Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.
REVIEW
QUANTITATIVE STUDY ON ANTI-PEST ACTIVITY OF NATURAL PRODUCTS BASED ON VISUALIZATION FRAMEWORK OF KNOWLEDGE GRAPH
Xing LI1,2,3, Chunyan GUO2,3,4, Yumei YAN1, Lijuan LV5, Siqi LI1, Wenxin GUO1, Zhengnan LI6(), Minhui LI1,2,3,4()
1. College of Pharmacy, Baotou Medical College, Baotou 014040, China
2. Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010110, China
3. Inner Mongolia Academy of Chinese and Mongolian Medicine, Hohhot 010010, China
4. College of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China
5. Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
6. Agricultural College, Inner Mongolia Agricultural University, Hohhot 010110, China
 Download: PDF(5799 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Using visual analysis to predict the trend of natural product pest resistance.

● Summarized the anti-insect activity and mechanism of natural products.

● Natural compounds insecticide will be the general trend.

To help in the prevention of large-scale loss of agricultural production caused by crop pests, a visual analysis was performed on the main research areas, key countries, organizational cooperation, citation sources and current trends in pest research by searching the literature of Web of Science database and using CiteSpace 5.8.R3 and VOSviewer 1.6.18 software. Additionally, the effects and mechanisms of natural products with anti-insect activity were summarized through visual analysis. According to the bibliometric analysis, keywords such as mortality (232 occurrences), natural enemy (232 occurrences) and spinosad (110 occurrences) were common, and insecticides and natural enemies of pests were the main methods for killing pests. However, pesticide use exhibits numerous limitations. Co-occurring terms in visualization analysis mainly included residue (193 occurrences), detection (153 occurrences), degradation (133 occurrences), recovery (103 occurrences), pyrethroid (97 occurrences) and pesticide residues (65 occurrences). Thus, pesticides cannot fundamentally solve food security; pesticides also pollute the environment and endanger human health. Therefore, green and efficient pesticides that can replace synthetic pesticides are urgently needed. Natural products have recently gained attention in Brazil, China, the USA and other countries because they are green and pollution-free, and new natural pesticides have been developed. This visual analysis combined data mining with literature review and summarize the anti-pest activities and mechanisms of action of natural products. This information provides a foundation and ideas for researchers to study the application and development of natural products in pest control.

Keywords anti-pest activity      crop protection      insect pest      natural product      visual analysis     
Corresponding Author(s): Zhengnan LI,Minhui LI   
About author:

*These authors equally shared correspondence to this manuscript.

Just Accepted Date: 31 March 2023   Online First Date: 06 May 2023   
 Cite this article:   
Xing LI,Chunyan GUO,Yumei YAN, et al. QUANTITATIVE STUDY ON ANTI-PEST ACTIVITY OF NATURAL PRODUCTS BASED ON VISUALIZATION FRAMEWORK OF KNOWLEDGE GRAPH[J]. Front. Agr. Sci. Eng. , 06 May 2023. [Epub ahead of print] doi: 10.15302/J-FASE-2023488.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2023488
https://academic.hep.com.cn/fase/EN/Y/V/I/0
Fig.1  High-frequency keywords in the research of natural compounds to control crop pests. Node size represents the strength of keywords and the links represent the connection between these keywords. (a) Density visualization of keywords. Orange and green areas represent frequent and infrequent keywords, respectively. Keywords are visualized using color changes from purple to yellow. A color closer to yellow indicates greater research attention, indicating a key research frontiers. (b) Overlay visualization of keywords. A larger value leads to a more yellow color, indicating a key research frontiers. (c) Network visualization of keywords, with different colors representing different clusters. (d) Prepared using CiteSpace 5.8.R3, showing the top 10 keywords. A larger circle displayed by keywords indicates a higher frequency of occurrence. The distance between keywords is positively correlated with the degree of closeness between them. Images (a?c) were prepared using VOSviewer1.6.18.
Fig.2  Research on natural compounds in crop pest control countries (node size represents keyword intensity; links represent connections between these keywords). (a) Density of each country. Yellow and green areas represent frequent and less frequent countries, respectively; a yellower background color indicates a higher frequency of the study area. (b) Country coverage visualization. A larger number leads to a redder color, indicating that the country is closer to the forefront of research. (c) Network visualization of countries. Different colors represent different clusters, and research areas of countries covered by the same color are more similar. (d) Top ten countries. A larger value is shown as a larger circle, indicating that research in this field is more widely conducted in the corresponding country. VOSviewer1.6.18 was used for drawing images (a–c) and CiteSpace 5.8 for image (d).
Fig.3  Cited sources and organizations of natural compounds in crop pest control. The node size represents the strength of cited sources and organizations and the links represent the connection between these cited sources and organizations. (a) Density visualization of cited sources. The red area represents highly cited sources, and the blue area represents less cited sources. (b) Network visualization for cited sources, with different colors representing different clusters. (c) Density visualization of organizations. The yellow area represents highly cited sources, and the purple area represents less cited sources. (d) Network visualization for organizations, with different colors representing different clusters. VOSviewer 1.6.18 was used for drawing images (a?d).
Fig.4  Top 20 keywords with the strongest citation bursts. Year, year of study initiation; begin, year in which the strongest citation burst keyword begins; end, year in which an strongest citation burst keyword end; red bar, strongest citation burst keyword occurring during this time period; and blue bar, opposite of red.
Natural product Compound nameSourceControl targetInsecticidal activityPositive controlInsecticidal activityReference
1TerpenoidsAzadirachtinAzadirachta indica A. Juss.Tirathaba rufivenaLC50 28.8 mg·L?1??[140]
2Rhodojaponin-IIIRhododendron molleSpodoptera lituraLC50 125 μg·mL?1ToosendaninLC50 250 μg·mL?1[116]
3LaurinterolLaurencia nidificaReticulitermes speratusLD50 2.20 μg per insectRotenoneLD50 0.11 μg per insect[113]
4CurcuphenolDidiscus oxeataSpodopteralittoralisEC50 15.8 μg·cm?2ThymolEC50 23.9 μg·cm?2[141]
510-Hydroxy-11-methoxy-dihydrocurcuphenolEC50 15.8 μg·cm?2
6HydroxycolorenoneNephthea chabroliiSpodopteralittoralisLC50 8.8 mg·L?1??[142]
7MethoxycolorenoneLC50 15.6 mg·L?1??
8ChabroleneCoral nephtheaSitophiluszeamaisEC50 12.5 μg·cm?2??[143]
93,4-Dihydroxybenzoic acidHolothuria atraSpodopteralituraLC50 6.01 mg·mL?1??[144]
104-Hydroxy-3-methoxy-benzaldehydeLC50 17.01 mg·mL?1??
11Sporyzin AAspergillus oryzaeArtemia salina61.9% mortality at 100 mg·L?1Huperzine A98% mortality[145]
12Sporyzin B42.9% mortality at 100 mg·L?1
13Sporyzin C32.8% mortality at 100 mg·L?1
14JBIR-0374.2% mortality at 100 mg·L?1
15Emindole SB60.3% mortality at 100 mg·L?1
16Emeniveol31.4% mortality at 100 mg·L?1
17AlkaloidsCoclaurineDiscaria chacayeDrosophila melanogasterLD50 78.2 μg·mL?1??[146]
18BoldineTalguenea quinquenerviaLD50 70.8 μg·mL?1??
19PukateinePeumus boldusLD50 70.9 μg·mL?1??
