Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (1) : 155-160    https://doi.org/10.15302/J-FASE-2021420
PERSPECTIVE
HERBICIDES THAT INHIBIT ACETOLACTATE SYNTHASE
Thierry LONHIENNE, Mario Daniel GARCIA, Yu Shang LOW, Luke W. GUDDAT()
School of Chemistry and Molecular Bioscience, The University of Queensland, Queensland 4072, Australia
 Download: PDF(2162 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Luke W. GUDDAT   
Just Accepted Date: 24 August 2021   Online First Date: 14 September 2021    Issue Date: 17 January 2022
 Cite this article:   
Thierry LONHIENNE,Mario Daniel GARCIA,Yu Shang LOW, et al. HERBICIDES THAT INHIBIT ACETOLACTATE SYNTHASE[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 155-160.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021420
https://academic.hep.com.cn/fase/EN/Y2022/V9/I1/155
Fig.1  Chemical reactions for ALS and structures of ALS-inhibiting herbicides. (a) The chemical reactions of ALS. (b) The five different chemical classes of ALS-inhibiting herbicide, imidazolinones (IMIs) in pink, pyrimidinyl benzoates (PBs) in brown, a selection of sulfonylureas (SUs) in black, triazolopyrimidines (TPs) in blue, and the sulfonylamino-carbonyl-triazolinones (SCTs) in purple.
Fig.2  Cryo-EM and crystal structures of Arabidopsis thaliana ALS. (a) The complex between the CSUs (blue) and the RSUs (white) as determined by cryo-EM. (b) Close up of the interaction between the CSUs and RSUs. FAD, ThDP, Q-loop and valine are in yellow, green, red and blue, respectively. (c, d) Crystal structure of the complex between the CSU of A. thaliana ALS and the herbicide, penoxsulam. Penoxsulam is shown as a ball and stick model in with magenta carbon atoms. (c) The interface between the two CSU subunits (green and blue) is shown as a surface. Herbicide resistance sites are in red. (d) Details of the herbicide binding site. FAD, ThDP and peracetate are shown as stick models. The herbicide resistance sites are labeled and highlighted in red.
1 M A Peterson , S A McMaster , D E Riechers , J Skelton , P W Stahlman . 2,4-D Past, present, and future: a review. Weed Technology, 2016, 30( 2): 303–345
https://doi.org/10.1614/WT-D-15-00131.1
2 J E Franz , M K Mao , J A Sikorski . Glyphosate: a unique and global herbicide. American Chemical Society, 1997, 653
3 Heap I. The International Herbicide-Resistant Weed Database. Available at WeedScience website on August 2, 2021
4 J V Schloss , L M Ciskanik , D E V Dyk . Origin of the herbicide binding site of acetolactate synthase. Nature, 1988, 331( 6154): 360–362
https://doi.org/10.1038/331360a0
5 T Lonhienne , M D Garcia , C Noble , J Harmer , J A Fraser , C M Williams , L W Guddat . High resolution crystal structures of the acetohydroxyacid synthase-pyruvate complex provide new insights into its catalytic mechanism. ChemistrySelect, 2017, 2( 36): 11981–11988
https://doi.org/10.1002/slct.201702128
6 T Lonhienne , M D Garcia , G Pierens , M Mobli , A Nouwens , L W Guddat . Structural insights into the mechanism of inhibition of AHAS by herbicides. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115( 9): E1945–E1954
https://doi.org/10.1073/pnas.1714392115
7 T Lonhienne , Y S Low , M D Garcia , T Croll , Y Gao , Q Wang , L Brillault , C M Williams , J A Fraser , R P McGeary , N P West , M J Landsberg , Z Rao , G Schenk , L W Guddat . Structures of fungal and plant acetohydroxyacid synthases. Nature, 2020, 586( 7828): 317–321
https://doi.org/10.1038/s41586-020-2514-3
8 M D Garcia , A Nouwens , T G Lonhienne , L W Guddat . Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 7): E1091–E1100
https://doi.org/10.1073/pnas.1616142114
9 J A McCourt , S S Pang , J King-Scott , L W Guddat , R G Duggleby . Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103( 3): 569–573
https://doi.org/10.1073/pnas.0508701103
10 T Lonhienne , M D Garcia , L W Guddat . The role of a FAD cofactor in the regulation of acetohydroxyacid synthase by redox signaling molecules. Journal of Biological Chemistry, 2017, 292( 12): 5101–5109
https://doi.org/10.1074/jbc.M116.773242
11 R Y Qu , B He , J F Yang , H Y Lin , W C Yang , Q Y Wu , Q X Li , G F Yang . Where are the new herbicides?. Pest Management Science, 2021, 77( 6): 2620–2625
https://doi.org/10.1002/ps.6285
12 F Q Ji , C W Niu , C N Chen , Q Chen , G F Yang , Z Xi , C G Zhan . Computational design and discovery of conformationally flexible inhibitors of acetohydroxyacid synthase to overcome drug resistance associated with the W586L mutation. ChemMedChem, 2008, 3( 8): 1203–1206
https://doi.org/10.1002/cmdc.200800103
13 R Y Qu , J F Yang , Q Chen , C W Niu , Z Xi , W C Yang , G F Yang . Fragment-based discovery of flexible inhibitor targeting wild-type acetohydroxyacid synthase and P197L mutant. Pest Management Science, 2020, 76( 10): 3403–3412
https://doi.org/10.1002/ps.5739
14 R Y Qu , J F Yang , P Devendar , W M Kang , Y C Liu , Q Chen , C W Niu , Z Xi , G F Yang . Discovery of new 2-[(4,6-dimethoxy-1,3,5-triazin-2-yl) oxy]-6-(substituted phenoxy) benzoic acids as flexible inhibitors of Arabidopsis thaliana acetohydroxyacid synthase and its P197L mutant. Journal of Agricultural and Food Chemistry, 2017, 65( 51): 11170–11178
https://doi.org/10.1021/acs.jafc.7b05198
15 R Y Qu , J F Yang , Y C Liu , Q Chen , G F Hao , C W Niu , Z Xi , G F Yang . Computational design of novel inhibitors to overcome weed resistance associated with acetohydroxyacid synthase (AHAS) P197L mutant. Pest Management Science, 2017, 73( 7): 1373–1381
https://doi.org/10.1002/ps.4460
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed