/10.3389/fpls.2019.00136
pmid: 30833953
|
16 |
Y Chen, J Grimplet, K David, S D Castellarin, J Terol, D C J Wong, Z Luo, R Schaffer, J M Celton, M Talon, G A Gambetta, C Chervin. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science, 2018, 276: 63–72
https://doi.org/10.1016/j.plantsci.2018.07.012
pmid: 30348329
|
17 |
G M Symons, Y J Chua, J J Ross, L J Quittenden, N W Davies, J B Reid. Hormonal changes during non-climacteric ripening in strawberry. Journal of Experimental Botany, 2012, 63(13): 4741–4750
https://doi.org/10.1093/jxb/ers147
pmid: 22791823
|
18 |
Y Li, Y Lu, L Li, Z Chu, H Zhang, H Li, A R Fernie, B Ouyang. Impairment of hormone pathways results in a general disturbance of fruit primary metabolism in tomato. Food Chemistry, 2019, 274: 170–179
https://doi.org/10.1016/j.foodchem.2018.08.026
pmid: 30372923
|
19 |
J Cheng, Q Niu, B Zhang, K Chen, R Yang, J K Zhu, Y Zhang, Z Lang. Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 2018, 19(1): 212
https://doi.org/10.1186/s13059-018-1587-x
pmid: 30514401
|
20 |
K Manning, M Tör, M Poole, Y Hong, A J Thompson, G J King, J J Giovannoni, G B Seymour. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 2006, 38(8): 948–952
https://doi.org/10.1038/ng1841
pmid: 16832354
|
21 |
Y Zeng, Z Pan, L Wang, Y Ding, Q Xu, S Xiao, X Deng. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Physiologia Plantarum, 2014, 150(2): 252–270
https://doi.org/10.1111/ppl.12080
pmid: 23786612
|
22 |
Y Kamiyoshihara, D M Tieman, D J Huber, H J Klee. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. Plant Physiology, 2012, 160(1): 488–497
https://doi.org/10.1104/pp.112.202820
pmid: 22797658
|
23 |
J E Guo, Z Hu, X Yu, A Li, F Li, Y Wang, S Tian, G Chen. A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Reports, 2018, 37(1): 125–135
https://doi.org/10.1007/s00299-017-2211-3
pmid: 28932910
|
24 |
Y Wang, W Wang, J Cai, Y Zhang, G Qin, S Tian. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biology, 2014, 15(12): 548
https://doi.org/10.1186/s13059-014-0548-2
pmid: 25464976
|
25 |
S Li, K Chen, D Grierson. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. New Phytologist, 2019, 221(4): 1724–1741
https://doi.org/10.1111/nph.15545
pmid: 30328615
|
26 |
C Buesa, M Dominguez, M Vendrell. Abscisic acid effects on ethylene production and respiration rate in detached apple fruits at different stages of development. Spanish Journal of Food Science and Technology, 1994, 34(5): 495–506
|
27 |
T Li, Z Jiang, L Zhang, D Tan, Y Wei, H Yuan, T Li, A Wang. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant Journal, 2016, 88(5): 735–748
https://doi.org/10.1111/tpj.13289
pmid: 27476697
|
28 |
T Li, Y Xu, L Zhang, Y Ji, D Tan, H Yuan, A Wang. The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell, 2017, 29(6): 1316–1334
https://doi.org/10.1105/tpc.17.00349
pmid: 28550149
|
29 |
Y Jiang, D C Joyce, A J Macnish. Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. Journal of Plant Growth Regulation, 2000, 19(1): 106–111
https://doi.org/10.1007/s003440000011
pmid: 11010997
|
30 |
Y F Guo, W Shan, S M Liang, C J Wu, W Wei, J Y Chen, W J Lu, J F Kuang. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiologia Plantarum, 2019, 165(3): 555–568
https://doi.org/10.1111/ppl.12750
pmid: 29704245
|
31 |
S E S A Khader, B P Singh, S A Khan. Effect of GA3 as a post-harvest treatment of mango fruit on ripening, amylase and peroxidase activity and quality during storage. Scientia Horticulturae, 1988, 36(3-4): 261–266
https://doi.org/10.1016/0304-4238(88)90060-X
|
32 |
S S Zaharah, Z Singh, G M Symons, J B Reid. Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation, 2012, 31(3): 363–372
https://doi.org/10.1007/s00344-011-9245-5
|
33 |
L Trainotti, A Tadiello, G Casadoro. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany, 2007, 58(12): 3299–3308
https://doi.org/10.1093/jxb/erm178
pmid: 17925301
|
34 |
M Tatsuki, N Nakajima, H Fujii, T Shimada, M Nakano, K Hayashi, H Hayama, H Yoshioka, Y Nakamura. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). Journal of Experimental Botany, 2013, 64(4): 1049–1059
https://doi.org/10.1093/jxb/ers381
pmid: 23364941
|
35 |
H Y Shi, Y X Zhang. Expression and regulation of pear 1-aminocyclopropane-1-carboxylic acid synthase gene (PpACS1a) during fruit ripening, under salicylic acid and indole-3-acetic acid treatment, and in diseased fruit. Molecular Biology Reports, 2014, 41(6): 4147–4154
https://doi.org/10.1007/s11033-014-3286-3
pmid: 24562629
|
36 |
P T Yue, Y N Wang, H D Bu, X Y Li, H Yuan, A D Wang. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biology and Technology, 2019, 157: 110955
https://doi.org/10.1016/j.postharvbio.2019.110955
|
37 |
A Khan, Z Singh. Methyl jasmonate promotes fruit ripening and improves fruit quality in Japanese plum. Journal of Horticultural Science & Biotechnology, 2007, 82(5): 695–706
https://doi.org/10.1080/14620316.2007.11512293
|
38 |
H Kende. Ethylene biosynthesis. Annual Review of Plant Biology, 1993, 44(1): 283–307
https://doi.org/10.1146/annurev.pp.44.060193.001435
|
39 |
A Payasi, G Sanwal. Ripening of climacteric fruits and their control. Journal of Food Biochemistry, 2010, 34(4): 679–710
https://doi.org/10.1111/j.1745-4514.2009.00307.x
|
40 |
P Yue, Q Lu, Z Liu, T Lv, X Li, H Bu, W Liu, Y Xu, H Yuan, A Wang. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytologist, 2020, 226(6): 1781–1795
https://doi.org/10.1111/nph.16500
pmid: 32083754
|
41 |
K Liu, B C Kang, H Jiang, S L Moore, H Li, C B Watkins, T L Setter, M M A Jahn. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Molecular Biology, 2005, 58(4): 447–464
https://doi.org/10.1007/s11103-005-6505-4
pmid: 16021332
|
42 |
M Zhang, P Leng, G Zhang, X Li. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 2009, 166(12): 1241–1252
https://doi.org/10.1016/j.jplph.2009.01.013
pmid: 19307046
|
43 |
S Chen, X Wang, L Zhang, S Lin, D Liu, Q Wang, S Cai, R El-Tanbouly, L Gan, H Wu, Y Li. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Horticulture Research, 2016, 3(1): 16059
https://doi.org/10.1038/hortres.2016.59
pmid: 28018605
|
44 |
R Ben-Arie, Y Saks, L Sonego, A Frank. Cell wall metabolism in gibberellin-treated persimmon fruits. Plant Growth Regulation, 1996, 19(1): 25–33
https://doi.org/10.1007/BF00024399
|
45 |
S D Clouse. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 2011, 23(4): 1219–1230
https://doi.org/10.1105/tpc.111.084475
pmid: 21505068
|
46 |
M Saniewski, J Czapski, J Nowacki, E Lange. The effect of methyl jasmonate on ethylene and l-aminocyclopropane-1-carboxylic acid production in apple fruits. Biologia Plantarum, 1987, 29(3): 199–203
https://doi.org/10.1007/BF02876829
|
47 |
J E Davey, J Van Staden. Endogenous cytokinins in the fruits of ripening and non-ripening tomatoes. Plant Science Letters, 1978, 11(3-4): 359–364
https://doi.org/10.1016/0304-4211(78)90023-8
|
48 |
C S Barry, M I Llop-Tous, D Grierson. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology, 2000, 123(3): 979–986
https://doi.org/10.1104/pp.123.3.979
pmid: 10889246
|
49 |
A Nakatsuka, S Murachi, H Okunishi, S Shiomi, R Nakano, Y Kubo, A Inaba. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology, 1998, 118(4): 1295–1305
https://doi.org/10.1104/pp.118.4.1295
pmid: 9847103
|
50 |
E J McMurchie, W B McGlasson, I L Eaks. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 1972, 237(5352): 235–236
https://doi.org/10.1038/237235a0
pmid: 4557321
|
51 |
S F Yang, N E Hoffman. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 1984, 35(1): 155–189
https://doi.org/10.1146/annurev.pp.35.060184.001103
|
52 |
G B Seymour, J E Taylor, G A Tucker. Biochemistry of fruit ripening. Springer, 1993
|
53 |
Z Lin, S Zhong, D Grierson. Recent advances in ethylene research. Journal of Experimental Botany, 2009, 60(12): 3311–3336
https://doi.org/10.1093/jxb/erp204
pmid: 19567479
|
54 |
T Li, D Tan, Z Liu, Z Jiang, Y Wei, L Zhang, X Li, H Yuan, A Wang. Apple MdACS6 regulates ethylene biosynthesis during fruit development involving ethylene-responsive factor. Plant & Cell Physiology, 2015, 56(10): 1909–1917
https://doi.org/10.1093/pcp/pcv111
pmid: 26209510
|
55 |
A Wang, J Yamakake, H Kudo, Y Wakasa, Y Hatsuyama, M Igarashi, A Kasai, T Li, T Harada. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiology, 2009, 151(1): 391–399
https://doi.org/10.1104/pp.109.135822
pmid: 19587104
|
56 |
V Varanasi, S Shin, J Mattheis, D Rudell, Y M Zhu. Expression profiles of the MdACS3 gene suggest a function as an accelerator of apple (Malus × domestica) fruit ripening. Postharvest Biology and Technology, 2011, 62(2): 141–148
https://doi.org/10.1016/j.postharvbio.2011.05.005
|
57 |
D M Tan, T Z Li, A D Wang. Apple 1-aminocyclopropane-1-carboxylic acid synthase genes, MdACS1 and MdACS3a, are expressed in different systems of ethylene biosynthesis. Plant Molecular Biology Reporter, 2013, 31(1): 204–209
https://doi.org/10.1007/s11105-012-0490-y
|
58 |
T Sunako, W Sakuraba, M Senda, S Akada, R Ishikawa, M Niizeki, T Harada. An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiology, 1999, 119(4): 1297–1304
https://doi.org/10.1104/pp.119.4.1297
pmid: 10198088
|
59 |
A M Dandekar, G Teo, B G Defilippi, S L Uratsu, A J Passey, A A Kader, J R Stow, R J Colgan, D J James. Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Research, 2004, 13(4): 373–384
https://doi.org/10.1023/B:TRAG.0000040037.90435.45
pmid: 15517996
|
60 |
P W Oeller, M W Lu, L P Taylor, D A Pike, A Theologis. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 1991, 254(5030): 437–439
https://doi.org/10.1126/science.1925603
pmid: 1925603
|
61 |
C S Barry, B Blume, M Bouzayen, W Cooper, A J Hamilton, D Grierson. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant Journal, 1996, 9(4): 525–535
https://doi.org/10.1046/j.1365-313X.1996.09040525.x
pmid: 8624515
|
62 |
R J Schaffer, E N Friel, E J Souleyre, K Bolitho, K Thodey, S Ledger, J H Bowen, J H Ma, B Nain, D Cohen, A P Gleave, R N Crowhurst, B J Janssen, J L Yao, R D Newcomb. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology, 2007, 144(4): 1899–1912
https://doi.org/10.1104/pp.106.093765
pmid: 17556515
|
63 |
Y M Jiang, J R Fu. Ethylene regulation of fruit ripening: molecular aspects. Plant Growth Regulation, 2000, 30(3): 193–200
https://doi.org/10.1023/A:1006348627110
|
64 |
Y Liu, N E Hoffman, S F Yang. Promotion by ethylene of the capability to convert 1-aminocyclopropane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits. Plant Physiology, 1985, 77(2): 407–411
https://doi.org/10.1104/pp.77.2.407
pmid: 16664067
|
65 |
H Guo, J R Ecker. The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 2004, 7(1): 40–49
https://doi.org/10.1016/j.pbi.2003.11.011
pmid: 14732440
|
66 |
H S Ireland, F Guillen, J H Bowen, E J Tacken, J Putterill, R J Schaffer, J W Johnston. Mining the apple genome reveals a family of nine ethylene receptor genes. Postharvest Biology and Technology, 2012, 72: 42–46
https://doi.org/10.1016/j.postharvbio.2012.05.003
|
67 |
J Q Wilkinson, M B Lanahan, H C Yen, J J Giovannoni, H J Klee. An ethylene-inducible component of signal transduction encoded by never-ripe. Science, 1995, 270(5243): 1807–1809
https://doi.org/10.1126/science.270.5243.1807
pmid: 8525371
|
68 |
D Zhou, P Kalaitzís, A K Mattoo, M L Tucker. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Molecular Biology, 1996, 30(6): 1331–1338
https://doi.org/10.1007/BF00019564
pmid: 8704141
|
69 |
C C Lashbrook, D M Tieman, H J Klee. Differential regulation of the tomato ETR gene family throughout plant development. Plant Journal, 1998, 15(2): 243–252
https://doi.org/10.1046/j.1365-313X.1998.00202.x
pmid: 9721682
|
70 |
