|
|
HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK |
Li ZHANG1(), Jialin CUI1, Qi HE1, Qing X. LI2() |
1. Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China 2. Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA |
|
|
|
Corresponding Author(s):
Li ZHANG,Qing X. LI
|
Just Accepted Date: 24 August 2021
Online First Date: 14 September 2021
Issue Date: 17 January 2022
|
|
1 |
F Wu , L Zhuo , F Wang , W Huang , G Hao , G Yang . Auto in silico ligand directing evolution (AILDE) to facilitate the rapid and efficient discovery of drug lead. iScience, 2020, 23( 6): 101179
https://doi.org/10.1016/j.isci.2020.101179
|
2 |
Q Zhao , N Miriyala , Y Su , W Chen , X Gao , L Shao , R Yan , H Li , X Yao , D Cao , Y Wang , D Ouyang . Computer-aided formulation design for a highly soluble lutein-cyclodextrin multiple-component delivery system. Molecular Pharmaceutics, 2018, 15( 4): 1664–1673
https://doi.org/10.1021/acs.molpharmaceut.8b00056
|
3 |
G F Hao , W Jiang , Y N Ye , F X Wu , X L Zhu , F B Guo , G F Yang . ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Research, 2016, 44( W1): W550–W556
https://doi.org/10.1093/nar/gkw393
|
4 |
H Yang , C Lou , L Sun , J Li , Y Cai , Z Wang , W Li , G Liu , Y Tang . admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35( 6): 1067–1069
https://doi.org/10.1093/bioinformatics/bty707
|
5 |
G F Hao , F Wang , H Li , X L Zhu , W C Yang , L S Huang , J W Wu , E A Berry , G F Yang . Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex. Journal of the American Chemical Society, 2012, 134( 27): 11168–11176
https://doi.org/10.1021/ja3001908
|
6 |
H Lin , X Chen , J Chen , D Wang , F Wu , S Lin , C Zhan , J Wu , W Yang , G Yang . Crystal Structure of 4-hydroxyphenylpyruvate dioxygenase in complex with substrate reveals a new starting point for herbicide discovery. Research, 2019, 2602414
|
7 |
L Xiong , H Li , L N Jiang , J M Ge , W C Yang , X L Zhu , G F Yang . Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors. Journal of Agricultural and Food Chemistry, 2017, 65( 5): 1021–1029
https://doi.org/10.1021/acs.jafc.6b05134
|
8 |
Z Liang , Q X Li . π-Cation interactions in molecular recognition: perspectives on pharmaceuticals and pesticides. Journal of Agricultural and Food Chemistry, 2018, 66( 13): 3315–3323
https://doi.org/10.1021/acs.jafc.8b00758
|
9 |
J F Yang , F Wang , Y Z Chen , G F Hao , G F Yang . LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Briefings in Bioinformatics, 2020, 21( 6): 2206–2218
https://doi.org/10.1093/bib/bbz141
|
10 |
G Yang . Chemical biology-oriented molecular design of green pesticide. Bulletin of National Natural Science Foundation of China, 2020, 34( 4): 495–501
|
11 |
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt G J, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl S A A, Potapenko A, Ballard A J, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior A W, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature, 2021. doi: 10.1038/s41586-021-03828-1
|
12 |
L K Rathnayake , S H Northrup . Structure and mode of action of organophosphate pesticides: a computational study. Computational & Theoretical Chemistry, 2016, 1088 : 9–23
https://doi.org/10.1016/j.comptc.2016.04.024
|
13 |
G F Hao , Y Tan , W F Xu , R J Cao , Z Xi , G F Yang . Understanding resistance mechanism of protoporphyrinogen oxidase-inhibiting herbicides: insights from computational mutation scanning and site-directed mutagenesis. Journal of Agricultural and Food Chemistry, 2014, 62( 29): 7209–7215
https://doi.org/10.1021/jf5018115
|
14 |
F X Wu , F Wang , J F Yang , W Jiang , M Y Wang , C Y Jia , G F Hao , G F Yang . AIMMS suite: a web server dedicated for prediction of drug resistance on protein mutation. Briefings in Bioinformatics, 2018, 21( 1): 318–328
https://doi.org/10.1093/bib/bby113
|
15 |
X Li , Y Zhang , H Chen , H Li , Y Zhao . Insights into the molecular basis of the acute contact toxicity of diverse organic chemicals in the honey bee. Journal of Chemical Information and Modeling, 2017, 57( 12): 2948–2957
https://doi.org/10.1021/acs.jcim.7b00476
|
16 |
F Wang , J F Yang , M Y Wang , C Y Jia , X X Shi , G F Hao , G F Yang . Graph attention convolutional neural network model for chemical poisoning of honey bees prediction. Science Bulletin, 2020, 65( 14): 1184–1191
https://doi.org/10.1016/j.scib.2020.04.006
|
17 |
F Li , D Fan , H Wang , H Yang , W Li , Y Tang , G Liu . In silico prediction of pesticide aquatic toxicity with chemical category approaches. Toxicology Research, 2017, 6( 6): 831–842
https://doi.org/10.1039/C7TX00144D
|
18 |
K Khan , E Benfenati , K Roy . Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotoxicology and Environmental Safety, 2019, 168 : 287–297
https://doi.org/10.1016/j.ecoenv.2018.10.060
|
19 |
L He , K Xiao , C Zhou , G Li , H Yang , Z Li , J Cheng . Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicology and Environmental Safety, 2019, 173 : 285–292
https://doi.org/10.1016/j.ecoenv.2019.02.014
|
20 |
F Lunghini , G Marcou , P Azam , M H Enrici , E van Miert , A Varnek . Consensus QSAR models estimating acute toxicity to aquatic organisms from different trophic levels: algae, Daphnia and fish. SAR and QSAR in Environmental Research, 2020, 31( 9): 655–675
https://doi.org/10.1080/1062936X.2020.1797872
|
21 |
X Li , L Chen , F Cheng , Z Wu , H Bian , C Xu , W Li , G Liu , X Shen , Y Tang . In silico prediction of chemical acute oral toxicity using multi-classification methods. Journal of Chemical Information and Modeling, 2014, 54( 4): 1061–1069
https://doi.org/10.1021/ci5000467
|
22 |
G Sun , Y Zhang , L Pei , Y Lou , Y Mu , J Yun , F Li , Y Wang , Z Hao , S Xi , C Li , C Chen , L Zhao , N Zhang , R Zhong , Y Peng . Chemometric QSAR modeling of acute oral toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse. Ecotoxicology and Environmental Safety, 2021, 222 : 112525
https://doi.org/10.1016/j.ecoenv.2021.112525
|
23 |
E Minerali , D H Foil , K M Zorn , S Ekins . Evaluation of assay central machine learning models for rat acute oral toxicity prediction. ACS Sustainable Chemistry & Engineering, 2020, 8( 42): 16020–16027
https://doi.org/10.1021/acssuschemeng.0c06348
|
24 |
H Zhu , T M Martin , L Ye , A Sedykh , D M Young , A Tropsha . Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chemical Research in Toxicology, 2009, 22( 12): 1913–1921
https://doi.org/10.1021/tx900189p
|
25 |
D Mulliner , F Schmidt , M Stolte , H P Spirkl , A Czich , A Amberg . Computational models for human and animal hepatotoxicity with a global application scope. Chemical Research in Toxicology, 2016, 29( 5): 757–767
https://doi.org/10.1021/acs.chemrestox.5b00465
|
26 |
Q Wang , X Li , H Yang , Y Cai , Y Wang , Z Wang , W Li , Y Tang , G Liu . In silico prediction of serious eye irritation or corrosion potential of chemicals. RSC Advances, 2017, 7( 11): 6697–6703
https://doi.org/10.1039/C6RA25267B
|
27 |
C Xu , F Cheng , L Chen , Z Du , W Li , G Liu , P W Lee , Y Tang . In silico prediction of chemical Ames mutagenicity. Journal of Chemical Information and Modeling, 2012, 52( 11): 2840–2847
https://doi.org/10.1021/ci300400a
|
28 |
X Li , Z Du , J Wang , Z Wu , W Li , G Liu , X Shen , Y Tang . In silico estimation of chemical carcinogenicity with binary and ternary classification methods. Molecular Informatics, 2015, 34( 4): 228–235
https://doi.org/10.1002/minf.201400127
|
29 |
H Hasic , T Ishida . Single-step retrosynthesis prediction based on the identification of potential disconnection sites using molecular substructure fingerprints. Journal of Chemical Information and Modeling, 2021, 61( 2): 641–652
https://doi.org/10.1021/acs.jcim.0c01100
|
30 |
J Dong , H Gao , D Ouyang . PharmSD: a novel AI-based computational platform for solid dispersion formulation design. International Journal of Pharmaceutics, 2021, 604 : 120705
https://doi.org/10.1016/j.ijpharm.2021.120705
|
31 |
W A Birru , D B Warren , S Han , H Benameur , C J H Porter , C W Pouton , D K Chalmers . Computational models of the gastrointestinal environment. 2. Phase behavior and drug solubilization capacity of a type i lipid-based drug formulation after digestion. Molecular Pharmaceutics, 2017, 14( 3): 580–592
https://doi.org/10.1021/acs.molpharmaceut.6b00887
|
32 |
A A Metwally , R M Hathout . Computer-assisted drug formulation design: novel approach in drug delivery. Molecular Pharmaceutics, 2015, 12( 8): 2800–2810
https://doi.org/10.1021/mp500740d
|
33 |
T Sou , F Soukarieh , P Williams , M J Stocks , M Cámara , C A S Bergström . Model-informed drug discovery and development in pulmonary delivery: biopharmaceutical pharmacometric modeling for formulation evaluation of pulmonary suspensions. ACS Omega, 2020, 5( 40): 25733–25746
https://doi.org/10.1021/acsomega.0c03004
|
34 |
R Meenashi , K Selvaraju , A D Stephen , C Jelsch . Theoretical crystal structure prediction of aminosalicylic acid: charge density topological and electrostatic analyses. Journal of Molecular Structure, 2020, 1213 : 128139
https://doi.org/10.1016/j.molstruc.2020.128139
|
35 |
D Cyranoski . AI drug discovery booms in China. Nature Biotechnology, 2021, 39( 8): 900–902
https://doi.org/10.1038/s41587-021-01016-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|