20SophocarpineSophora alopecuroidesACP50 mg·mL?1N,N-Diethyl-meta-toluamide30 mg·mL?1[83]
21Sophoridine70 mg·mL?1
22Curviflorain ACorydalis curviflora Maxim.Culex pipiens pallens, Aedes albopictusLC50 15.9 μg·mL?1, LC50 8.42 μg·mL?1PyrethrinLC50 4.36 μg·mL?1, LC50 3.54 μg·mL?1[82]
23Curviflorain BLC50 16.1 μg·mL?1, LC50 15.5 μg·mL?1
24Ambiguanine ALC50 50.1 μg·mL?1, LC50 86.0 μg·mL?1
251,1-Dimethyl-6-methoxy-7-hydroxyl-1,2,3,4-tetrahydroisoquinolineLC50 52.1 μg·mL?1, LC50 76.9 μg·mL?1
26Hendersine BLC50 23.3 μg·mL?1, LC50 31.0 μg·mL?1
27 Coryximine LC50 54.29 μg·mL?1, LC50 94.3 μg·mL?1
28IsochotensineLC50 92.4 μg·mL?1, LC50 99.8 μg·mL?1
29Bruceine DBrucea Javanica (L.) Merr.Plutella xylostella, Spodoptera exigua Hübner, Spodoptera litura FabriciusAntifeedant effects 93.8%AzadirachtinAntifeedant effects 22.6%[84]
30AnisodineAnisodus tanguticus (Maxim.) PascherBrevicoryne brassicaeLC50 3.16 mg·mL?1RotenoneLC50 0.400 mg·mL?1[147]
31Rhopalosiphum padiLC50 3.67 mg·mL?1LC50 1.18 mg·mL?1
32Myzus persicaeLC50 4.16 mg·mL?1LC50 0.566 mg·mL?1
33Aphis craccivoraLC50 0.495 mg·mL?1LC50 0.617 mg·mL?1
34Aphis gossypiiLC50 0.429 mg·mL?1LC50 0.436mg·mL?1
35Sitobion miscanthiLC50 0.881 mg·mL?1LC50 1.03 mg·mL?1
36AnisodamineBrevicoryne brassicaeLC50 1.32 mg·mL?1LC50 0.400 mg·mL?1
37Rhopalosiphum padiLC50 1.64 mg·mL?1LC50 1.18 mg·mL?1
38Myzus persicaeLC50 0.846 mg·mL?1LC50 0.566 mg·mL?1
39Aphis craccivoraLC50 1.95 mg·mL?1LC50 0.617 mg·mL?1
40Aphis gossypiiLC50 0.404 mg·mL?1LC50 0.436 mg·mL?1
41Sitobion miscanthiLC50 1.164 mg·mL?1LC50 1.030 mg·mL?1
42AloperineSophora alopecuroidesBursaphelenchus xylophilusInhibition of reproduction 100%??[148]
43CaulerpinCaulerpa racemosaCulex pipiensLC50 0.86 mg·L?1MalathionLC50 1.00 mg·L?1[149]
44Caulerpinic acidLC50 1.69 mg·L?1
45HymenialdisineAxinella carteriSpodopteralittoralisLD50 88 mg·L?1Precocene IILD50 275 mg·L?1[150]
46DebromohymenialdisineLD50 125 mg·L?1
47Manzamine AXestospongia ashmoricaSpodopteralittoralisED50 35 mg·L?1??[151]
48AmphitoxinAmphimedoncompressaCylasformicarius30% mortality at 1.2 mg·L?1??[152]
49Gelastatin ACymbastela sp.SpodopteraexiguaLC50 20.3 mg·L?1Javelin WGLC50 12 mg·L?1[153]
50Gelastatin CLC50 200 mg·L?1
51Swinhoeiamide ATheonella swinhoeiSpodopteralittoralisLC50 2.98 mg·L?1??[154]
52Nortopsentin ASpongosoritesruetzleriCulex pipiens pallens100% mortality at 10 mg·L?1Rotenone100% mortality[155]
53Nortopsentin B100% mortality at 10 mg·L?1
54Nortopsentin C70% mortality at 10 mg·L?1
55 Nortopsentin D40% mortality at 10 mg·L?1
56 AltemicidinStreptomycessioyaensisArtemia salinaLC50 3 mg·L?1PolynactinLC50 4 mg·L?1[115]
57Communesin BPenicillium sp.Bombyx moriLD50 5 μg·g?1??[156]
58Communesin ELD50 80 μg·g?1??
59Cristatumin BEurotium cristatum EN220Artemia salinaLD50 74.4 μg·g?1??[157]
60Isoechinulin ALD50 16.9 μg·g?1??
61Variecolorin GLD50 42.6 μg·g?1??
62Cyclopentanepropanoic acid, 3,5-bis(acetyloxy)-2-(3-(methoxyimino)octyl),methyl esterStreptomyces-VITSTK7 sp.CulexquinquefasciatusLC50 430.06 mg·L?1??[158]
635-Azidomethyl-3-(2-ethoxycarbonyl-ethyl)-4-ethoxycarbo-nylmethyl-1H-pyrrole-2-carboxylic acid,ethyl esterLC50 881.59 mg·L?1??
64Chloramphenicol D1AcremoniumvitellinumHelicoverpaarmigeraLC50 930 mg·L?1MatrineLC50 240 mg·L?1[159]
65Chloramphenicol D2LC50 560 mg·L?1
66Chloramphenicol D3LC50 910 mg·L?1
67Okalaminei BAspergillus sp.SpodopteraexiguaLD50 0.2 μg·g?1??[160]
68FlavonoidsRotenoneDerris trifoliata Lour.Derris trifoliata Lour.LC50 9.51 mg·L?1??[102]
69Quercetin dihydrateRiceEriosoma lanigerumMortality at 85.00%ImidaclopridMortality at 88.3%[103]
70NaringinMortality at 86.7%
71Rutin hydrateMortality at 93.3%
72Neochamaejasmine AStellera chamaejasmeAphidoideaRate of population decline 74.1%ImidaclopridRate of population decline 71.1%[104]
73QuercetinHypericum ascyronCalliptamus abbreviatusSurvival rate 42.3%??[140]
74OthersCurcuminCurcuma longaTetranychus cinnabarinus BoisduvalLC50 3060 mg·L?1SpirodiclofenLC50 661 mg·L?1[161]
75MatrineSophora flavescensEC50 238 μg·mL?1
76EmodinCassia nigricansAnopheles gambiaeaLC85 50 μg·mL?1??[162]
77Bemisia tabaciLC85 25 μg·mL?1??
78Penicixanthenes ACeriops tagalCulex quinquefasciatusLC50 38.5 μg·mL?1AzadirachtinLC50 8.8 μg·mL?1[163]
79Penicixanthenes BLC50 80 μg·mL?1
80Penicixanthenes CLC50 11.6 μg·mL?1
81Penicixanthenes DLC50 23.5 μg·mL?1
Tab.1  Natural products with anti-crop insect pests activities
Fig.5  Natural products with anti-crop insect pests activities.
1 M, Ghorbanpour M, Omidvari P, Abbaszadeh-Dahaji R, Omidvar K Kariman . Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 2018, 117: 147–157
https://doi.org/10.1016/j.biocontrol.2017.11.006
2 T J, Bruce L J, Wadhams C M Woodcock . Insect host location: a volatile situation. Trends in Plant Science, 2005, 10(6): 269–274
https://doi.org/10.1016/j.tplants.2005.04.003 pmid: 15949760
3 G, Lengai J W, Muthomi E R Mbega . Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific American, 2020, 7: e00239
https://doi.org/10.1016/j.sciaf.2019.e00239
4 S, Kumar G, Bhanjana A, Sharma M C, Sidhu N Dilbaghi . Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate Polymers, 2014, 101(3): 1061–1067
https://doi.org/10.1016/j.carbpol.2013.10.025 pmid: 24299874
5 H M, Tahir T, Basheer S, Ali R, Yaqoob S, Naseem S Y Khan . Effect of pesticides on biological control potential of neoscona theisi (Araneae: Araneidae). Journal of Insect Science, 2019, 19(2): 17–22
https://doi.org/10.1093/jisesa/iez024 pmid: 30915446
6 R, Kodešová M, Kočárek V, Kodeš O, Drábek J, Kozák K Hejtmánková . Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 2011, 186(1): 540–550
https://doi.org/10.1016/j.jhazmat.2010.11.040 pmid: 21144657
7 Y, Liang M C, Guo C, Fan H Q, Dong G L, Ding W B, Zhang G, Tang J L, Yang D D, Kong Y S Cao . Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4802–4810
https://doi.org/10.1021/acssuschemeng.7b00208
8 Y M Luo . Natural Medicinal Chemistry. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese)
9 A H, Mossa S M M, Mohafrash N Chandrasekaran . Safety of natural insecticides: toxic effects on experimental animals. BioMed Research International, 2018, 2018(10): 4308054
https://doi.org/10.1155/2018/4308054 pmid: 30410930
10 J, He Z Q, Ma X Zhang . Review of botanical pesticide. Journal of Northwest A & F University (Natural Science Edition), 2006, (9): 79−85 (in Chinese)
11 G, Benelli R, Pavela C, Giordani L, Casettari G, Curzi L, Cappellacci R, Petrelli F Maggi . Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Industrial Crops and Products, 2018, 112: 668−680
12 H, Qu M, Lv X, Yu X, Lian H Xu . Discovery of some piperine-based phenylsulfonylhydrazone derivatives as potent botanically narcotic agents. Scientific Reports, 2015, 5(1): 13077
https://doi.org/10.1038/srep13077 pmid: 26268805
13 R, Rizzo Verde G, Lo M, Sinacori F, Maggi L, Cappellacci R, Petrelli S, Vittori M R, Morshedloo N G B Y, Fofie G Benelli . Developing green insecticides to manage olive fruit flies? Ingestion toxicity of four essential oils in protein baits on Bactrocera oleae. Industrial Crops and Products, 2020, 143: 111884
14 G, Shi Z, Kang F, Ren Y, Zhou P Guo . Effects of quercetin on the growth and expression of immune-pathway-related genes in silkworm (Lepidoptera: Bombycidae). Journal of Insect Science, 2020, 20(6): ieaa124
https://doi.org/10.1093/jisesa/ieaa124 pmid: 33159528
15 N G, Kavallieratos M C, Boukouvala N, Ntalli A, Skourti E S, Karagianni E P, Nika D C, Kontodimas L, Cappellacci R, Petrelli K, Cianfaglione M R, Morshedloo L A, Tapondjou R, Rakotosaona F, Maggi G Benelli . Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2020, 139: 111255
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/32165233 pmid: 32165233
16 R, Bibi R M, Tariq M Rasheed . Toxic assessment, growth disrupting and neurotoxic effects of red seaweeds’ botanicals against the dengue vector mosquito Aedes aegypti L. Ecotoxicology and Environmental Safety, 2020, 195: 110451
https://doi.org/10.1016/j.ecoenv.2020.110451 pmid: 32199214
17 G, Mao Y, Tian Z, Sun J, Ou H Xu . Bruceine D isolated from Brucea Javanica (L.) Merr. as a systemic feeding deterrent for three major Lepidopteran pests. Journal of Agricultural and Food Chemistry, 2019, 67(15): 4232–4239
https://doi.org/10.1021/acs.jafc.8b06511 pmid: 30901209
18 M H, Na C F, Li J, Ting C H, Zhang Z G, Yang M H Li . Research progress of botanical pesticide resources in Inner Mongolia. Modern Chinese medicine, 2017, 19(7): 907–916, 933 (in Chinese)
19 M, Gallo A, Formato D, Ianniello A, Andolf E, Conte M, Ciaravolo V, Varchetta D Naviglio . Supercritical fluid extraction of pyrethrins from pyrethrum flowers (Chrysanthemum cinerariifolium) compared to traditional maceration and cyclic pressurization extraction. Journal of Supercritical Fluids, 2017, 119: 104–112
https://doi.org/10.1016/j.supflu.2016.09.012
20 M, Reges E M, Marinho M M Marinho . Theoretical study of the natural insecticide rotenone clitoriacetal. International Journal of Recent Research and Review, 2019, 12(4): 1–5
21 R C, Bernardes W F, Barbosa G F, Martins M A P Lima . The reduced-risk insecticide azadirachtin poses a toxicological hazard to stingless bee Partamona helleri (Friese, 1900) queens. Chemosphere, 2018, 201: 550–556
https://doi.org/10.1016/j.chemosphere.2018.03.030 pmid: 29533804
22 M, Bajda A, Łoś M Merska . Effect of amphotericin B on the biochemical markers in the haemolymph of honey bees. Medycyna Weterynaryjna, 2014, 70(12): 766–769
23 Y P, Jing H, An S, Zhang N, Wang S Zhou . Protein kinase C mediates juvenile hormone-dependent phosphorylation of Na+/K+-ATPase to induce ovarian follicular patency for yolk protein uptake. Journal of Biological Chemistry, 2018, 293(52): 20112–20122
https://doi.org/10.1074/jbc.RA118.005692 pmid: 30385509
24 C C, Sheeja V V, Thushara L Divya . Caste-specific expression of Na+/K+-ATPase in the Asian weaver ant, Oecophylla smaragdina (Fabricius, 1775). Neotropical Entomology, 2018, 47(6): 763–768
https://doi.org/10.1007/s13744-018-0598-3 pmid: 29572631
25 R Feyereisen . Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Molecular Phylogenetics and Evolution, 2020, 143: 106695
https://doi.org/10.1016/j.ympev.2019.106695 pmid: 31805344
26 T W, Harrop S, Denecke Y T, Yang J, Chan P J, Daborn T, Perry P Batterham . Evidence for activation of nitenpyram by a mitochondrial cytochrome P450 in Drosophila melanogaster. Pest Management Science, 2018, 74(7): 1616–1622
https://doi.org/10.1002/ps.4852 pmid: 29316188
27 L S, Bai C X, Zhao J J, Xu C, Feng Y Q, Li Y L, Dong Z Q Ma . Identification and biochemical characterization of carboxylesterase 001G associated with insecticide detoxification in Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2019, 157: 69–79
28 B, Tang Y, Cheng Y, Li W, Li Y, Ma Q, Zhou K Lu . Adipokinetic hormone enhances CarE-mediated chlorpyrifos resistance in the brown planthopper. Nilaparvata lugens. Insect Molecular Biology, 2020, 29(6): 511–522
https://doi.org/10.1111/imb.12659 pmid: 32686884
29 J H, Cho K M, Lee Y I, Lee H G, Nam W B Jeon . Glutamate decarboxylase 67 contributes to compensatory insulin secretion in aged pancreatic islets. Islets, 2019, 11(2): 33–43
https://doi.org/10.1080/19382014.2019.1599708 pmid: 31084527
30 G, Liu H, Li J, Shi W, Wang K, Furuta D, Liu C, Zhao F, Ozoe X, Ju Y Ozoe . 4-Aryl-5-carbamoyl-3-isoxazolols as competitive antagonists of insect GABA receptors: synthesis, biological activity, and molecular docking studies. Bioorganic & Medicinal Chemistry, 2019, 27(2): 416–424
https://doi.org/10.1016/j.bmc.2018.12.018 pmid: 30579800
31 G, Romano N, Holodkov R, Klima F, Grilli C, Guarnaccia M, Nizzardo F, Rizzo R, Garcia F Feiguin . Downregulation of glutamic acid decarboxylase in Drosophila TDP-43-null brains provokes paralysis by affecting the organization of the neuromuscular synapses. Scientific Reports, 2018, 8(1): 1809
https://doi.org/10.1038/s41598-018-19802-3 pmid: 29379112
32 J Y, Zhang Q, Han Z Y, Jing H L, Li M F, Deng K, Zhu M J, Li H X Duan . Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: a review. Chinese Journal of Pesticide Science, 2021, 23(3): 1−22 (in Chinese)
33 S, Caveney B C Donly . Neurotransmitter transporters in the insect nervous system. Advances in Insect Physiology, 2002, 29(2): 55–149
https://doi.org/10.1016/S0065-2806(02)29002-5
34 J A, Bigner S E, Fiester J W, Fulcher C M G, Schammel M E, Ward H E, Burney J F, Wheeler S K, Wheeler J M Teuber . Glyphosate and polyoxyethyleneamine ingestion leading to renal, hepatic, and pulmonary failure. American Journal of Forensic Medicine and Pathology, 2021, 42(3): 282–285
https://doi.org/10.1097/PAF.0000000000000660 pmid: 33491949
35 Y, Kamijo M, Takai T Sakamoto . A multicenter retrospective survey of poisoning after ingestion of herbicides containing glyphosate potassium salt or other glyphosate salts in Japan. Clinical Toxicology, 2016, 54(2): 147–151
https://doi.org/10.3109/15563650.2015.1121271 pmid: 26691886
36 J, Langrand I, Blanc-Brisset D, Boucaud-Maitre E, Puskarczyk P, Nisse R, Garnier C Pulce . Increased severity associated with tallowamine in acute glyphosate poisoning. Clinical Toxicology, 2020, 58(3): 201–203
https://doi.org/10.1080/15563650.2019.1623406 pmid: 31169038
37 Z, Che X, Guo Y, Li S, Zhang L, Zhu J, He D, Sun Y, Guo Y, Liu R, Wei X, Huang S, Liu G, Chen Y Tian . Synthesis of paeonol ester derivatives and their insecticidal, nematicidal, and anti-oomycete activities. Pest Management Science, 2022, 78(8): 3442–3455
https://doi.org/10.1002/ps.6985 pmid: 35567371
38 D, Li Z, Li W, Chen X Yang . Imaging and detection of carboxylesterase in living cells and zebrafish pretreated with pesticides by a new near-infrared fluorescence off-on probe. Journal of Agricultural and Food Chemistry, 2017, 65(20): 4209–4215
https://doi.org/10.1021/acs.jafc.7b00959 pmid: 28475833
39 T R, Bilbo D R, Owens J R, Golec J F Walgenbach . Impact of insecticide programs on pests, the predatory mite Phytoseiulus persimilis, and staked tomato profitability. Pest Management Science, 2022, 78(6): 2390–2397
https://doi.org/10.1002/ps.6866 pmid: 35277921
40 S J, Yu L, Cong Q, Pan L L, Ding S, Lei L Y, Cheng Y H, Fang Z T, Wei H Q, Liu C Ran . Whole genome sequencing and bulked segregant analysis suggest a new mechanism of amitraz resistance in the citrus red mite, Panonychus citri (Acari: Tetranychidae). Pest Management Science, 2021, 77(11): 5032–5048
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/34223705 pmid: 34223705
41 C, Bu B, Peng Y, Cao X, Wang Q, Chen J, Li G Shi . Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae). Insect Biochemistry and Molecular Biology, 2015, 66: 129–135
https://doi.org/10.1016/j.ibmb.2015.10.012 pmid: 26520174
42 G A, Mueller L C, Pedersen J, Glesner L L, Edwards J, Zakzuk R E, London L K, Arruda M D, Chapman L, Caraballo A Pomés . Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: relevance for molecular diagnosis. Journal of Allergy and Clinical Immunology, 2015, 136(5): 1369–1377
https://doi.org/10.1016/j.jaci.2015.03.015 pmid: 25930195
43 J, Carnés V, Iraola S H, Cho R E Esch . Mite allergen extracts and clinical practice. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma & Immunology, 2017, 118(3): 249–256
44 I B, Stanaway J C, Wallace A, Shojaie W C, Griffith S, Hong C S, Wilder F H, Green J, Tsai M, Knight T, Workman E M, Vigoren J S, McLean B, Thompson E M Faustman . Human oral buccal microbiomes are associated with farmworker status and azinphos-methyl agricultural pesticide exposure. Applied and Environmental Microbiology, 2016, 83(2): e02149-16
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/27836847 pmid: 27836847
45 M E, Moriarty T W, Vickers D L, Clifford D K, Garcelon P M, Gaffney K W, Lee J L, King C L, Duncan W M Boyce . Ear mite removal in the Santa Catalina Island fox (Urocyon littoralis catalinae): controlling risk factors for cancer development. PLoS One, 2015, 10(12): e0144271
https://doi.org/10.1371/journal.pone.0144271 pmid: 26641820
46 H, Abdel-Gawad F, Mahdy A, Hashad G H Elgemeie . Fate of 14C-ethion insecticide in the presence of deltamethrin and dimilin pesticides in cotton seeds and oils, removal of ethion residues in oils, and bioavailability of its bound residues to experimental animals. Journal of Agricultural and Food Chemistry, 2014, 62(51): 12287–12293
https://doi.org/10.1021/jf504010h pmid: 25420216
47 J B, Knaak C C, Dary X, Zhang R W, Gerlach R, Tornero-Velez D T, Chang R, Goldsmith J N Blancato . Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment. Reviews of Environmental Contamination and Toxicology, 2012, 219: 1–114
pmid: 22610175
48 Q, Lu Y, Sun I, Ares A, Anadón M, Martínez M R, Martínez-Larrañaga Z, Yuan X, Wang M A Martínez . Deltamethrin toxicity: a review of oxidative stress and metabolism. Environmental Research, 2019, 170: 260–281
https://doi.org/10.1016/j.envres.2018.12.045 pmid: 30599291
49 X, Wang M A, Martínez M, Dai D, Chen I, Ares A, Romero V, Castellano M, Martínez J L, Rodríguez M R, Martínez-Larrañaga A, Anadón Z Yuan . Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environmental Research, 2016, 149: 86–104
https://doi.org/10.1016/j.envres.2016.05.003 pmid: 27183507
50 M G, Zoh J M, Bonneville J, Tutagata F, Laporte B K, Fodjo C S, Mouhamadou C G, Sadia J, McBeath F, Schmitt S, Horstmann S, Reynaud J P David . Experimental evolution supports the potential of neonicotinoid-pyrethroid combination for managing insecticide resistance in malaria vectors. Scientific Reports, 2021, 11(1): 19501
https://doi.org/10.1038/s41598-021-99061-x pmid: 34593941
51 X, Tu W Chen . Overview of analytical methods for the determination of neonicotinoid pesticides in honeybee products and honeybee. Critical Reviews in Analytical Chemistry, 2021, 51(4): 329–338
https://doi.org/10.1080/10408347.2020.1728516 pmid: 32072823
52 T, Luo X, Wang Y Jin . Low concentrations of imidacloprid exposure induced gut toxicity in adult zebrafish (Danio rerio). Comparative Biochemistry and Physiology, Toxicology & Pharmacology: CBP, 2021, 241: 108972
https://doi.org/10.1016/j.cbpc.2020.108972 pmid: 33418081
53 J L, Maino A, Cushen R, Valavi P A Umina . Spatial variation in Australian neonicotinoid usage and priorities for resistance monitoring. Journal of Economic Entomology, 2021, 114(6): 2524–2533
https://doi.org/10.1093/jee/toab192 pmid: 34871446
54 C, Negro Pérez-Cejuela H, Martínez E F, Simó-Alfonso J M, Herrero-Martínez R, Bruno D, Armentano J, Ferrando-Soria E Pardo . Highly efficient removal of neonicotinoid insecticides by thioether-based (multivariate) metal-organic frameworks. ACS Applied Materials & Interfaces, 2021, 13(24): 28424–28432
https://doi.org/10.1021/acsami.1c08833 pmid: 34121386
55 A J, Crossthwaite S, Rendine M, Stenta R Slater . Target-site resistance to neonicotinoids. Journal of Chemical Biology, 2014, 7(4): 125–128
https://doi.org/10.1007/s12154-014-0116-y pmid: 25320645
56 E M, Peterson F B, Green P N Smith . Toxic responses of blue orchard mason bees (Osmia lignaria) following contact exposure to neonicotinoids, macrocyclic lactones, and pyrethroids. Ecotoxicology and Environmental Safety, 2021, 208: 111681
https://doi.org/10.1016/j.ecoenv.2020.111681 pmid: 33396013
57 H A, Khan W, Akram S A Shad . Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Tropica, 2014, 130: 148–154
https://doi.org/10.1016/j.actatropica.2013.11.006 pmid: 24262668
58 N, Abbas H, Khan S A Shad . Cross-resistance, stability, and fitness cost of resistance to imidacloprid in Musca domestica L., (Diptera: Muscidae). Parasitology Research, 2015, 114(1): 247–255
https://doi.org/10.1007/s00436-014-4186-0 pmid: 25342464
59 Júnior E, Ferrari Santos J B A, Dos E D Caldas . Drugs, pesticides and metabolites in forensic post-mortem blood samples. Medicine, Science, and the Law, 2021, 61(2): 97–104
https://doi.org/10.1177/0025802420965006 pmid: 33081562
60 N N, Karpun E B, Yanushevskaya Y V, Mikhailova J, Díaz-Torrijo Y A, Krutyakov A A, Gusev A Neaman . Side effects of traditional pesticides on soil microbial respiration in orchards on the Russian Black Sea coast. Chemosphere, 2021, 275: 130040
https://doi.org/10.1016/j.chemosphere.2021.130040 pmid: 33647685
61 C J, Beringer K W, Goyne R N, Lerch E B, Webb D Mengel . Clothianidin decomposition in Missouri wetland soils. Journal of Environmental Quality, 2021, 50(1): 241–251
https://doi.org/10.1002/jeq2.20175 pmid: 33169408
62 M, Tudi Ruan H, Daniel L, Wang J, Lyu R, Sadler D, Connell C, Chu D T Phung . Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112
https://doi.org/10.3390/ijerph18031112 pmid: 33513796
63 M, Lazarus Lovaković B, Tariba T, Orct A, Sekovanić N, Bilandžić M, Đokić Kolanović B, Solomun I, Varenina A, Jurič Lugomer M, Denžić D Bubalo . Difference in pesticides, trace metal(loid)s and drug residues between certified organic and conventional honeys from Croatia. Chemosphere, 2021, 266: 128954
https://doi.org/10.1016/j.chemosphere.2020.128954 pmid: 33250227
64 X S, He Y L, Zhang Z H, Liu D, Wei G, Liang H T, Liu B D, Xi Z B, Huang Y, Ma B S Xing . Interaction and coexistence characteristics of dissolved organic matter with toxic metals and pesticides in shallow groundwater. Environmental Pollution, 2020, 258: 113736
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/31877467 pmid: 31877467
65 K, Hage-Ahmed K, Rosner S Steinkellner . Arbuscular mycorrhizal fungi and their response to pesticides. Pest Management Science, 2019, 75(3): 583–590
https://doi.org/10.1002/ps.5220 pmid: 30255557
66 J, Riedo F E, Wettstein A, Rösch C, Herzog S, Banerjee L, Büchi R, Charles D, Wächter F, Martin-Laurent T D, Bucheli F, Walder der Heijden M G A van . Widespread occurrence of pesticides in organically managed agricultural soils-the ghost of a conventional agricultural past. Environmental Science & Technology, 2021, 55(5): 2919–2928
https://doi.org/10.1021/acs.est.0c06405 pmid: 33534554
67 J, Riedo C, Herzog S, Banerjee K, Fenner F, Walder der Heijden M G A, van T D Bucheli . Concerted evaluation of pesticides in soils of extensive grassland sites and organic and conventional vegetable fields facilitates the identification of major input processes. Environmental Science & Technology, 2022, 56(19): 13686–13695
https://doi.org/10.1021/acs.est.2c02413 pmid: 36099238
68 G, Romanazzi V, Mancini R, Foglia D, Marcolini M, Kavari S Piancatelli . Use of chitosan and other natural compounds alone or in different strategies with copper hydroxide for control of grapevine downy mildew. Plant Disease, 2021, 105(10): 3261–3268
https://doi.org/10.1094/PDIS-06-20-1268-RE pmid: 33206016
69 P M, Guarda A M S, Pontes R S, Domiciano L D S, Gualberto D B, Mendes E A, Guarda Silva J E C da . Assessment of ecological risk and environmental behavior of pesticides in environmental compartments of the Formoso River in Tocantins, Brazil. Archives of Environmental Contamination and Toxicology, 2020, 79(4): 524–536
https://doi.org/10.1007/s00244-020-00770-7 pmid: 33150460
70 N, Zhang L, Huang Y, Zhang L, Liu C, Sun X Lin . Sulfur deficiency exacerbates phytotoxicity and residues of imidacloprid through suppression of thiol-dependent detoxification in lettuce seedlings. Environmental Pollution, 2021, 291: 118221
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/34740294 pmid: 34740294
71 H, Zhao Y, Wang M, Guo Y, Liu H, Yu M Xing . Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: involvement of blood-brain barrier, oxidative stress and apoptosis. Science of the Total Environment, 2021, 762: 143054
https://doi.org/10.1016/j.scitotenv.2020.143054 pmid: 33127128
72 C, Song J, Yang M, Zhang G, Ding C, Jia J, Qin L Guo . Marine natural products: the important resource of biological insecticide. Chemistry & Biodiversity, 2021, 18(5): e2001020
https://doi.org/10.1002/cbdv.202001020 pmid: 33855815
73 A, Khursheed M A, Rather V, Jain A R, Wani S, Rasool R, Nazir N A, Malik S A Majid . Plant based natural products as potential ecofriendly and safer biopesticides: a comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis, 2022, 173(Pt A): 105854
74 B C, Gerwick T C Sparks . Natural products for pest control: an analysis of their role, value and future. Pest Management Science, 2014, 70(8): 1169–1185
https://doi.org/10.1002/ps.3744 pmid: 24478254
75 M I, Christodoulou J, Tchoumtchoua A L, Skaltsounis A, Scorilas M Halabalaki . Natural alkaloids intervening the insulin pathway: new hopes for anti-diabetic agents. Current Medicinal Chemistry, 2019, 26(32): 5982–6015
https://doi.org/10.2174/0929867325666180430152618 pmid: 29714135
76 C, Liu S, Yang K, Wang X, Bao Y, Liu S, Zhou H, Liu Y, Qiu T, Wang H Yu . Alkaloids from traditional Chinese medicine against hepatocellular carcinoma. Biomedicine & Pharmacotherapy, 2019, 120: 109543
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/31655311 pmid: 31655311
77 S B, Symington A, Zhang W, Karstens Houten J, Van Clark J Marshall . Characterization of pyrethroid action on ciliary calcium channels in paramecium tetraurelia. Pesticide Biochemistry and Physiology, 1999, 65(3): 181–193
https://doi.org/10.1006/pest.1999.2444
78 A T, Coimbra S, Ferreira A P Duarte . Genus Ruta: a natural source of high value products with biological and pharmacological properties. Journal of Ethnopharmacology, 2020, 260: 113076
https://doi.org/10.1016/j.jep.2020.113076 pmid: 32534112
79 W, Gao J, Guo L, Xie C, Peng L, He X, Wan R Hou . Washing fresh tea leaves before picking decreases pesticide residues in tea. Journal of the Science of Food and Agriculture, 2020, 100(13): 4921–4929
https://doi.org/10.1002/jsfa.10553 pmid: 32472940
80 T, Manimegalai K, Raguvaran M, Kalpana R Maheswaran . Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environmental Science and Pollution Research International, 2020, 27(34): 43103–43116
81 M, Tudi Ruan H, Daniel L, Wang J, Lyu R, Sadler D, Connell C, Chu D T Phung . Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112
https://doi.org/10.3390/ijerph18031112 pmid: 33513796
82 J, Xia Y, Liu Y, Zhou J, Zhang C, Li X, Yin X, Tian X Zhang . Two novel alkaloids from Corydalis curviflora Maxim. and their insecticidal activity. Pest Management Science, 2020, 76(7): 2360–2367
https://doi.org/10.1002/ps.5772 pmid: 32020760
83 S A H, Rizvi S, Ling F, Tian J, Liu X Zeng . Interference mechanism of Sophora alopecuroides L. alkaloids extract on host finding and selection of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Environmental Science and Pollution Research International, 2019, 26(2): 1548–1557
https://doi.org/10.1007/s11356-018-3733-0 pmid: 30430450
84 T, Ma X, Shi S, Ma Z, Ma X Zhang . Evaluation of physiological and biochemical effects of two Sophora alopecuroides alkaloids on pea aphids Acyrthosiphon pisum. Pest Management Science, 2020, 76(12): 4000–4008
85 T Y, Wang Q, Li K S Bi . Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences, 2018, 13(1): 12–23
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/32104374 pmid: 32104374
86 S J, Maleki J F, Crespo B Cabanillas . Anti-inflammatory effects of flavonoids. Food Chemistry, 2019, 299: 125124
https://doi.org/10.1016/j.foodchem.2019.125124 pmid: 31288163
87 R, Kaur K, Kaur R, Arora B, Saini S Arora . Natural fused heterocyclic flavonoids: potent candidates as anti-inflammatory and anti-allergic agents in the treatment of asthma. Current Bioactive Compounds, 2021, 17(1): 28–40
https://doi.org/10.2174/1573407215666191120125608
88 D, Raffa B, Maggio M V, Raimondi F, Plescia G Daidone . Recent discoveries of anticancer flavonoids. European Journal of Medicinal Chemistry, 2017, 142: 213–228
https://doi.org/10.1016/j.ejmech.2017.07.034 pmid: 28793973
89 Y, Wang Y, Gao H, Ding S, Liu X, Han J, Gui D Liu . Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry, 2017, 218: 152–158
https://doi.org/10.1016/j.foodchem.2016.09.058 pmid: 27719892
90 T Y, Chou M J, Yang S K, Tseng S S, Lee C C Chang . Tea silkworm droppings as an enriched source of tea flavonoids. Journal of Food and Drug Analysis, 2018, 26(1): 41–46
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/29389582 pmid: 29389582
91 M, Li X, Gao M, Lan X, Liao F, Su L, Fan Y, Zhao X, Hao G, Wu X Ding . Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase. Pesticide Biochemistry and Physiology, 2020, 170: 104701
https://doi.org/10.1016/j.pestbp.2020.104701 pmid: 32980054
92 W T, Hay R W, Behle M A, Berhow A C, Miller G W Selling . Biopesticide synergy when combining plant flavonoids and entomopathogenic baculovirus. Scientific Reports, 2020, 10(1): 6806
https://doi.org/10.1038/s41598-020-63746-6 pmid: 32321975
93 P L D, Silva G, Cordeiro C R D, Silva R A, Barros C R D, Silva J C, Zanuncio W G, Campos M G A Oliveira . Does mechanical damage on soybean induces the production of flavonoids. Anais da Academia Brasileira de Ciências, 2018, 90(4): 3415–3422
https://doi.org/10.1590/0001-3765201820170850 pmid: 30365711
94 N, Devrnja I, Kostić J, Lazarević J, Savić D Ćalić . Evaluation of tansy essential oil as a potential “green” alternative for gypsy moth control. Environmental Science and Pollution Research International, 2020, 27(11): 11958–11967
https://doi.org/10.1007/s11356-020-07825-1 pmid: 31983003
95 L H, Jin B A, Song S, Yang D Y Hu . The recent progress of natural product as plant virucides. Agrochemicals, 2003, 42(4): 10−12 (in Chinese)
96 Z X, Hu J B, Zou Q, An P, Yi C M, Yuan W, Gu L J, Huang H Y, Lou L H, Zhao X J Hao . Anti-tobacco mosaic virus (TMV) activity of chemical constituents from the seeds of Sophora tonkinensis. Journal of Asian Natural Products Research, 2021, 23(7): 644–651
97 J Y, Zeng T M, Vuong J H, Shi Z B, Shi J X, Guo G C, Zhang B Bi . Avermectin stress varied structure and function of gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae. Pesticide Biochemistry and Physiology, 2020, 164: 196–202
https://doi.org/10.1016/j.pestbp.2020.01.013 pmid: 32284127
98 G, Zhang H, Zou N, Geng N, Ding Y, Wang J, Zhang C Zou . Fenoxycarb and methoxyfenozide (RH-2485) affected development and chitin synthesis through disturbing glycometabolism in Lymantria dispar larvae. Pesticide Biochemistry and Physiology, 2020, 163: 64–75
https://doi.org/10.1016/j.pestbp.2019.10.009 pmid: 31973871
99 M, Bisbal M, Remedi G, Quassollo A, Cáceres M Sanchez . Rotenone inhibits axonogenesis via an Lfc/RhoA/ROCK pathway in cultured hippocampal neurons. Journal of Neurochemistry, 2018, 146(5): 570–584
https://doi.org/10.1111/jnc.14547 pmid: 29972689
100 K, Lu Y, Cheng Y, Li W, Li R, Zeng Y Song . Phytochemical flavone confers broad-spectrum tolerance to insecticides in Spodoptera litura by activating ROS/CncC-mediated xenobiotic detoxification pathways. Journal of Agricultural and Food Chemistry, 2021, 69(26): 7429–7445
https://doi.org/10.1021/acs.jafc.1c02695 pmid: 34169724
101 J L, Rodríguez-Chávez V, Egas E, Linares R, Bye T, Hernández F J, Espinosa-García G Delgado . Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): ethnomedical uses, chemical constituents and biological properties. Journal of Ethnopharmacology, 2017, 195: 39–63
https://doi.org/10.1016/j.jep.2016.11.021 pmid: 27847336
102 R R, Wen L, Ma W Y, Dong B Y Wang . Toxic effect of rotenone on gypsy moth. Journal of Northeast Forestry University, 2016, 44(9): 103–105, 111 (in Chinese)
103 A, Mazen A R, Saeid A D Mohmmad . Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald.). Journal of Agricultural Science, 2012, 4(2): 227–236
104 L W, Song X H, Zhang H M Shen . Comparison of different actions of 1.6% daphneantoxin EW on four vegetable pest. Plant Protection, 2017, 43(1): 218−223 (in Chinese)
105 A, Konarska B Łotocka . Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)-morphology, histochemistry and ultrastructure. Planta, 2020, 252(6): 102
https://doi.org/10.1007/s00425-020-03513-z pmid: 33180181
106 D Tholl . Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering/Biotechnology, 2015, 148: 63–106
https://doi.org/10.1007/10_2014_295 pmid: 25583224
107 J Grassmann . Terpenoids as plant antioxidants. Vitamins and Hormones, 2005, 72: 505–535
https://doi.org/10.1016/S0083-6729(05)72015-X pmid: 16492481
108 S B, Ateba M A, Mvondo S T, Ngeu J, Tchoumtchoua C F, Awounfack D, Njamen L Krenn . Natural terpenoids against female breast cancer: a 5-year recent research. Current Medicinal Chemistry, 2018, 25(27): 3162–3213
https://doi.org/10.2174/0929867325666180214110932 pmid: 29446727
109 A, Ahmad R K, Tiwari I A Ansari . Revisiting the antiviral efficacy of terpenoids: plausible adjunct therapeutics for novel SARS-CoV-2. Endocrine, Metabolic & Immune Disorders Drug Targets, 2021, 21(12): 2119–2130
https://doi.org/10.2174/1871530321666210520102042 pmid: 34061008
110 S A, Zacchino E, Butassi M D, Liberto M, Raimondi A, Postigo M Sortino . Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 2017, 37: 27–48
https://doi.org/10.1016/j.phymed.2017.10.018 pmid: 29174958
111 D Tholl . Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering/Biotechnology, 2015, 148: 63–106
https://doi.org/10.1007/10_2014_295 pmid: 25583224
112 I, Arberas-Jiménez S, García-Davis A, Rizo-Liendo I, Sifaoui M, Reyes-Batlle O, Chiboub R L, Rodríguez-Expósito A R, Díaz-Marrero J E, Piñero J J, Fernández J Lorenzo-Morales . Laurinterol from Laurencia johnstonii eliminates Naegleria fowleri triggering PCD by inhibition of ATPases. Scientific Reports, 2020, 10(1): 17731
https://doi.org/10.1038/s41598-020-74729-y pmid: 33082417
113 T, Ishii T, Nagamine B Nguyen . Insecticidal and repellent activities of laurinterol from the okinawan red alga Laurencia nidifica. Records of Natural Products, 2017, 11(1): 63–68
114 Q, Jia H, Zeng J, Zhang S, Gao N, Xiao J, Tang X, Dong W Xie . The crystal structure of the Spodoptera litura chemosensory protein CSP8. Insects, 2021, 12(7): 602
https://doi.org/10.3390/insects12070602 pmid: 34357261
115 C G, Webster H, Park A F, Ennis J Hong . Synthetic efforts toward the bicyclo[3.2.1]octane fragment of rhodojaponin III. Tetrahedron Letters, 2021, 71: 153055
https://doi.org/10.1016/j.tetlet.2021.153055 pmid: 34054153
116 D M, Cheng Z X, Zhang M Y Hu . Study on the control effect of the crude extract of rhododendron molle and rhodojaponin-III to the larvae of Spodoptera litura larvae. Journal of Changjiang Vegetables, 2007, 4(5): 47−49 (in Chinese)
117 K A, Neelam A, Khatkar K K Sharma . Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Critical Reviews in Food Science and Nutrition, 2020, 60(16): 2655–2675
https://doi.org/10.1080/10408398.2019.1653822 pmid: 31456411
118 A, Devi V K, Das D Deka . Evaluation of the eectiveness of potato peel extract as a natural antioxidanton biodiesel oxidation stability. Industrial Crops and Products, 2018, 123: 454–460
https://doi.org/10.1016/j.indcrop.2018.07.022
119 G U, Seong I W, Hwang S K Chung . Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chemistry, 2016, 199: 612–618
https://doi.org/10.1016/j.foodchem.2015.12.066 pmid: 26776015
120 A, Hematpoor S Y, Liew M S, Azirun K Awang . Insecticidal activity and the mechanism of action of three phenylpropanoids isolated from the roots of Piper sarmentosum Roxb. Scientific Reports, 2017, 7(1): 12576
https://doi.org/10.1038/s41598-017-12898-z pmid: 28974710
121 A, Pengsook A, Puangsomchit T, Yooboon V, Bullangpoti W Pluempanupat . Insecticidal activity of isolated phenylpropanoids from Alpinia galanga rhizomes against Spodoptera litura. Natural Product Research, 2021, 35(23): 5261–5265
122 J H, Yi H, Perumalsamy K, Sankarapandian B R, Choi Y J Ahn . Fumigant toxicity of phenylpropanoids identified in Asarum sieboldii aerial parts to Lycoriella ingenua (Diptera: Sciaridae) and Coboldia fuscipes (Diptera: Scatopsidae). Journal of Economic Entomology, 2015, 108(3): 1208–1214
https://doi.org/10.1093/jee/tov064 pmid: 26470247
123 T, Xiaorong H Taiping . Separation and identification of botanical insecticide 7-hydroxycoumarin and its biological activity against Aphis craccivora and Culex pipiens pallens. Natural Product Research, 2008, 22(4): 365–370
https://doi.org/10.1080/14786410701856009 pmid: 18322853
124 M, Maleck P O, Hollanda M T, Serdeiro R O, Soares N A, Honório C G Silva . Toxicity and larvicidal activity of podophyllum-based lignans against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2017, 54(1): 159–166
https://doi.org/10.1093/jme/tjw130 pmid: 28082643
125 C, Niculaes A, Abramov L, Hannemann M Frey . Plant protection by benzoxazinoids—Recent insights into biosynthesis and function. Agronomy, 2018, 8(8): 143
https://doi.org/10.3390/agronomy8080143
126 J M, Mwendwa P A, Weston J D, Weidenhamer I S, Fomsgaard H, Wu S, Gurusinghe L A Weston . Metabolic profiling of benzoxazinoids in the roots and rhizosphere of commercial winter wheat genotypes. Plant and Soil, 2021, 466(1−2): 467−489
127 Y, Wang X Y, Mei Y X, Liu F, Du M, Yang Y Q Zu . Research progress of benzoxazinoids as defense related substances in plants. Journal of Plant Physiology, 2021, 57(4): 767−779 (in Chinese)
128 F C, Wouters B, Blanchette J, Gershenzon D G Vassão . Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochemistry Reviews : Proceedings of the Phytochemical Society of Europe, 2016, 15(6): 1127–1151
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/27932939 pmid: 27932939
129 S, Ahmad N, Veyrat R, Gordon-Weeks Y, Zhang J, Martin L, Smart G, Glauser M, Erb V, Flors M, Frey J Ton . Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology, 2011, 157(1): 317–327
https://doi.org/10.1104/pp.111.180224 pmid: 21730199
130 G, Glauser G, Marti N, Villard G A, Doyen J L, Wolfender T C, Turlings M Erb . Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. The Plant Journal: for Cell and Molecular Biology, 2011, 68(5): 901–911
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/21838747 pmid: 21838747
131 L N, Meihls V, Handrick G, Glauser H, Barbier H, Kaur M M, Haribal A E, Lipka J, Gershenzon E S, Buckler M, Erb T G, Köllner G Jander . Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell, 2013, 25(6): 2341–2355
https://doi.org/10.1105/tpc.113.112409 pmid: 23898034
132 Z S, Batyrshina B, Yaakov R, Shavit A, Singh V Tzin . Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC Plant Biology, 2020, 20(1): 19
https://doi.org/10.1186/s12870-019-2214-z pmid: 31931716
133 J, Guo J, Guo K, He S, Bai T, Zhang J, Zhao Z Wang . Physiological responses induced by Ostrinia furnacalis (Lepidoptera: Crambidae) feeding in maize and their effects on O. furnacalis performance. Journal of Economic Entomology, 2017, 110(2): 739–747
https://doi.org/10.1093/jee/tox060 pmid: 28334193
134 V, Handrick C A, Robert K R, Ahern S, Zhou R A, Machado D, Maag G, Glauser F E, Fernandez-Penny J N, Chandran E, Rodgers-Melnik B, Schneider E S, Buckler W, Boland J, Gershenzon G, Jander M, Erb T G Köllner . Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28(7): 1682–1700
https://doi.org/10.1105/tpc.16.00065 pmid: 27317675
135 C, Zhang J, Li S, Li C, Ma H, Liu L, Wang J, Qi J Wu . ZmMPK6 and ethylene signalling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188. New Phytologist, 2021, 229(4): 2273–2287
https://doi.org/10.1111/nph.16974 pmid: 32996127
136 D, Maag C, Dalvit D, Thevenet A, Köhler F C, Wouters D G, Vassão J, Gershenzon J L, Wolfender T C J, Turlings M, Erb G Glauser . 3-β-D-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry, 2014, 102: 97–105
https://doi.org/10.1016/j.phytochem.2014.03.018 pmid: 24713572
137 A, Kulmatiski K H, Beard J R, Stevens S M Cobbold . Plant-soil feedbacks: a meta-analytical review. Ecology Letters, 2008, 11(9): 980–992
https://doi.org/10.1111/j.1461-0248.2008.01209.x pmid: 18522641
138 S, Cadot V, Gfeller L, Hu N, Singh A, Sánchez-Vallet G, Glauser D, Croll M, Erb der Heijden M G A, van K Schlaeppi . Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. Plant, Cell & Environment, 2021, 44(12): 3502–3514
https://doi.org/10.1111/pce.14184 pmid: 34505297
139 L, Hu C A M, Robert S, Cadot X, Zhang M, Ye B, Li D, Manzo N, Chervet T, Steinger der Heijden M G A, van K, Schlaeppi M Erb . Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9(1): 2738
https://doi.org/10.1038/s41467-018-05122-7 pmid: 30013066
140 B, Zhong C, Lv W Qin . Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomologist, 2017, 100(2): 215–218
https://doi.org/10.1653/024.100.0215
141 H, Gaspar C, Moiteiro J, Sardinha A González-Coloma . Bioactive semisynthetic dervatives of (S)-(+)-curcuphenol. Natural Product Communications, 2008, 3(9): 1457–1464
https://doi.org/10.1177/1934578X0800300911
142 D, Handayani R A, Edrada P, Proksch V, Wray L, Witte Ofwegen L, van A Kunzmann . New oxygenated sesquiterpenes from the indonesian soft coral nephthea chabrolii. Journal of Natural Products, 1997, 60(7): 716–718
https://doi.org/10.1021/np960699f
143 T, Ishii T, Kamada C S, Phan C S Vairappan . Chabrolene, a novel norditerpene from the bornean soft coral Nephthea sp. Sains Malaysiana, 2018, 47(2): 319–322
144 S, Nobsathian T, Ruttanaphan V Bullangpoti . Insecticidal effects of triterpene glycosides extracted from Holothuria atra (echinodermata: holothuroidea) against Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2019, 112(4): 1683–1687
https://doi.org/10.1093/jee/toz075 pmid: 30968940
145 M F, Qiao N Y, Ji X H, Liu K, Li Q M, Zhu Q Z Xue . Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorganic & Medicinal Chemistry Letters, 2010, 20(19): 5677–5680
146 S, Quiroz-Carreño E, Pastene-Navarrete C, Espinoza-Pinochet E, Muñoz-Núñez L, Devotto-Moreno C L, Céspedes-Acuña J Alarcón-Enos . Assessment of insecticidal activity of benzylisoquinoline alkaloids from Chilean Rhamnaceae plants against fruit-fly Drosophila melanogaster and the Lepidopteran crop pest Cydia pomonella. Molecules, 2020, 25(21): 5094
147 Y L, Wang Z J, Guo G F, Hu G F, Li S J, Niu F Zhao . Separation, identification and pesticidal activity of alkaloids from Anisodus tanguticus (Maxim.). Plant Protection, 2019, 45(04): 190–194, 204 (in Chinese)
148 B G, Zhao Z W, Zhao H G Wang . Inhibitory effects of alkaloids of Sophora alopecuroides on pine wood nematode (Bursaphelenchus xylophilus). Journal of Nanjing Forestry University (Natural Sciences Edition), 2006, 30(06): 129−131
149 W M, Alarif Z S, Abou-Elnaga S E N, Ayyad S S Al-Lihaibi . Insecticidal metabolites from the green alga Caulerpa racemosa. Clean, 2010, 38(5−6): 548−557
150 A, Supriyono B, Schwarz V, Wray L, Witte W E, Müller Soest R, van W, Sumaryono P Proksch . Bioactive alkaloids from the tropical marine sponge Axinella carteri. Zeitschrift für Naturforschung C, 1995, 50(9–10): 669–674
151 R A, Edrada P, Proksch V, Wray L, Witte W E, Müller Soest R W Van . Four new bioactive manzamine-type alkaloids from the Philippine marine sponge Xestospongia ashmorica. Journal of Natural Products, 1996, 59(11): 1056–1060
152 M N, Thompson W A, Gallimore M M, Townsend N A, Chambers L A Williams . Bioactivity of amphitoxin, the major constituent of the Jamaican sponge Amphimedon compressa. Chemistry & Biodiversity, 2010, 7(8): 1904–1910
153 T W, Hong D R, Jímenez T F Molinski . Agelastatins C and D, new pentacyclic bromopyrroles from the sponge Cymbastela sp., and potent arthropod toxicity of (−)-agelastatin A. Journal of Natural Products, 1998, 61(1): 158–161
https://doi.org/10.1021/np9703813 pmid: 9461668
154 R A, Edrada R, Ebel A, Supriyono V, Wray P, Schupp K, Steube Soest R, van P Proksch . Swinhoeiamide A, a new highly active calyculin derivative from the marine sponge Theonella swinhoei. Journal of Natural Products, 2002, 65(8): 1168–1172
155 X, Ji J, Guo Y, Liu A, Lu Z, Wang Y, Li S, Yang Q Wang . Marine-natural-product development: first discovery of nortopsentin alkaloids as novel antiviral, anti-phytopathogenic-fungus, and insecticidal agents. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4062–4072
https://doi.org/10.1021/acs.jafc.8b00507 pmid: 29630371
156 Z, Zuo D Ma . Synthetic studies toward communesins. Israel Journal of Chemistry, 2011, 51(3−4): 434−441
157 F Y, Du X M, Li C S, Li Z, Shang B G Wang . Cristatumins A–D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorganic & Medicinal Chemistry Letters, 2012, 22(14): 4650–4653
https://doi.org/10.1016/j.bmcl.2012.05.088 pmid: 22727636
158 M, Thenmozhi J V, Gopal K, Kannabiran G, Rajakumar K, Velayutham A A Rahuman . Eco-friendly approach using marine actinobacteria and its compounds to control ticks and mosquitoes. Parasitology Research, 2013, 112(2): 719–729
https://doi.org/10.1007/s00436-012-3192-3 pmid: 23180127
159 D, Chen P, Zhang T, Liu X F, Wang Z X, Li W, Li F L Wang . Insecticidal activities of chloramphenicol derivatives isolated from a marine alga-derived endophytic fungus, Acremonium vitellinum, against the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Molecules, 2018, 23(11): 2995
https://doi.org/10.3390/molecules23112995 pmid: 30453532
160 B, Jia Y M, Ma Z, Chen P, Chem Y Hu . Studies on structure and biological activity of indole diketopiperazine alkaloids. Progress in Chemistry, 2018, 30(08): 1067−1081 (in Chinese)
161 C X, Li Y Q, Zhang D, Wang B C, Zhang J X, Lou W Ding . Effects of curcumin and scopoletin on morphological change and water loss of Tetranychus cinnabarinus boisduval (Acarina: Tetranychidae). Journal of Southwest University (Natural Science Edition), 2017, 39(11): 10−15 (in Chinese)
162 K, Georges B, Jayaprakasam S S, Dalavoy M G Nair . Pest-managing activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso. Bioresource Technology, 2008, 99(6): 2037–2045
https://doi.org/10.1016/j.biortech.2007.02.049 pmid: 17478091
163 M, Bai C J, Zheng X H, Nong X M, Zhou Y P, Luo G Y Chen . Four new insecticidal xanthene derivatives from the mangrove-derived fungus Penicillium sp. jy246. Marine Drugs, 2019, 17(12): 649
https://doi.org/10.3390/md17120649 pmid: 31756930
164 C, Cui Y, Yang T, Zhao K, Zou C, Peng H, Cai X, Wan R Hou . Insecticidal activity and insecticidal mechanism of total saponins from Camellia oleifera. Molecules, 2019, 24(24): 4518
165 X F, Yang H T, Zhang X X, Chen X Y, Fan Y Zhou . Study on the germicidal effect of four natural products on Helicoverpa armiger. Heilongjiang Grain, 2022, 277(4): 57−63 (in Chinese)
166 Company Monsanto . Determination of nonregulated status for insect resistant cotton. Federal Register, 2021, 86(011): 5130–5131
167 K M, Meepagala U, Bernier C, Burandt S O Duke . Natural products from plants and their synthetic analogs against pests. Planta Medica, 2012, 78(11): PL27
https://doi.org/10.1055/s-0032-1321361
168 Z W, Pan S N, Liu Y C, Chen Y D, Wang Q, Gu D F Song . As natural phytocide: biomarker assessment of Litsea cubeba (Lour.) Persoon essential oil against Drosophila suzukii Matsumura (Diptera: Drosophilidae.). Industrial Crops and Products, 2022, 187: 115421–115426
https://doi.org/10.1016/j.indcrop.2022.115421
169 J Y, Liang Y Y, Yang Y, An Y Z, Shao C Y, He J, Zhang L Y Jia . Insecticidal and acetylcholine esterase inhibition activity of Rhododendron thymifolium essential oil and its main constituent against two stored product insects. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56(4): 423–430
https://doi.org/10.1080/03601234.2021.1894888 pmid: 33678144
170 Cropscience Bayer . Patent issued for insect resistant cotton plants and methods for identifying same (USPTO 10356996). Agriculture Week, 2019
171 P P, Kumar S S, Bawani D U, Anandhi K V H Prashanth . Rotenone mediated developmental toxicity in Drosophila melanogaster. Environmental Toxicology and Pharmacology, 2022, 93: 103892
172 M, Díaz C E, Díaz R G, Álvarez A, González L, Castillo A, González-Coloma G, Seoane C Rossini . Differential anti-insect activity of natural products isolated from Dodonaea viscosa Jacq. (Sapindaceae). Journal of Plant Protection Research, 2015, 55(2): 172–178
https://doi.org/10.1515/jppr-2015-0023
173 H, Ikeda N, Yonemochi R, Mikami M, Abe M, Kawamura R, Natsume K, Sakimura J L, Waddington J Kamei . Central dopamine D2 receptors regulate plasma glucose levels in mice through autonomic nerves. Scientific Reports, 2020, 10(1): 22347
https://doi.org/10.1038/s41598-020-79292-0 pmid: 33339892
174 B, Kiss I, Laszlovszky B, Krámos A, Visegrády A, Bobok G, Lévay B, Lendvai V Román . Neuronal dopamine D3 receptors: translational implications for preclinical research and CNS disorders. Biomolecules, 2021, 11(1): 104
https://doi.org/10.3390/biom11010104 pmid: 33466844
175 G, Mao Y, Tian Z, Sun J, Ou H Xu . Bruceine D isolated from Brucea Javanica (L.) Merr. as a systemic feeding deterrent for three major lepidopteran pests. Journal of Agricultural and Food Chemistry, 2019, 67(15): 4232–4239
https://doi.org/10.1021/acs.jafc.8b06511 pmid: 30901209
176 J J, Zhu G J, Brewer D J, Boxler K, Friesen D B Taylor . Comparisons of antifeedancy and spatial repellency of three natural product repellents against horn flies, Haematobia irritans (Diptera: Muscidae). Pest Management Science, 2015, 71(11): 1553–1560
https://doi.org/10.1002/ps.3960 pmid: 25491886
177 I, Coldham S, Dufour T F N, Haxell G P Vennall . Dynamic resolution of N-alkyl-2-lithiopyrrolidines with the chiral ligand (−)-sparteine. Tetrahedron, 2005, 61(13): 3205–3220
https://doi.org/10.1016/j.tet.2005.01.096
178 D, Qin Y, Zhou P, Zhang B, Liu Q, Zheng Z Zhang . Azadirachtin downregulates the expression of the CREB gene and protein in the brain and directly or indirectly affects the cognitive behavior of the Spodoptera litura fourth-instar larvae. Pest Management Science, 2021, 77(4): 1873–1885
https://doi.org/10.1002/ps.6212 pmid: 33284470
179 C S, Vieira M B, Figueiredo C D S, Moraes S B, Pereira P, Dyson C B, Mello D P, Castro P Azambuja . Azadirachtin interferes with basal immunity and microbial homeostasis in the Rhodnius prolixus midgut. Developmental and Comparative Immunology, 2021, 114: 103864
https://doi.org/10.1016/j.dci.2020.103864 pmid: 32918931
180 X B, Huang X C, Wang H Li . Effects of quercetin on the growth and development and detoxification enzymeactivities of Calliptamus abbreviatus. Journal of Northern Agriculture, 2021, 49(2): 71−77 (in Chinese)
181 X, Shao D, Lai W, Xiao W, Yang Y, Yan S Kuang . The botanical eurycomanone is a potent growth regulator of the diamondback moth. Ecotoxicology and Environmental Safety, 2021, 208: 111647
https://doi.org/10.1016/j.ecoenv.2020.111647 pmid: 33396167
182 G, Sharma V Mathur . Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiology Ecology, 2020, 96(4): fiaa040
183 B, Cui X, Huang S, Li K, Hao B H, Chang X, Tu B, Pang Z Zhang . Quercetin affects the growth and development of the grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). Journal of Economic Entomology, 2019, 112(3): 1175–1182
https://doi.org/10.1093/jee/toz050 pmid: 30916750
184 J, Dampc M, Kula-Maximenko M, Molon R Durak . Enzymatic defense response of apple aphid Aphis pomi to increased temperature. Insects, 2020, 11(7): 436
https://doi.org/10.3390/insects11070436 pmid: 32664609
185 S Q, Ling B, He D Q, Zeng W W Tang . Effects of botanical pesticide itol A against the tobacco cutworm, Spodoptera litura (Fab.). Environmental Science and Pollution Research International, 2020, 27(11): 12181–12191
https://doi.org/10.1007/s11356-020-07824-2 pmid: 31989496
186 X L, Zhang Y, Wang D, Xu B, Liu H H, Zhang H, Ao G Y Sun . Effect of 1-DNJ from mulberry leaves on the growth and protective enzymes of Spodoptera exigua. Chinese Agricultural Science Bulletin, 2014, 30(22): 316−320 (in Chinese)
187 E, Elzayyat N, Elleboudy A, Moustafa A Ammar . Insecticidal, oxidative, and genotoxic activities of Syzygium aromaticum and Eucalyptus globulus on Culex pipiens adults and larvae. Turkiye Parazitolojii Dergisi, 2018, 42(3): 213–222
https://doi.org/https://pubmed.ncbi.nlm.nih.gov/30280694 pmid: 30280694
188 K, Magierowicz E, Górska-Drabik C Sempruch . The insecticidal activity of Satureja hortensis essential oil and its active ingredient—Carvacrol against Acrobasis advenella (Zinck.) (Lepidoptera, Pyralidae). Pesticide Biochemistry and Physiology, 2019, 153: 122–128
https://doi.org/10.1016/j.pestbp.2018.11.010 pmid: 30744885
189 K A, Bandara V, Kumar U, Jacobsson L P Molleyres . Insecticidal piperidine alkaloid from Microcos paniculata stem bark. Phytochemistry, 2000, 54(1): 29–32
https://doi.org/10.1016/S0031-9422(00)00025-X pmid: 10846743
190 Z, Liu Q, Zhang X, Wu W, Yu S Guo . Insecticidal mechanism of wintergreen oil against the health pest Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology, 2018, 55(1): 155–162
https://doi.org/10.1093/jme/tjx162 pmid: 29029320
191 S, Thapa M, Lv H Xu . Acetylcholinesterase: a primary target for drugs and insecticides. Mini-Reviews in Medicinal Chemistry, 2017, 17(17): 1665–1676
https://doi.org/10.2174/1389557517666170120153930 pmid: 28117022
192 M, Mardani-Talaee V, Rahimi A Zibaee . Effects of host plants on digestive enzymatic activities and some components involved in intermediary metabolism of Chrysodeixis chalcites (Lepidoptera: Noctuidae). Journal of Entomological and Acarological Research, 2014, 46(3): 96–101
https://doi.org/10.4081/jear.2014.3224
193 S, Ranganathan D R, Ampasala B K, Palaka A V, Ilavarasi I, Patidar L P, Poovadan T D Sapam . In silico binding profile analysis and in vitro investigation on chitin synthase substrate and inhibitors from maize stem borer. Chilo partellus. Current Computer-aided Drug Design, 2021, 17(7): 881–895
https://doi.org/10.2174/1573409916666201013150920 pmid: 33109065
194 X, Song C, Liu P, Chen H, Zhang R Sun . Natural product-based pesticide discovery: design, synthesis and bioactivity studies of n-amino-maleimide derivatives. Molecules, 2018, 23(7): 1521
https://doi.org/10.3390/molecules23071521 pmid: 29937519
195 V, Bullangpoti S, Visetson M, Milne J, Milne S, Pornbanlualap C, Sudthongkongs S Tayapat . The novel botanical insecticide for the control brown planthopper (Nilaparvata lugens Stal.). Communications in Agricultural and Applied Biological Sciences, 2006, 71(2 Pt B): 475–481
196 S Q, Li J H, Su Z N Zhang . Effects of rotenone on oviposition and feeding of Monochamus alternatus Hope (Coleoptera: Cerambycidae). Acta Entomologica Sinica, 2005, 48(5): 687−691 (in Chinese)
197 Z Z, Zhou W W You . Progress in the study of rotenone derivatives. Chinese Journal of Organic Chemistry, 2008, 11: 1849−1856 (in Chinese)
198 Y, Zhang Y X, Yuan M, Goto L L, Guo X N, Li S L, Morris-Natschke K H, Lee X J Hao . Taburnaemines A−I, cytotoxic vobasinyl-iboga-type bisindole alkaloids from Tabernaemontana corymbosa. Journal of Natural Products, 2018, 81(3): 562–571
199 U A, Schneider P, Havlík E, Schmid H, Valin A, Mosnier M, Obersteiner H, Böttcher R, Skalský J, Balkovič T, Sauer S Fritz . Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems, 2011, 104(2): 204–215
https://doi.org/10.1016/j.agsy.2010.11.003
200 C, Rodingpuia H Lalthanzara . An insight into black cutworm (Agrotis ipsilon): a glimpse on globally important crop pest. Science Vision, 2021, 21(2): 36–42
https://doi.org/10.33493/scivis.21.02.02
201 Z R, Song Z Q, Gao J H, He L, Wang X U Qiang . A review of researching present situation and application of pesticides. Journal of Agricultural Mechanization Research, 2007, (7): 10−13 (in Chinese)
202 P, Nicolopoulou-Stamati S, Maipas C, Kotampasi P, Stamatis L Hens . Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 2016, 4: 148
https://doi.org/10.3389/fpubh.2016.00148 pmid: 27486573
203 C X, Yang J Wang . Research progress in controlled release of pesticides from natural polysaccharides. Hans Journal of Medicinal Chemistry, 2021, 9(2): 62−66 (in Chinese)
204 M, Tudi Ruan H, Daniel L, Wang J, Lyu R, Sadler D, Connell C, Chu D T Phung . Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112
https://doi.org/10.3390/ijerph18031112 pmid: 33513796
205 Mojzer E, Brglez Hrnčič M, Knez M, Škerget Ž, Knez U Bren . Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7): 901
https://doi.org/10.3390/molecules21070901 pmid: 27409600
206 L, Hu J, Ying M, Zhang X, Qiu Y Lu . Antitumor potential of marine natural products: a mechanistic investigation. Anti-cancer Agents in Medicinal Chemistry, 2018, 18(5): 702–718
https://doi.org/10.2174/1871520617666170918142811 pmid: 28925876
207 R, Kaur R, Sharma G K Chahal . Synthesis of lignin-based hydrogels and their applications in agriculture: a review. Chemical Papers, 2021, 75(9): 4465–4478
https://doi.org/10.1007/s11696-021-01712-w
208 K H, Wei L X, Li Y C, Hang M Y, Wang C, Li J H Miao . Tissue culture of Sophora tonkinensis Gapnep. and its quality evaluation. Pharmacognosy Magazine, 2013, 9(36): 323–330
https://doi.org/10.4103/0973-1296.117828 pmid: 24124284
[1] Jing ZHU, Yuan CHEN, Liangcheng DU. PRODUCTION OF NEW WAP-8294A CYCLODEPSIPEPTIDES BY THE BIOLOGICAL CONTROL AGENT LYSOBACTER ENZYMOGENES OH11[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 120-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed