Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (1) : 37-51    https://doi.org/10.15302/J-FASE-2021405
REVIEW
WHEAT STRIPE RUST AND INTEGRATION OF SUSTAINABLE CONTROL STRATEGIES IN CHINA
Qingdong ZENG, Jie ZHAO, Jianhui WU, Gangming ZHAN, Dejun HAN, Zhensheng KANG()
State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
 Download: PDF(1315 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Stripe rust caused substantial yield losses in China.

P. striiformis is highly variable and the change from avirulence to virulence.

• Different comprehensive control strategies were adopted in different epidemic region.

Stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici occurs in almost all wheat-producing regions of the world. Severe countrywide epidemics in China have caused substantial yield losses. Growing resistant cultivars is the best strategy to control this disease but the pathogen can overcome resistance in wheat cultivars. The high variation in the virulence of the pathogen combined with the large areas of susceptible wheat cultivars enables the pathogen population to increase rapidly and disperse over long distances under favorable environmental conditions, resulting in severe pandemics within cropping seasons. Current stripe rust control measures are based on many years of research including the underlying epidemiology regarding year-to-year survival of the pathogen, pathways of pathogen dispersal within seasons and years, the role of P. striiformis sexual hybridization, the use of resistance sources in breeding programs, and year-round surveillance of national wheat crops that are present in different parts of the country throughout the year. All these strategies depend on accurate prediction of epidemics, more precise use of fungicides to meet national requirements and better deployment of resistance genes. New ideas with potential application in sustainable protection of stripe rust include negative regulatory gene editing, resistance gene overexpression and biological control based on microbiomes.

Keywords sustainable disease control      integrated control Puccinia striiformis      Triticum aestivum     
Corresponding Author(s): Zhensheng KANG   
Just Accepted Date: 12 July 2021   Online First Date: 19 July 2021    Issue Date: 17 January 2022
 Cite this article:   
Qingdong ZENG,Jie ZHAO,Jianhui WU, et al. WHEAT STRIPE RUST AND INTEGRATION OF SUSTAINABLE CONTROL STRATEGIES IN CHINA[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 37-51.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021405
https://academic.hep.com.cn/fase/EN/Y2022/V9/I1/37
Fig.1  (a) Simplified life cycle of Puccinia striiformis f. sp. tritici. n (haploid), n+ n (dikaryotic), and 2n (diploid). Spores are drawn to approximately the same scale. (b) The phenomenon of wheat and barberry growing adjacent to one another under natural conditions.
1 X M Chen, Z S Kang, eds. Stripe Rust. Dordrect, the Netherlands: Springer Science,2017
2 R W Stubbs. Stripe rust. In: Roelfs A P, Bushnell W R, eds. The Cereal Rusts, Vol II. New York: Academic Press, 1985, 61–101
3 Z Q Li, S M Zeng. Wheat rusts in China. Beijing: China Agriculture Press,2002 (in Chinese)
4 Z S Kang, J Zhao, D J Han, H C Zhang, X J Wang, C F Wang, Q M Han, J Guo, L L Huang. Status of wheat rust research and control in China. In: Proceedings of the BGRI 2010 Technical Workshop Oral Presentations. St. Petersburg, Russia, 2010, 50