D M Tieman, H J Klee. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiology, 1999, 120(1): 165–172
https://doi.org/10.1104/pp.120.1.165
pmid: 10318694
|
71 |
Z Gao, Y F Chen, M D Randlett, X C Zhao, J L Findell, J J Kieber, G E Schaller. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biological Chemistry, 2003, 278(36): 34725–34732
https://doi.org/10.1074/jbc.M305548200
pmid: 12821658
|
72 |
Y Huang, H Li, C E Hutchison, J Laskey, J J Kieber. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant Journal, 2003, 33(2): 221–233
https://doi.org/10.1046/j.1365-313X.2003.01620.x
pmid: 12535337
|
73 |
J Leclercq, L C Adams-Phillips, H Zegzouti, B Jones, A Latché, J J Giovannoni, J C Pech, M Bouzayen. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiology, 2002, 130(3): 1132–1142
https://doi.org/10.1104/pp.009415
pmid: 12427980
|
74 |
L Adams-Phillips, C Barry, P Kannan, J Leclercq, M Bouzayen, J Giovannoni. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Molecular Biology, 2004, 54(3): 387–404
https://doi.org/10.1023/B:PLAN.0000036371.30528.26
pmid: 15284494
|
75 |
J M Alonso, A N Stepanova. The ethylene signaling pathway. Science, 2004, 306(5701): 1513–1515
https://doi.org/10.1126/science.1104812
pmid: 15567852
|
76 |
X R Yin, A C Allan, K S Chen, I B Ferguson. Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiology, 2010, 153(3): 1280–1292
https://doi.org/10.1104/pp.110.157081
pmid: 20457803
|
77 |
T Nakano, K Suzuki, T Fujimura, H Shinshi. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411–432
https://doi.org/10.1104/pp.105.073783
pmid: 16407444
|
78 |
M Ohta, K Matsui, K Hiratsu, H Shinshi, M Ohme-Takagi. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13(8): 1959–1968
https://doi.org/10.1105/TPC.010127
pmid: 11487705
|
79 |
M Ohta, M Ohme-Takagi, H Shinshi. Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant Journal, 2000, 22(1): 29–38
https://doi.org/10.1046/j.1365-313x.2000.00709.x
pmid: 10792818
|
80 |
S Y Fujimoto, M Ohta, A Usui, H Shinshi, M Ohme-Takagi. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12(3): 393–404
pmid: 10715325
|
81 |
Z Zhang, H Zhang, R Quan, X C Wang, R Huang. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology, 2009, 150(1): 365–377
https://doi.org/10.1104/pp.109.135830
pmid: 19261734
|
82 |
Y Y Xiao, J Y Chen, J F Kuang, W Shan, H Xie, Y M Jiang, W J Lu. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany, 2013, 64(8): 2499–2510
https://doi.org/10.1093/jxb/ert108
pmid: 23599278
|
83 |
R Kumar, A Khurana, A K Sharma. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 2014, 65(16): 4561–4575
https://doi.org/10.1093/jxb/eru277
pmid: 25028558
|
84 |
S Abel, A Theologis. Early genes and auxin action. Plant Physiology, 1996, 111(1): 9–17
https://doi.org/10.1104/pp.111.1.9
pmid: 8685277
|
85 |
J G Buta, D W Spaulding. Changes in indole-3-acetic acid and abscisic acid levels during tomato (Lycopersicon esculentum Mill.) fruit development and ripening. Journal of Plant Growth Regulation, 1994, 13(3): 163–166
https://doi.org/10.1007/BF00196382
|
86 |
S Mapelli, C Frova, G Torti, G P Soressi. Relationship between set, development and activities of growth regulators in tomato fruits. Plant & Cell Physiology, 1978, 19(7): 1281–1288
|
87 |
R Kumar, P Agarwal, A K Tyagi, A K Sharma. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Molecular Genetics and Genomics, 2012, 287(3): 221–235
https://doi.org/10.1007/s00438-011-0672-6
pmid: 22228229
|
88 |
A N Miller, C S Walsh, J D Cohen. Measurement of indole-3-acetic acid in peach fruits (Prunus persica L. Batsch cv Redhaven) during development. Plant Physiology, 1987, 84(2): 491–494
https://doi.org/10.1104/pp.84.2.491
pmid: 16665467
|
89 |
M Lavy, M Estelle. Mechanisms of auxin signaling. Development, 2016, 143(18): 3226–3229
https://doi.org/10.1242/dev.131870
pmid: 27624827
|
90 |
O Leyser. Auxin signaling. Plant Physiology, 2018, 176(1): 465–479
https://doi.org/10.1104/pp.17.00765
pmid: 28818861
|
91 |
S Lohani, P K Trivedi, P Nath. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 2004, 31(2): 119–126
https://doi.org/10.1016/j.postharvbio.2003.08.001
|
92 |
J Li, X Tao, L Li, L Mao, Z Luo, Z U Khan, T Ying. Comprehensive RNA-Seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS One, 2016, 11(5): e0156453
https://doi.org/10.1371/journal.pone.0156453
pmid: 27228127
|
93 |
I El-Sharkawy, S M Sherif, B Jones, I Mila, P P Kumar, M Bouzayen, S Jayasankar. TIR1-like auxin-receptors are involved in the regulation of plum fruit development. Journal of Experimental Botany, 2014, 65(18): 5205–5215
https://doi.org/10.1093/jxb/eru279
pmid: 24996652
|
94 |
A B Bleecker, H Kende. Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology, 2000, 16(1): 1–18
https://doi.org/10.1146/annurev.cellbio.16.1.1
pmid: 11031228
|
95 |
B B Desai, P B Deshpande. Chemical control of ripening in banana. Physiologia Plantarum, 1978, 44(3): 238–240
https://doi.org/10.1111/j.1399-3054.1978.tb08624.x
|
96 |
P McAtee, S Karim, R Schaffer, K David. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers of Plant Science, 2013, 4: 79
https://doi.org/10.3389/fpls.2013.00079
pmid: 23616786
|
97 |
H F Jia, Y M Chai, C L Li, D Lu, J J Luo, L Qin, Y Y Shen. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 2011, 157(1): 188–199
https://doi.org/10.1104/pp.111.177311
pmid: 21734113
|
98 |
B Z Hou, C L Li, Y Y Han, Y Y Shen. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC Plant Biology, 2018, 18(1): 162
https://doi.org/10.1186/s12870-018-1377-3
pmid: 30097017
|
99 |
W Mou, D Li, Z Luo, L Li, L Mao, T Ying. SlAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Science, 2018, 276: 239–249
https://doi.org/10.1016/j.plantsci.2018.07.015
pmid: 30348324
|
100 |
Y Wang, Y Wang, K Ji, S Dai, Y Hu, L Sun, Q Li, P Chen, Y Sun, C Duan, Y Wu, H Luo, D Zhang, Y Guo, P Leng. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiology and Biochemistry, 2013, 64: 70–79
https://doi.org/10.1016/j.plaphy.2012.12.015
pmid: 23376370
|
101 |
M Zhang, B Yuan, P Leng. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany, 2009, 60(6): 1579–1588
https://doi.org/10.1093/jxb/erp026
pmid: 19246595
|
102 |
S S Zaharah, Z Singh, G M Symons, J B Reid. Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biology and Technology, 2013, 75: 37–44
https://doi.org/10.1016/j.postharvbio.2012.07.009
|
103 |
M Vendrell, C Buesa. Relationship between abscisic acid content and ripening of apples. In: Herregods M, ed. International symposium on postharvest handling of fruit and vegetables. Acta Horticulturae, 1989, (258): 45
|
104 |
K Shu, X D Liu, Q Xie, Z H He. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant, 2016, 9(1): 34–45
https://doi.org/10.1016/j.molp.2015.08.010
pmid: 26343970
|
105 |
R P Pharis, R W King. Gibberellins and reproductive development in seed plants. Annual Review of Plant Physiology, 1985, 36(1): 517–568
https://doi.org/10.1146/annurev.pp.36.060185.002505
|
106 |
J C Serrani, R Sanjuán, O Ruiz-Rivero, M Fos, J L García-Martínez. Gibberellin regulation of fruit set and growth in tomato. Plant Physiology, 2007, 145(1): 246–257
https://doi.org/10.1104/pp.107.098335
pmid: 17660355
|
107 |
H Li, H Wu, Q Qi, H Li, Z Li, S Chen, Q Ding, Q Wang, Z Yan, Y Gai, X Jiang, J Ding, T Gu, X Hou, M Richard, Y Zhao, Y Li. Gibberellins play a role in regulating tomato fruit ripening. Plant & Cell Physiology, 2019, 60(7): 1619–1629
https://doi.org/10.1093/pcp/pcz069
pmid: 31073591
|
108 |
A Srivastava, A K Handa. Hormonal regulation of tomato fruit development: a molecular perspective. Journal of Plant Growth Regulation, 2005, 24(2): 67–82
https://doi.org/10.1007/s00344-005-0015-0
|
109 |
H C Dostal, A C Leopold. Gibberellin delays ripening of tomatoes. Science, 1967, 158(3808): 1579–1580
https://doi.org/10.1126/science.158.3808.1579
pmid: 17816629
|
110 |
N B Mandava. Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 1988, 39(1): 23–52
https://doi.org/10.1146/annurev.pp.39.060188.000323
|
111 |
T Montoya, T Nomura, T Yokota, K Farrar, K Harrison, J D G Jones, T Kaneta, Y Kamiya, M Szekeres, G J Bishop. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant Journal, 2005, 42(2): 262–269
https://doi.org/10.1111/j.1365-313X.2005.02376.x
pmid: 15807787
|
112 |
B Vidya Vardhini, S S R Rao. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 2002, 61(7): 843–847
https://doi.org/10.1016/S0031-9422(02)00223-6
pmid: 12453577
|
113 |
T Zhu, W R Tan, X G Deng, T Zheng, D W Zhang, H H Lin. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology, 2015, 100: 196–204
https://doi.org/10.1016/j.postharvbio.2014.09.016
|
114 |
Y Ji Y L, Z Y Qu, J J Jiang, J F Yan, M Y Chu, X Xu, H Su, A D Yuan, Wang. The mechanism for brassinosteroids suppressing climacteric fruit ripening. Plant Physiology, 2021: kiab013 doi:10.1093/plphys/kiab013
|
115 |
X J Li, X J Chen, X Guo, L L Yin, G J Ahammed, C J Xu, K S Chen, C C Liu, X J Xia, K Shi, J Zhou, Y H Zhou, J Q Yu. DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 2016, 14(3): 1021–1033
https://doi.org/10.1111/pbi.12474
pmid: 26383874
|
116 |
S Nie, S Huang, S Wang, D Cheng, J Liu, S Lv, Q Li, X Wang. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Frontiers of Plant Science, 2017, 8: 1386
https://doi.org/10.3389/fpls.2017.01386
pmid: 28848587
|
117 |
Z Zhu, Z Q Zhang, G Z Qin, S P Tian. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 2010, 56(1): 50–55
https://doi.org/10.1016/j.postharvbio.2009.11.014
|
118 |
B Lv, H Tian, F Zhang, J Liu, S Lu, M Bai, C Li, Z Ding. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLOS Genetics, 2018, 14(1): e1007144
https://doi.org/10.1371/journal.pgen.1007144
pmid: 29324765
|
119 |
C Wasternack, S Song. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 2017, 68(6): 1303–1321
pmid: 27940470
|
120 |
C Wasternack, B Hause. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021–1058
https://doi.org/10.1093/aob/mct067
pmid: 23558912
|
121 |
C S Barry, J J Giovannoni. Ethylene and fruit ripening. Journal of Plant Growth Regulation, 2007, 26(2): 143–159
https://doi.org/10.1007/s00344-007-9002-y
|
122 |
S Kondo, A Tomiyama, H Seto. Changes of endogenous jasmonic acid and methyl jasmonate in apples and sweet cherries during fruit development. Journal of the American Society for Horticultural Science, 2000, 125(3): 282–287
https://doi.org/10.21273/JASHS.125.3.282
|
123 |
M Saniewski, A Miszczak, L Kawa-Miszczak, E Wegrzynowicz-Lesiak, K Miyamoto, J Ueda. Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. Journal of Plant Growth Regulation, 1998, 17(1): 33–37
https://doi.org/10.1007/PL00007009
|
124 |
H J D Lalel, Z Singh, S C Tan. The role of methyl jasmonate in mango ripening and biosynthesis of aroma volatile compounds. Journal of Horticultural Science & Biotechnology, 2003, 78(4): 470–484
https://doi.org/10.1080/14620316.2003.11511652
|
125 |
M Saniewski, J Czapski, J Nowacki. Relationship between stimulatory effect of methyl jasmonate on ethylene production and 1-aminocyclopropane-1-carboxylic acid content in tomatoes. Biologia Plantarum, 1987, 29(1): 17–21
https://doi.org/10.1007/BF02902308
|
126 |
K Kazan, J M Manners. MYC2: the master in action. Molecular Plant, 2013, 6(3): 686–703
https://doi.org/10.1093/mp/sss128
pmid: 23142764
|
127 |
P Fernández-Calvo, A Chini, G Fernández-Barbero, J M Chico, S Gimenez-Ibanez, J Geerinck, D Eeckhout, F Schweizer, M Godoy, J M Franco-Zorrilla, L Pauwels, E Witters, M I Puga, J Paz-Ares, A Goossens, P Reymond, G De Jaeger, R Solano. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell, 2011, 23(2): 701–715
https://doi.org/10.1105/tpc.110.080788
pmid: 21335373
|
128 |
X Zhang, Z Zhu, F An, D Hao, P Li, J Song, C Yi, H Guo. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell, 2014, 26(3): 1105–1117
https://doi.org/10.1105/tpc.113.122002
pmid: 24668749
|
129 |
D R Rudell, J K Fellman, J P Mattheis. Preharvest application of methyl jasmonate to ‘Fuji’ apples enhances red coloration and affects fruit size, splitting, and bitter pit incidence. HortScience, 2005, 40(6): 1760–1762
https://doi.org/10.21273/HORTSCI.40.6.1760
|
130 |
W Liu, T Li, H Yuan, D Tan, A Wang. Enhancement of apple coloration using jasmonate treatment without sacrificing storage potential. Plant Signaling & Behavior, 2018, 13(1): e1422467
https://doi.org/10.1080/15592324.2017.1422467
pmid: 29286869
|
131 |
J J Kieber, G E Schaller. Cytokinins. In: The Arabidopsis Book. The American Society of Plant Biologists, 2014, 12
|
132 |
A Varga, J J Bruinsma. The growth and ripening of tomato fruits at different levels of endogenous cytokinins. Journal of Horticultural Science, 1974, 49(2): 135–142
https://doi.org/10.1080/00221589.1974.11514560
|
133 |
N Desai, G M Chism. Changes in cytokinin activity in the ripening tomato fruit. Journal of Food Science, 1978, 43(4): 1324–1326
https://doi.org/10.1111/j.1365-2621.1978.tb15300.x
|
134 |
A Ainalidou, G Tanou, M Belghazi, M Samiotaki, G Diamantidis, A Molassiotis, K Karamanoli. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. Journal of Proteomics, 2016, 143: 318–333
https://doi.org/10.1016/j.jprot.2016.02.013
pmid: 26915585
|
135 |
S Setha. Roles of abscisic acid in fruit ripening. Walailak Journal of Science and Technology, 2012, 9(4): 297–308
|
136 |
L Sun, Y Sun, M Zhang, L Wang, J Ren, M Cui, Y Wang, K Ji, P Li, Q Li, P Chen, S Dai, C Duan, Y Wu, P Leng. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiology, 2012, 158(1): 283–298
https://doi.org/10.1104/pp.111.186866
pmid: 22108525
|
137 |
B Jones, P Frasse, E Olmos, H Zegzouti, Z G Li, A Latché, J C Pech, M Bouzayen. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant Journal, 2002, 32(4): 603–613
https://doi.org/10.1046/j.1365-313X.2002.01450.x
pmid: 12445130
|
138 |
M C Parra-Lobato, M C Gomez-Jimenez. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. Journal of Experimental Botany, 2011, 62(13): 4447–4465
https://doi.org/10.1093/jxb/err124
pmid: 21633085
|
139 |
P Torrigiani, D Bressanin, K Beatriz Ruiz, A Tadiello, L Trainotti, C Bonghi, V Ziosi, G Costa. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiologia Plantarum, 2012, 146(1): 86–98
https://doi.org/10.1111/j.1399-3054.2012.01612.x
pmid: 22409726
|
140 |
N Li, B L Parsons, D R Liu, A K Mattoo. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology, 1992, 18(3): 477–487
https://doi.org/10.1007/BF00040664
pmid: 1371404
|
141 |
S Rümer, K J Gupta, W M Kaiser. Plant cells oxidize hydroxylamines to NO. Journal of Experimental Botany, 2009, 60(7): 2065–2072
https://doi.org/10.1093/jxb/erp077
pmid: 19357430
|
142 |
G Manjunatha, V Lokesh, B Neelwarne. Nitric oxide in fruit ripening: trends and opportunities. Biotechnology Advances, 2010, 28(4): 489–499
https://doi.org/10.1016/j.biotechadv.2010.03.001
pmid: 20307642
|
143 |
V Ziosi, C Bonghi, A M Bregoli, L Trainotti, S Biondi, S Sutthiwal, S Kondo, G Costa, P Torrigiani. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. Journal of Experimental Botany, 2008, 59(3): 563–573
https://doi.org/10.1093/jxb/erm331
pmid: 18252703
|
144 |
X T Fan, J P Mattheis, J K Fellman. A role for jasmonates in climacteric fruit ripening. Planta, 1998, 204(4): 444–449
https://doi.org/10.1007/s004250050278
|
145 |
R Singh, P Singh, N Pathak, V K Singh, U N Dwivedi. Modulation of mango ripening by chemicals: physiological and biochemical aspects. Plant Growth Regulation, 2007, 53(2): 137–145
https://doi.org/10.1007/s10725-007-9211-1
|
146 |
D Martínez Romero, D Valero, M Serrano, F Burló, A Carbonell, L Burgos, F Riquelme. Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) storability improvement. Journal of Food Science, 2000, 65(2): 288–294
https://doi.org/10.1111/j.1365-2621.2000.tb15995.x
|
147 |
J Vrebalov, D Ruezinsky, V Padmanabhan, R White, D Medrano, R Drake, W Schuch, J Giovannoni. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 2002, 296(5566): 343–346
https://doi.org/10.1126/science.1068181
pmid: 11951045
|
148 |
Y Ito, A Nishizawa-Yokoi, M Endo, M Mikami, Y Shima, N Nakamura, E Kotake-Nara, S Kawasaki, S Toki. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature Plants, 2017, 3(11): 866–874
https://doi.org/10.1038/s41477-017-0041-5
pmid: 29085071
|
149 |
S Li, H Xu, Z Ju, D Cao, H Zhu, D Fu, D Grierson, G Qin, Y Luo, B Zhu. The RIN-MC fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes. Plant Physiology, 2018, 176(1): 891–909
https://doi.org/10.1104/pp.17.01449
pmid: 29133374
|
150 |
S Li, B Zhu, J Pirrello, C Xu, B Zhang, M Bouzayen, K Chen, D Grierson. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytologist, 2020, 226(2): 460–475
https://doi.org/10.1111/nph.16362
pmid: 31814125
|
151 |
Y Ito, M Kitagawa, N Ihashi, K Yabe, J Kimbara, J Yasuda, H Ito, T Inakuma, S Hiroi, T Kasumi. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant Journal, 2008, 55(2): 212–223
https://doi.org/10.1111/j.1365-313X.2008.03491.x
pmid: 18363783
|
152 |
M Fujisawa, T Nakano, Y Ito. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biology, 2011, 11(1): 26
https://doi.org/10.1186/1471-2229-11-26
pmid: 21276270
|
153 |
C Martel, J Vrebalov, P Tafelmeyer, J J Giovannoni. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiology, 2011, 157(3): 1568–1579
https://doi.org/10.1104/pp.111.181107
pmid: 21941001
|
154 |
G Qin, Y Wang, B Cao, W Wang, S Tian. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant Journal, 2012, 70(2): 243–255
https://doi.org/10.1111/j.1365-313X.2011.04861.x
pmid: 22098335
|
155 |
C Gao, Z Ju, D Cao, B Zhai, G Qin, H Zhu, D Fu, Y Luo, B Zhu. MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation. Plant Biotechnology Journal, 2015, 13(3): 370–382
https://doi.org/10.1111/pbi.12297
pmid: 25516062
|
156 |
M Itkin, H Seybold, D Breitel, I Rogachev, S Meir, A Aharoni. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant Journal, 2009, 60(6): 1081–1095
https://doi.org/10.1111/j.1365-313X.2009.04064.x
pmid: 19891701
|
157 |
J Vrebalov, I L Pan, A J M Arroyo, R McQuinn, M Chung, M Poole, J Rose, G Seymour, S Grandillo, J Giovannoni, V F Irish. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell, 2009, 21(10): 3041–3062
https://doi.org/10.1105/tpc.109.066936
pmid: 19880793
|
158 |
M Bemer, R Karlova, A R Ballester, Y M Tikunov, A G Bovy, M Wolters-Arts, P B Rossetto, G C Angenent, R A de Maagd. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell, 2012, 24(11): 4437–4451
https://doi.org/10.1105/tpc.112.103283
pmid: 23136376
|
159 |
M Fujisawa, Y Shima, H Nakagawa, M Kitagawa, J Kimbara, T Nakano, T Kasumi, Y Ito. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell, 2014, 26(1): 89–101
https://doi.org/10.1105/tpc.113.119453
pmid: 24415769
|
160 |
T Dong, Z Hu, L Deng, Y Wang, M Zhu, J Zhang, G Chen. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiology, 2013, 163(2): 1026–1036
https://doi.org/10.1104/pp.113.224436
pmid: 24006286
|
161 |
Q Xie, Z Hu, Z Zhu, T Dong, Z Zhao, B Cui, G Chen. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Scientific Reports, 2014, 4(1): 4367
https://doi.org/10.1038/srep04367
pmid: 24621662
|
162 |
E Giménez, B Pineda, J Capel, M T Antón, A Atarés, F Pérez-Martín, B García-Sogo, T Angosto, V Moreno, R Lozano. Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS One, 2010, 5(12): e14427
https://doi.org/10.1371/journal.pone.0014427
pmid: 21203447
|
163 |
Y Shima, M Kitagawa, M Fujisawa, T Nakano, H Kato, J Kimbara, T Kasumi, Y Ito. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Molecular Biology, 2013, 82(4-5): 427–438
https://doi.org/10.1007/s11103-013-0071-y
pmid: 23677393
|
164 |
L C Hileman, J F Sundstrom, A Litt, M Chen, T Shumba, V F Irish. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Molecular Biology and Evolution, 2006, 23(11): 2245–2258
https://doi.org/10.1093/molbev/msl095
pmid: 16926244
|
165 |
J Pirrello, B C N Prasad, W Zhang, K Chen, I Mila, M Zouine, A Latché, J C Pech, M Ohme-Takagi, F Regad, M Bouzayen. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology, 2012, 12(1): 190
https://doi.org/10.1186/1471-2229-12-190
pmid: 23057995
|
166 |
X Meng, J Xu, Y He, K Y Yang, B Mordorski, Y Liu, S Zhang. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell, 2013, 25(3): 1126–1142
https://doi.org/10.1105/tpc.112.109074
pmid: 23524660
|
167 |
M A Rodrigues, R E Bianchetti, L Freschi. Shedding light on ethylene metabolism in higher plants. Frontiers of Plant Science, 2014, 5: 665
https://doi.org/10.3389/fpls.2014.00665
pmid: 25520728
|
168 |
M Y Chung, J Vrebalov, R Alba, J Lee, R McQuinn, J D Chung, P Klein, J Giovannoni. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant Journal, 2010, 64(6): 936–947
https://doi.org/10.1111/j.1365-313X.2010.04384.x
pmid: 21143675
|
169 |
J M Lee, J G Joung, R McQuinn, M Y Chung, Z Fei, D Tieman, H Klee, J Giovannoni. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant Journal, 2012, 70(2): 191–204
https://doi.org/10.1111/j.1365-313X.2011.04863.x
pmid: 22111515
|
170 |
R Karlova, F M Rosin, J Busscher-Lange, V Parapunova, P T Do, A R Fernie, P D Fraser, C Baxter, G C Angenent, R A de Maagd. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell, 2011, 23(3): 923–941
https://doi.org/10.1105/tpc.110.081273
pmid: 21398570
|
171 |
M Aida, T Ishida, H Fukaki, H Fujisawa, M Tasaka. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9(6): 841–857
https://doi.org/10.1105/tpc.9.6.841
pmid: 9212461
|
172 |
A N Olsen, H A Ernst, L L Leggio, K Skriver. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79–87
https://doi.org/10.1016/j.tplants.2004.12.010
pmid: 15708345
|
173 |
H Zhang, J Jin, L Tang, Y Zhao, X Gu, G Gao, J Luo. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Research, 2011, 39(Database issue suppl_1): D1114–D1117
https://doi.org/10.1093/nar/gkq1141
pmid: 21097470
|
174 |
Y J Hao, W Wei, Q X Song, H W Chen, Y Q Zhang, F Wang, H F Zou, G Lei, A G Tian, W K Zhang, B Ma, J S Zhang, S Y Chen. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant Journal, 2011, 68(2): 302–313
https://doi.org/10.1111/j.1365-313X.2011.04687.x
pmid: 21707801
|
175 |
M Zhu, G Chen, S Zhou, Y Tu, Y Wang, T Dong, Z Hu. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant & Cell Physiology, 2014, 55(1): 119–135
https://doi.org/10.1093/pcp/pct162
pmid: 24265273
|
176 |
S D Yang, P J Seo, H K Yoon, C M Park. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell, 2011, 23(6): 2155–2168
https://doi.org/10.1105/tpc.111.084913
pmid: 21673078
|
177 |
S Lindemose, M K Jensen, J V de Velde, C O’Shea, K S Heyndrickx, C T Workman, K Vandepoele, K Skriver, F D Masi. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Research, 2014, 42(12): 7681–7693
https://doi.org/10.1093/nar/gku502
pmid: 24914054
|
178 |
S Moore, J Vrebalov, P Payton, J Giovannoni. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. Journal of Experimental Botany, 2002, 53(377): 2023–2030
https://doi.org/10.1093/jxb/erf057
pmid: 12324526
|
179 |
S Osorio, R Alba, C M B Damasceno, G Lopez-Casado, M Lohse, M I Zanor, T Tohge, B Usadel, J K C Rose, Z Fei, J J Giovannoni, A R Fernie. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiology, 2011, 157(1): 405–425
https://doi.org/10.1104/pp.111.175463
pmid: 21795583
|
180 |
N Ma, H Feng, X Meng, D Li, D Yang, C Wu, Q Meng. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology, 2014, 14(1): 351
https://doi.org/10.1186/s12870-014-0351-y
pmid: 25491370
|
181 |
C Meng, D Yang, X Ma, W Zhao, X Liang, N Ma, Q Meng. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology, 2016, 193: 88–96
https://doi.org/10.1016/j.jplph.2016.01.014
pmid: 26962710
|
182 |
Y Gao, W Wei, X Zhao, X Tan, Z Fan, Y Zhang, Y Jing, L Meng, B Zhu, H Zhu, J Chen, C Z Jiang, D Grierson, Y Luo, D Q Fu. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture Research, 2018, 5(1): 75
https://doi.org/10.1038/s41438-018-0111-5
pmid: 30588320
|
183 |
Z Lin, Y Hong, M Yin, C Li, K Zhang, D Grierson. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant Journal, 2008, 55(2): 301–310
https://doi.org/10.1111/j.1365-313X.2008.03505.x
pmid: 18397374
|
184 |
A Lovisetto, F Guzzo, A Tadiello, E Confortin, A Pavanello, A Botton, G Casadoro. Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiology and Biochemistry, 2013, 70: 462–470
https://doi.org/10.1016/j.plaphy.2013.06.014
pmid: 23845825
|
185 |
A Feller, K Machemer, E L Braun, E Grotewold. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 2011, 66(1): 94–116
https://doi.org/10.1111/j.1365-313X.2010.04459.x
pmid: 21443626
|
186 |
G Yao, M Ming, A C Allan, C Gu, L Li, X Wu, R Wang, Y Chang, K Qi, S Zhang, J Wu. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92(3): 437–451
https://doi.org/10.1111/tpj.13666
pmid: 28845529
|
187 |
X H An, Y Tian, K Q Chen, X J Liu, D D Liu, X B Xie, C G Cheng, P H Cong, Y J Hao. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant & Cell Physiology, 2015, 56(4): 650–662
https://doi.org/10.1093/pcp/pcu205
pmid: 25527830
|
188 |
Z Q Fan, L J Ba, W Shan, Y Y Xiao, W J Lu, J F Kuang, J Y Chen. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. Plant Journal, 2018, 96(6): 1191–1205
https://doi.org/10.1111/tpj.14099
pmid: 30242914
|
189 |
K Kaufmann, A Pajoro, G C Angenent. Regulation of transcription in plants: mechanisms controlling developmental switches. Nature Reviews: Genetics, 2010, 11(12): 830–842
https://doi.org/10.1038/nrg2885
pmid: 21063441
|
190 |
S Feng, S E Jacobsen, W Reik. Epigenetic reprogramming in plant and animal development. Science, 2010, 330(6004): 622–627
https://doi.org/10.1126/science.1190614
pmid: 21030646
|
191 |
H Wollmann, F Berger. Epigenetic reprogramming during plant reproduction and seed development. Current Opinion in Plant Biology, 2012, 15(1): 63–69
https://doi.org/10.1016/j.pbi.2011.10.001
pmid: 22035873
|
192 |
J A Law, S E Jacobsen. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews: Genetics, 2010, 11(3): 204–220
https://doi.org/10.1038/nrg2719
pmid: 20142834
|
193 |
X J He, T Chen, J K Zhu. Regulation and function of DNA methylation in plants and animals. Cell Research, 2011, 21(3): 442–465
https://doi.org/10.1038/cr.2011.23
pmid: 21321601
|
194 |
S Zhong, Z Fei, Y R Chen, Y Zheng, M Huang, J Vrebalov, R McQuinn, N Gapper, B Liu, J Xiang, Y Shao, J J Giovannoni. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 2013, 31(2): 154–159
https://doi.org/10.1038/nbt.2462
pmid: 23354102
|
195 |
E Teyssier, G Bernacchia, S Maury, A How Kit, L Stammitti-Bert, D Rolin, P Gallusci. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta, 2008, 228(3): 391–399
https://doi.org/10.1007/s00425-008-0743-z
pmid: 18488247
|
196 |
P H Tate, A P Bird. Effects of DNA methylation on DNA-binding proteins and gene expression. Current Opinion in Genetics & Development, 1993, 3(2): 226–231
https://doi.org/10.1016/0959-437X(93)90027-M
pmid: 8504247
|
197 |
R Liu, A How-Kit, L Stammitti, E Teyssier, D Rolin, A Mortain-Bertrand, S Halle, M Liu, J Kong, C Wu, C Degraeve-Guibault, N H Chapman, M Maucourt, T C Hodgman, J Tost, M Bouzayen, Y Hong, G B Seymour, J J Giovannoni, P Gallusci. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10804–10809
https://doi.org/10.1073/pnas.1503362112
pmid: 26261318
|
198 |
Z Lang, Y Wang, K Tang, D Tang, T Datsenka, J Cheng, Y Zhang, A K Handa, J K Zhu. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(22): E4511–E4519
https://doi.org/10.1073/pnas.1705233114
pmid: 28507144
|
199 |
L Zhou, S Tian, G Qin. RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biology, 2019, 20(1): 156
https://doi.org/10.1186/s13059-019-1771-7
pmid: 31387610
|
200 |
C Liu, F Lu, X Cui, X Cao. Histone methylation in higher plants. Annual Review of Plant Biology, 2010, 61(1): 395–420
https://doi.org/10.1146/annurev.arplant.043008.091939
pmid: 20192747
|
201 |
P Lü, S Yu, N Zhu, Y R Chen, B Zhou, Y Pan, D Tzeng, J P Fabi, J Argyris, J Garcia-Mas, N Ye, J Zhang, D Grierson, J Xiang, Z Fei, J Giovannoni, S Zhong. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants, 2018, 4(10): 784–791
https://doi.org/10.1038/s41477-018-0249-z
pmid: 30250279
|
202 |
Q Liang, H Deng, Y Li, Z Liu, P Shu, R Fu, Y Zhang, J Pirrello, Y Zhang, D Grierson, M Bouzayen, Y Liu, M Liu. Like heterochromatin protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening-related genes in tomato. New Phytologist, 2020, 227(2): 485–497
https://doi.org/10.1111/nph.16550
pmid: 32181875
|
203 |
Z Li, G Jiang, X Liu, X Ding, D Zhang, X Wang, Y Zhou, H Yan, T Li, K Wu, Y Jiang, X Duan. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytologist, 2020, 227(4): 1138–1156
https://doi.org/10.1111/nph.16590
pmid: 32255501
|
204 |
Z Wang, H Cao, F Chen, Y Liu. The roles of histone acetylation in seed performance and plant development. Plant Physiology and Biochemistry, 2014, 84: 125–133
https://doi.org/10.1016/j.plaphy.2014.09.010
pmid: 25270163
|
205 |
X Liu, S Yang, M Zhao, M Luo, C W Yu, C Y Chen, R Tai, K Wu. Transcriptional repression by histone deacetylases in plants. Molecular Plant, 2014, 7(5): 764–772
https://doi.org/10.1093/mp/ssu033
pmid: 24658416
|
206 |
R Aiese Cigliano, W Sanseverino, G Cremona, M R Ercolano, C Conicella, F M Consiglio. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics, 2013, 14(1): 57
https://doi.org/10.1186/1471-2164-14-57
pmid: 23356725
|
207 |
J E Guo, Z L Hu, X H Guo, L C Zhang, X H Yu, S G Zhou, G P Chen. Molecular characterization of nine tissue-specific or stress-responsive genes of histone deacetylase in tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2017, 36(3): 566–577
https://doi.org/10.1007/s00344-016-9660-8
|
208 |
J E Guo, Z Hu, M Zhu, F Li, Z Zhu, Y Lu, G Chen. The tomato histone deacetylase SlHDA1 contributes to the repression of fruit ripening and carotenoid accumulation. Scientific Reports, 2017, 7(1): 7930
https://doi.org/10.1038/s41598-017-08512-x
pmid: 28801625
|
209 |
J E Guo, Z Hu, F Li, L Zhang, X Yu, B Tang, G Chen. Silencing of histone deacetylase SlHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato. Plant Science, 2017, 265: 29–38
https://doi.org/10.1016/j.plantsci.2017.09.013
pmid: 29223340
|
210 |
Z Zhu, F An, Y Feng, P Li, L Xue, M A, Z Jiang, J M Kim, T K To, W Li, X Zhang, Q Yu, Z Dong, W Q Chen, M Seki, J M Zhou, H Guo. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12539–12544
https://doi.org/10.1073/pnas.1103959108
pmid: 21737749
|
211 |
L Pi, E Aichinger, E van der Graaff, C I Llavata-Peris, D Weijers, L Hennig, E Groot, T Laux. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Developmental Cell, 2015, 33(5): 576–588
https://doi.org/10.1016/j.devcel.2015.04.024
pmid: 26028217
|
212 |
Y C Han, J F Kuang, J Y Chen, X C Liu, Y Y Xiao, C C Fu, J N Wang, K Q Wu, W J Lu. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiology, 2016, 171(2): 1070–1084
https://doi.org/10.1104/pp.16.00301
pmid: 27208241
|
213 |
R Velasco, A Zharkikh, J Affourtit, A Dhingra, A Cestaro, A Kalyanaraman, P Fontana, S K Bhatnagar, M Troggio, D Pruss, S Salvi, M Pindo, P Baldi, S Castelletti, M Cavaiuolo, G Coppola, F Costa, V Cova, A Dal Ri, V Goremykin, M Komjanc, S Longhi, P Magnago, G Malacarne, M Malnoy, D Micheletti, M Moretto, M Perazzolli, A Si-Ammour, S Vezzulli, E Zini, G Eldredge, L M Fitzgerald, N Gutin, J Lanchbury, T Macalma, J T Mitchell, J Reid, B Wardell, C Kodira, Z Chen, B Desany, F Niazi, M Palmer, T Koepke, D Jiwan, S Schaeffer, V Krishnan, C Wu, V T Chu, S T King, J Vick, Q Tao, A Mraz, A Stormo, K Stormo, R Bogden, D Ederle, A Stella, A Vecchietti, M M Kater, S Masiero, P Lasserre, Y Lespinasse, A C Allan, V Bus, D Chagné, R N Crowhurst, A P Gleave, E Lavezzo, J A Fawcett, S Proost, P Rouzé, L Sterck, S Toppo, B Lazzari, R P Hellens, C E Durel, A Gutin, R E Bumgarner, S E Gardiner, M Skolnick, M Egholm, Y Van de Peer, F Salamini, R Viola. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10): 833–839
https://doi.org/10.1038/ng.654
pmid: 20802477
|
214 |
A D’Hont, F Denoeud, J M Aury, F C Baurens, F Carreel, O Garsmeur, B Noel, S Bocs, G Droc, M Rouard, C Da Silva, K Jabbari, C Cardi, J Poulain, M Souquet, K Labadie, C Jourda, J Lengellé, M Rodier-Goud, A Alberti, M Bernard, M Correa, S Ayyampalayam, M R Mckain, J Leebens-Mack, D Burgess, M Freeling, D Mbéguié-A-Mbéguié, M Chabannes, T Wicker, O Panaud, J Barbosa, E Hribova, P Heslop-Harrison, R Habas, R Rivallan, P Francois, C Poiron, A Kilian, D Burthia, C Jenny, F Bakry, S Brown, V Guignon, G Kema, M Dita, C Waalwijk, S Joseph, A Dievart, O Jaillon, J Leclercq, X Argout, E Lyons, A Almeida, M Jeridi, J Dolezel, N Roux, A M Risterucci, J Weissenbach, M Ruiz, J C Glaszmann, F Quétier, N Yahiaoui, P Wincker. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature Genetics, 2012, 488(7410): 213–217
https://doi.org/10.1038/nature11241
pmid: 22801500
|
215 |
J Garcia-Mas, A Benjak, W Sanseverino, M Bourgeois, G Mir, V M González, E Hénaff, F Câmara, L Cozzuto, E Lowy, T Alioto, S Capella-Gutiérrez, J Blanca, J Cañizares, P Ziarsolo, D Gonzalez-Ibeas, L Rodríguez-Moreno, M Droege, L Du, M Alvarez-Tejado, B Lorente-Galdos, M Melé, L Yang, Y Weng, A Navarro, T Marques-Bonet, M A Aranda, F Nuez, B Picó, T Gabaldón, G Roma, R Guigó, J M Casacuberta, P Arús, P Puigdomènech. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11872–11877
https://doi.org/10.1073/pnas.1205415109
pmid: 22753475
|
216 |
R Ming, S Hou, Y Feng, Q Yu, A Dionne-Laporte, J H Saw, P Senin, W Wang, B V Ly, K L Lewis, S L Salzberg, L Feng, M R Jones, R L Skelton, J E Murray, C Chen, W Qian, J Shen, P Du, M Eustice, E Tong, H Tang, E Lyons, R E Paull, T P Michael, K Wall, D W Rice, H Albert, M L Wang, Y J Zhu, M Schatz, N Nagarajan, R A Acob, P Guan, A Blas, C M Wai, C M Ackerman, Y Ren, C Liu, J Wang, J Wang, J K Na, E V Shakirov, B Haas, J Thimmapuram, D Nelson, X Wang, J E Bowers, A R Gschwend, A L Delcher, R Singh, J Y Suzuki, S Tripathi, K Neupane, H Wei, B Irikura, M Paidi, N Jiang, W Zhang, G Presting, A Windsor, R Navajas-Pérez, M J Torres, F A Feltus, B Porter, Y Li, A M Burroughs, M C Luo, L Liu, D A Christopher, S M Mount, P H Moore, T Sugimura, J Jiang, M A Schuler, V Friedman, T Mitchell-Olds, D E Shippen, C W dePamphilis, J D Palmer, M Freeling, A H Paterson, D Gonsalves, L Wang, M Alam. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature Genetics, 2008, 452(7190): 991–996
https://doi.org/10.1038/nature06856
pmid: 18432245
|
217 |
J Wu, Z Wang, Z Shi, S Zhang, R Ming, S Zhu, M A Khan, S Tao, S S Korban, H Wang, N J Chen, T Nishio, X Xu, L Cong, K Qi, X Huang, Y Wang, X Zhao, J Wu, C Deng, C Gou, W Zhou, H Yin, G Qin, Y Sha, Y Tao, H Chen, Y Yang, Y Song, D Zhan, J Wang, L Li, M Dai, C Gu, Y Wang, D Shi, X Wang, H Zhang, L Zeng, D Zheng, C Wang, M Chen, G Wang, L Xie, V Sovero, S Sha, W Huang, S Zhang, M Zhang, J Sun, L Xu, Y Li, X Liu, Q Li, J Shen, J Wang, R E Paull, J L Bennetzen, J Wang, S Zhang. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 2013, 23(2): 396–408
https://doi.org/10.1101/gr.144311.112
pmid: 23149293
|
218 |
Z Fei, X Tang, R Alba, J Giovannoni. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Research, 2006, 34(Suppl_1): D766–D770
https://doi.org/10.1093/nar/gkj110
pmid: 16381976
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|