5 T Boller, S Y He. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 2009, 324(5928): 742–744
https://doi.org/10.1126/science.1171647 pmid: 19423812
6 Z Li. Primary discussion on breakdown of resistance of wheat cultivars to stripe rust. Journal of Northwest A&F University (Natural Science Edition), 1980, 3: 83–92 (in Chinese)
7 W Q Chen, Z S Kang, Z H Ma, S C Xu, S L Jin, Y Y Jiang. Integrated Management of Wheat Stripe Rust Caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254–4262 (in Chinese)
8 Y Jin, L J Szabo, M Carson. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 2010, 100(5): 432–435
https://doi.org/10.1094/PHYTO-100-5-0432 pmid: 20373963
9 J Zhao, D Zheng, S X Zuo, L Wang, L L Huang, Z S Kang. Research advances in alternate host and sexual reproduction of wheat yellow rust pathogen Puccinia striiformis f. sp. tritici Erikss. et Henn. Acta Phytophylacica Sinica, 2018, 45(1): 7–19 (in Chinese)
10 J Zhao, L Wang, Z Wang, X Chen, H Zhang, J Yao, G Zhan, W Chen, L Huang, Z Kang. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 2013, 103(9): 927–934
https://doi.org/10.1094/PHYTO-09-12-0249-R pmid: 23514262
11 Z Wang, J Zhao, X Chen, Y Peng, J Ji, S Zhao, Y Lv, L Huang, Z Kang. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Disease, 2016, 100(1): 131–138
https://doi.org/10.1094/PDIS-12-14-1296-RE pmid: 30688563
12 Y Liu, X Y Chen, Y Ma, Z Y Meng, F L Wang, X J Yang, X F Chen, X M Li, Z S Kang, J Zhao. Evidence of roles of susceptible barberry in providing (primary) inocula to trigger stripe rust infection on wheat in Longnan, Gansu. Acta Phytopathologica Sinica, 2020 (in Chinese)
13 N H Lu, J F Wang, X M Chen, G M Zhan, C Q Chen, L L Huang, Z S Kang. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in the Northwest China. European Journal of Plant Pathology, 2011, 131(4): 685–693
https://doi.org/10.1007/s10658-011-9842-y
14 Q Wan, J Liang, Y Luo, Z Ma. Population genetic structure of Puccinia striiformis f. sp. tritici in northwestern China. Plant Disease, 2015, 99(12): 1764–1774
https://doi.org/10.1094/PDIS-02-15-0144-RE pmid: 30699507
15 J Liang, X Liu, Y Li, Q Wan, Z Ma, Y Luo. Population genetic structure and the migration of Puccinia striiformis f. sp tritici between the Gansu and Sichuan basin populations of china. Phytopathology, 2016, 106(2): 192–201
https://doi.org/10.1094/PHYTO-03-15-0081-R pmid: 26506459
16 G Zhan, F Wang, C Wan, Q Han, L Huang, Z Kang, X Chen. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Disease, 2016, 100(1): 99–107
https://doi.org/10.1094/PDIS-11-14-1142-RE pmid: 30688567
17 Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARAPR). Zero growth in the use of chemical fertilisers and pesticides by 2020. Available on MARAPR website on October 11, 2020
18 R P Oliver. A reassessment of the risk of rust fungi developing resistance to fungicides. Pest Management Science, 2014, 70(11): 1641–1645
https://doi.org/10.1002/ps.3767 pmid: 24616024
19 N M Cook, S Chng, T L Woodman, R Warren, R P Oliver, D G Saunders. High frequency of fungicide resistance-associated mutations in the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. Pest Management Science, 2021, 77(7): 3358–3371
https://doi.org/10.1002/ps.6380 pmid: 33786966
20 International Wheat Genome Sequencing Consortium(IWGSC); R Appels, K Eversole, N Stein, C Feuillet, B Keller, J Rogers, C J Pozniak, F Choulet, A Distelfeld, J Poland, G Ronen, A G Sharpe, O Barad, K Baruch, G Keeble-Gagnère, M Mascher, G Ben-Zvi, A A Josselin, A Himmelbach, F Balfourier, J Gutierrez-Gonzalez, M Hayden, C S Koh, G Muehlbauer, R K Pasam, E Paux, P Rigault, J Tibbits, V Tiwari, M Spannagl, D Lang, H Gundlach, G Haberer, K F X Mayer, D Ormanbekova, V Prade, H Šimková, T Wicker, D Swarbreck, H Rimbert, M Felder, N Guilhot, G Kaithakottil, J Keilwagen, P Leroy, T Lux, S Twardziok, L Venturini, A Juhász, M Abrouk, I Fischer, C Uauy, P Borrill, R H Ramirez-Gonzalez, D Arnaud, S Chalabi, B Chalhoub, A Cory, R Datla, M W Davey, J Jacobs, S J Robinson, B Steuernagel, F van Ex, B B H Wulff, M Benhamed, A Bendahmane, L Concia, D Latrasse, J Bartoš, A Bellec, H Berges, J Doležel, Z Frenkel, B Gill, A Korol, T Letellier, O A Olsen, K Singh, M Valárik, E van der Vossen, S Vautrin, S Weining, T Fahima, V Glikson, D Raats, J Číhalíková, H Toegelová, J Vrána, P Sourdille, B Darrier, D Barabaschi, L Cattivelli, P Hernandez, S Galvez, H Budak, J D G Jones, K Witek, G Yu, I Small, J Melonek, R Zhou, T Belova, K Kanyuka, R King, K Nilsen, S Walkowiak, R Cuthbert, R Knox, K Wiebe, D Xiang, A Rohde, T Golds, J Čížková, B A Akpinar, S Biyiklioglu, L Gao, A N’Daiye, M Kubaláková, J Šafář, F Alfama, A F Adam-Blondon, R Flores, C Guerche, M Loaec, H Quesneville, J Condie, J Ens, R Maclachlan, Y Tan, A Alberti, J M Aury, V Barbe, A Couloux, C Cruaud, K Labadie, S Mangenot, P Wincker, G Kaur, M Luo, S Sehgal, P Chhuneja, O P Gupta, S Jindal, P Kaur, P Malik, P Sharma, B Yadav, N K Singh, J P Khurana, C Chaudhary, P Khurana, V Kumar, A Mahato, S Mathur, A Sevanthi, N Sharma, R S Tomar, K Holušová, O Plíhal, M D Clark, D Heavens, G Kettleborough, J Wright, B Balcárková, Y Hu, E Salina, N Ravin, K Skryabin, A Beletsky, V Kadnikov, A Mardanov, M Nesterov, A Rakitin, E Sergeeva, H Handa, H Kanamori, S Katagiri, F Kobayashi, S Nasuda, T Tanaka, J Wu, F Cattonaro, M Jiumeng, K Kugler, M Pfeifer, S Sandve, X Xun, B Zhan, J Batley, P E Bayer, D Edwards, S Hayashi, Z Tulpová, P Visendi, L Cui, X Du, K Feng, X Nie, W Tong, L Wang. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191
https://doi.org/10.1126/science.aar7191 pmid: 30115783
21 P R Shewry. Wheat. Journal of Experimental Botany, 2009, 60(6): 1537–1553
https://doi.org/10.1093/jxb/erp058 pmid: 19386614
22 National Bureau of Statistics (NBS). Output and planting area of main crop products. Beijing: NBS, 2020. Available at NBS website on November 2, 2020
23 National Bureau of Statistics (NBS). Import quantity of main goods. Beijing: NBS, 2020. Available at NBS website on November 2, 2020
24 National Agro-Technical Extension and Service Centre. Prediction of occurrence trend of crop diseases and insect pests in 2021. Available at sina website on November 2, 2020 (in Chinese)
25 A P Roelfs, R P Singh, E E Saari. Rust diseases of wheat: concepts and methods of disease management. Mexico: Cimmyt,1992
26 Z Q Li, H S Shang. Wheat Rusts and Its Control. Shanghai: Shanghai Scientific & Technical Publishers, 1989
27 J C Zadoks. Yellow rust on wheat studies in epidemiology and physiologic specialization. Tijdschrift Over Plantenziekten, 1961, 67(3): 69–256
https://doi.org/10.1007/BF01984044
28 F Rapilly. Yellow rust epidemiology. Annual Review of Phytopathology, 1979, 17(1): 59–73
https://doi.org/10.1146/annurev.py.17.090179.000423
29 C R Wellings. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Australian Journal of Agricultural Research, 2007, 58(6): 567–575
https://doi.org/10.1071/AR07130
30 D Sharma-Poudyal, X M Chen, A M Wan, G M Zhan, Z S Kang, S Q Cao, S L Jin, A Morgounov, B Akin, Z Mert, S J A Shah, H Bux, M Ashraf, R C Sharma, R Madariaga, K D Puri, C Wellings, K Q Xi, R Wanyera, K Manninger, M I Ganzález, M Koyda, S Sanin, L J Patzek. Virulence Characterization of International Collections of the Wheat Stripe Rust Pathogen, Puccinia striiformis f. sp. tritici. Plant Disease, 2013, 97(3): 379–386
https://doi.org/10.1094/PDIS-01-12-0078-RE pmid: 30722363
31 J Eriksson, E J Henning. Die getreideroste, ihre geschichte und natur sowie massregeln genen dieselben: Bericht über die am experimentalfelde der Kgl. schwedischen landbau-akademie in den jahren 1890–93 mit staatsunten stützung ausgeführte untersuchung. Germany: Nabu Press, 1896 (in German)
32 W Straib. Untersuchungen über das Vorkommen physiologischer Rassen des Gelbrostes (Puccinia glumarum) in den Jahren 1935/36 und über die Aggressivität einiger neuer Formen auf Getreide und Gräsern. Arb Biol Reichsanst, 1937, 22: 91–119 (in German)
33 H Hart, H. BeckerBeiträge zur Frage des Zwischenwirtes für Puccinia glumarum.Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz, 1939, 49(10/11): 559–566 (in German)
34 S Mehmood, M Sajid, J Zhao, T Khan, G Zhan, L Huang, Z Kang. Identification of berberis species collected from the himalayan region of Pakistan susceptible to Puccinia striiformis f. sp. tritici. Plant Disease, 2019, 103(3): 461–467
https://doi.org/10.1094/PDIS-01-18-0154-RE pmid: 30657429
35 J Zhao, S L Zhao, Y L Peng, J F Qin, L L Huang, Z S Kang. Investigation on geographic distribution and identification of six Berberis spp.serving as alternate host for Puccinia striiformis f. sp. tritici in Linzhi,Tibet. Acta Phytopathologica Sinica, 2016, 46(1): 103–111 (in Chinese)
36 J Zhao, Y Y Zhao, Q Li, L L Huang, Z S Kang. Identification of Berberis germanensis as an alternate host of Puccinia striiformis f. sp. tritici under artificial conditions. Acta Phytopathologica Sinica, 2017, 47(2): 274–277 (in Chinese)
37 Z M Du, Q Yao, S J Huang, J H Yan, L Hou, Q Y Guo, J Zhao, Z S Kang. Investigation and identification of barberry as alternate hosts for Puccinia striiformis f. sp. tritici in eastern Qinghai. Acta Phytopathologica Sinica, 2019, 49(3): 370–378 (in Chinese)
38 S N Li, W Chen, X Y Ma, X X Tian, Y Liu, L L Huang, Z S Kang, J Zhao. Identification of eight Berberis species from the Yunnan-Guizhou plateau as aecial hosts for Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Journal of Integrative Agriculture, 2021, 20(6): 1563–1569
https://doi.org/10.1016/S2095-3119(20)63327-5
39 W Chen, Z Zhang, X Chen, Y Meng, L Huang, Z Kang, J Zhao. Field production, germinability, and survival of Puccinia striiformis f. sp. tritici teliospores in China. Plant Disease, 2020: PDIS-09-20-2018-RE
https://doi.org/10.1094/PDIS-09-20-2018-RE pmid: 33297714
40 R G Wright, J H Lennard. Mitosis in Puccinia striiformis: 1. Light microscopy. Transactions of the British Mycological Society, 1978, 70(1): 91–98
https://doi.org/10.1016/S0007-1536(78)80176-4
41 M N Wang, X M Chen. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest due to teliospore degradation and barberry phenology. Plant Disease, 2015, 99(11): 1500–1506
https://doi.org/10.1094/PDIS-12-14-1280-RE pmid: 30695954
42 A M Wan, M N Wang, X M Chen. Variation in telial formation of Puccinia striiformis in the United States. American Journal of Plant Sciences, 2019, 10(05): 826–849
https://doi.org/10.4236/ajps.2019.105060
43 T C Zadoks. Epidemiology of wheat rust in Europe. International Journal of Pest Management B, 1967, 13(1): 29–46
https://doi.org/10.1080/05331846709432232
44 J K M Brown, M S Hovmøller. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 2002, 297(5581): 537–541
https://doi.org/10.1126/science.1072678 pmid: 12142520
45 E L Sharp. Atmospheric ions and germination of uredospores of Puccinia striiformis. Science, 1967, 156(3780): 1359–1360
https://doi.org/10.1126/science.156.3780.1359 pmid: 5610112
46 A C Maddison, J G Manners. Sunlight and viability of cereal rust uredospores. Transactions of the British Mycological Society, 1972, 59(3): 429–443
https://doi.org/10.1016/S0007-1536(72)80124-4
47 S X Xie, K N Wang, Y L Chen, W Q Chen. Preliminary study on the relationship between transport of wheat stripe rust and upper air current in China. Acta Phytopathologica Sinica, 1993, 23(3): 203–209 (in Chinese)
48 S M Zeng, Y Luo. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Disease, 2006, 90(8): 980–988
https://doi.org/10.1094/PD-90-0980 pmid: 30781287
49 Z Q Li, H W Liu. Preliminary study of development patterns of wheat stripe rust in Shaanxi, Gansu, and Qinghai. Journal of Northwest A&F University (Natural Science Edition), 1956, (4): 1–18 (in Chinese)
50 J Q Wang, J X Lu, S J Liu, S K Dai, S Z Liu. Preliminary study on over-summering patterns of the wheat stripe rust pathogen in southern Gansu. Acta Phytopathologica Sinica, 1965, 8(1): 1–8 (in Chinese)
51 X K Liu, X W Hong, S X Xie, W Z Song, S X Liu. A preliminary study on the over-summering of Puccinia striiformis in South Longnan. Acta Phytopathologica Sinica, 1984, 14(1): 9–16 (in Chinese)
52 X B Yang, S M Zeng. Detecting patterns of wheat stripe rust pandemics in time and space. Phytopathology, 1992, 82(5): 571–576
https://doi.org/10.1094/Phyto-82-571
53 S M Zeng. On the mathematic analysis of the epiphytotics of wheat stripe rust. Acta Phytopathologica Sinica, 1962, 1(1): 35–48 (in Chinese)
54 W Q Chen, L R Wu, T G Liu, S C Xu, S L Jin, Y L Peng, B T Wang. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Disease, 2009, 93(11): 1093–1101
https://doi.org/10.1094/PDIS-93-11-1093 pmid: 30754577
55 D J Han, Q L Wang, X M Chen, Q D Zeng, J H Wu, W B Xue, G M Zhan, L L Huang, Z S Kang. Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease, 2015, 99(6): 754–760
https://doi.org/10.1094/PDIS-08-14-0865-RE pmid: 30699539
56 H W Liu, X C Meng. Analysis on breakdown of the resistance of wheat cultivar Bima 1. Shaanxi Journal of Agricultural Sciences, 1957, (06): 329–334 (in Chinese)
57 A Wan, Z Zhao, X Chen, Z He, S Jin, Q Jia, G Yao, J Yang, B Wang, G Li, Y Bi, Z Yuan. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp tritici in China in 2002. Plant Disease, 2004, 88(8): 896–904
https://doi.org/10.1094/PDIS.2004.88.8.896 pmid: 30812521
58 G S Zhang, Y Y Zhao, Z S Kang, J Zhao. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat stripe rust resistance gene Yr5 in China. Plant Disease, 2020, 104(1): 284
https://doi.org/10.1094/PDIS-05-19-0901-PDN
59 D J Han, Z S Kang. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5): 1–12
60 A M Wan, X M Chen, Z H He. Wheat stripe rust in China. Australian Journal of Agricultural Research, 2007, 58(6): 605–619
https://doi.org/10.1071/AR06142
61 S Q Fan, X S Xie, F Li, Q Y Yin, W Y Zheng. Forecast model for prevalent stripe rust in winter wheat in Shanxi Province. Chinese Journal of Eco-Agriculture, 2007, 15(4): 113–115 (in Chinese)
62 T G Liu, Y L Peng, W Q Chen, Z Y Zhang. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Disease, 2010, 94(9): 1163
https://doi.org/10.1094/PDIS-94-9-1163C pmid: 30743708
63 A Salcedo, W Rutter, S Wang, A Akhunova, S Bolus, S Chao, N Anderson, M F De Soto, M Rouse, L Szabo, R L Bowden, J Dubcovsky, E Akhunov. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science, 2017, 358(6370): 1604–1606
https://doi.org/10.1126/science.aao7294 pmid: 29269474
64 J Chen, N M Upadhyaya, D Ortiz, J Sperschneider, F Li, C Bouton, S Breen, C Dong, B Xu, X Zhang, R Mago, K Newell, X Xia, M Bernoux, J M Taylor, B Steffenson, Y Jin, P Zhang, K Kanyuka, M Figueroa, J G Ellis, R F Park, P N Dodds. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science, 2017, 358(6370): 1607–1610
https://doi.org/10.1126/science.aao4810 pmid: 29269475
65 J X Jing, H S Shang, Z Q Li. The biological effects of ~(60)Coγ-ray irradiation on stripe rust of wheat. Journal of Nuclear Agricultural Sciences, 1992, 6(2): 116–120 (in Chinese)
66 X L Wang, F Zhu, L L Huang, G R Wei, Z S Kang. Effects of ultraviolet radiation on pathogenicity mutation of Puccinia striiformis f. sp. tritici. Journal of Nuclear Agricultural Sciences, 2009, 23(03): 375–379 (in Chinese)
67 H S Shang, J X Jing, Z Q Li. Mutations induced ultraviolet radiation affecting virulence in Puccinia striiformis. Acta Phytopathologica Sinica, 1994, 24(04): 347–351 (in Chinese)
68 Q Y Yao, G F Wang, Z B Xu, M N Wang, Y Wang, J X Jing. Virulent mutant in Puccinia striiformis induced by ethyl methyl sulfomar(EMS). Journal of Northwest A&F University (Natural Science Edition), 2006, 34(06): 120–123 (in Chinese)
69 Z S Kang, Z Q Li, H S Shang. On the screening of new heterocaryons of wheat stripe rust and its nucleal dissociation. Acta Phytopathologica Sinica, 1994, 24(02): 101–105
70 R Little, J G Manners. Somatic recombination in yellow rust of wheat (Puccinia striiformis). Transactions of the British Mycological Society, 1969, 53(2): 251–258
https://doi.org/10.1016/S0007-1536(69)80059-8
71 M V Goddard. The production of a new race, 105 E 137 of Puccinia striiformis in glasshouse experiments. Transactions of the British Mycological Society, 1976, 67(3): 395–398
https://doi.org/10.1016/S0007-1536(76)80163-5
72 W Q Chen, S C Xu, L R Wu. Epidemiology and sustainable management of wheat stripe rust caused by Puccinia striiformis West. in China: a historical retrospect and prospect. Scientia Agricultura Sinica, 2007, 40(Suppl): 3107–3113 (in Chinese)
73 C L Tang, Q Xu, M X Zhao, X J Wang, Z S Kang. Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: the emerging genomics era. Crop Journal, 2018, 6(1): 60–67
https://doi.org/10.1016/j.cj.2017.11.003
74 B Bai, J Y Du, Q L Lu, C Y He, L J Zhang, G Zhou, X C Xia, Z H He, C S Wang. Effective resistance to wheat stripe rust in a region with high disease pressure. Plant Disease, 2014, 98(7): 891–897
https://doi.org/10.1094/PDIS-09-13-0909-RE pmid: 30708850
75 L Derevnina, R W Michelmore. Wheat rusts never sleep but neither do sequencers: will pathogenomics transform the way plant diseases are managed? Genome Biology, 2015, 16(1): 44
https://doi.org/10.1186/s13059-015-0615-3 pmid: 25853180
76 X P Hu, Z W Yang, Z Q Li, Z Y Deng, C H Ke. Studies on the prediction of wheat stripe rust epidemics in Hanzhong district of Shaanxi Province. Journal of Northeast Agricultural University, 2000, 28(2): 18–21 (Natural Science Edition)
77 Z Q Xiao, Z M Li, M Fan, Y Zhang, S J Ma. Prediction model on stripe rust influence extent of winter wheat in Longnan mountain area. Chinese Journal of Agrometeorology, 2007, 28(3): 350–353
78 L C Ngugi, M Abelwahab, M Abo-Zahhad. Recent advances in image processing techniques for automated leaf pest and disease recognition—a review. Information Processing in Agriculture, 2021, 8(1): 27–51
https://doi.org/10.1016/j.inpa.2020.04.004
79 H S Naik, J Zhang, A Lofquist, T Assefa, S Sarkar, D Ackerman, A Singh, A K Singh, B Ganapathysubramanian. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods, 2017, 13(1): 23
https://doi.org/10.1186/s13007-017-0173-7 pmid: 28405214
80 N M Abd El-Ghany, S E Abd El-Aziz, S S Marei. A review: application of remote sensing as a promising strategy for insect pests and diseases management. Environmental Science and Pollution Research International, 2020, 27(27): 33503–33515
https://doi.org/10.1007/s11356-020-09517-2 pmid: 32564316
81 A Johannes, A Picon, A AlVarez-Gila, J Echazarra, S Rodriguez-Vaamonde, A D Navajas, A Ortiz-Barredo. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Computers and Electronics in Agriculture, 2017, 138: 200–209
https://doi.org/10.1016/j.compag.2017.04.013
82 R Bebronne, A Carlier, R Meurs, V Leemans, P Vermeulen, B Dumont, B Mercatoris. In-field proximal sensing of septoria tritici blotch, stripe rust and brown rust in winter wheat by means of reflectance and textural features from multispectral imagery. Biosystems Engineering, 2020, 197: 257–269
https://doi.org/10.1016/j.biosystemseng.2020.06.011
83 Y Lei, D J Han, Q D Zeng, D J He. Grading method of disease severity of wheat stripe rust based on hyperspectral imaging technology. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 226–232 (in Chinese)
84 National Bureau of Statistics (NBS). The usage of agricultural chemicals. Available at NBS website on November 2, 2020
85 X K He. Rapid development of unmanned aerial vehicles (UAV) for plant protection and application technology in China. Outlooks on Pest Management, 2018, 29(4): 162–167
https://doi.org/10.1564/v29_aug_04
86 J Q Zhang, B Liu, W Q Chen, T G Liu, L Gao. Temperature- sensitivity of population of Puccinia striiformis Westend. Acta Phytopathologica Sinica, 2013, 43(1): 89–90 (in Chinese)
87 R F Line, X M Chen. Successes in breeding for and managing durable resistance to wheat rusts. Plant Disease, 1995, 79(12): 1254–1255
88 R Yu, Y G Jin, S S Wu, J H Wu, Q L Wang, Q D Zeng, S J Liu, Z H Xia, X J Wang, Z S Kang, D J Han. Stripe rust resistance of candidate cultivars from south Yellow and Huai valley facultative wheat region in China. Journal of Triticeae Crops, 2020, 40(3): 278–284 (in Chinese)
89 Q D Zeng, D J Han, Q L Wang, F P Yuan, J H Wu, L Zhang, X J Wang, L L Huang, X M Chen, Z S Kang. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica, 2014, 196(2): 271–284
https://doi.org/10.1007/s10681-013-1030-z
90 Y Qie, Y Liu, M Wang, X Li, D R See, D An, X Chen. Development, validation, and re-selection of wheat lines with pyramided genes Yr64 and Yr15 linked on the short arm of chromosome 1B for resistance to stripe rust. Plant Disease, 2019, 103(1): 51–58
https://doi.org/10.1094/PDIS-03-18-0470-RE pmid: 30387683
91 H S Bariana, G N Brown, U K Bansal, H Miah, G E Standen, M Lu. Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Australian Journal of Agricultural Research, 2007, 58(6): 576–587
https://doi.org/10.1071/AR07124
92 X Chen. Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 2013, 04(03): 608–627
https://doi.org/10.4236/ajps.2013.43080
93 J M Risk, L L Selter, H Chauhan, S G Krattinger, J Kumlehn, G Hensel, L A Viccars, T M Richardson, G Buesing, A Troller, E S Lagudah, B Keller. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnology Journal, 2013, 11(7): 847–854
https://doi.org/10.1111/pbi.12077 pmid: 23711079
94 S G Krattinger, J Sucher, L L Selter, H Chauhan, B Zhou, M Tang, N M Upadhyaya, D Mieulet, E Guiderdoni, D Weidenbach, U Schaffrath, E S Lagudah, B Keller. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnology Journal, 2016, 14(5): 1261–1268
https://doi.org/10.1111/pbi.12491 pmid: 26471973
95 J W Moore, S Herrera-Foessel, C Lan, W Schnippenkoetter, M Ayliffe, J Huerta-Espino, M Lillemo, L Viccars, R Milne, S Periyannan, X Kong, W Spielmeyer, M Talbot, H Bariana, J W Patrick, P Dodds, R Singh, E Lagudah. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015, 47(12): 1494–1498
https://doi.org/10.1038/ng.3439 pmid: 26551671
96 Y Wang, X Cheng, Q Shan, Y Zhang, J Liu, C Gao, J L Qiu. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947–951
https://doi.org/10.1038/nbt.2969 pmid: 25038773
97 V Nekrasov, C Wang, J Win, C Lanz, D Weigel, S Kamoun. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, 2017, 7(1): 482
https://doi.org/10.1038/s41598-017-00578-x pmid: 28352080
98 Y Zhang, Y Bai, G Wu, S Zou, Y Chen, C Gao, D Tang. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal, 2017, 91(4): 714–724
https://doi.org/10.1111/tpj.13599 pmid: 28502081
99 X Zhu, T Qi, Q Yang, F He, C Tan, W Ma, R T Voegele, Z Kang, J Guo. Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiology, 2017, 175(4): 1853–1863
https://doi.org/10.1104/pp.17.01223 pmid: 29070517
100 H Zhu, C Li, C Gao. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews. Molecular Cell Biology, 2020, 21(11): 661–677
https://doi.org/10.1038/s41580-020-00288-9 pmid: 32973356
[1] Sridhar BHAVANI, David P. HODSON, Julio HUERTA-ESPINO, Mandeep S. RANDHAWA, Ravi P. SINGH. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 210-224.
[2] Wenshuang LI,Shengnan ZHAI,Hui JIN,Weie WEN,Jindong LIU,Xianchun XIA,Zhonghu HE. Genetic variation of carotenoids in Chinese bread wheat cultivars and the effect of the 1BL.1RS translocation[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 124-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed